
– 1 –

Announcement:
Thursday, May 20th, we will have the lecture at the usual time (10:15–12) on Zoom, inspite of the public
holiday in Germany.

The lecture will be recorded. If you want to observe the holiday you can still view the lecture.

– 2 –

Linear Programming for few variables and many constraints

Given finite set H of size n > d and
for each h ∈ H some ah ∈ Rd \ {0}

and some bh ∈ R
and given some c ∈ Rd \ {0}

find some x ∈ Rd so as to

minimize 〈c, x〉
s.t. 〈ah, x〉 ≤ bh for each h ∈ H.

– 3 –

Linear Programming for few variables and many constraints

Given finite set H of size n > d and
for each h ∈ H some ah ∈ Rd \ {0}

and some bh ∈ R
and given some c ∈ Rd \ {0}

find some x ∈ Rd so as to

minimize 〈c, x〉
s.t. 〈ah, x〉 ≤ bh for each h ∈ H.

〈u, v〉 =
∑

1≤i≤d

uivi

– 4 –

Linear Programming for few variables and many constraints

Given finite set H of size n > d and
for each h ∈ H some ah ∈ Rd \ {0}

and some bh ∈ R
and given some c ∈ Rd \ {0}

find some x ∈ Rd so as to

minimize 〈c, x〉
s.t. 〈ah, x〉 ≤ bh for each h ∈ H.

Given finite set H of n halfspaces in Rd

and some direction c

find some x ∈
⋂
H

that is least in direction c

– 5 –

Linear Programming for few variables and many constraints

Given finite set H of size n > d and
for each h ∈ H some ah ∈ Rd \ {0}

and some bh ∈ R
and given some c ∈ Rd \ {0}

find some x ∈ Rd so as to

minimize 〈c, x〉
s.t. 〈ah, x〉 ≤ bh for each h ∈ H.

Given finite set H of n halfspaces in Rd

and some direction c

find some x ∈
⋂
H

that is least in direction c

c

– 6 –

Linear Programming for few variables and many constraints

Given finite set H of n halfspaces in Rd

and some direction c

find some x ∈
⋂
H

that is least in direction c

c

Possibility 1: An optimal
solution exisits.

Given by an intersection point
of d bounding hyperplanes
from H

– 7 –

Linear Programming for few variables and many constraints

Given finite set H of n halfspaces in Rd

and some direction c

find some x ∈
⋂
H

that is least in direction c

c

Possibility 2: No optimal
solution exisits.

The intersection is unbounded.

– 8 –

Linear Programming for few variables and many constraints

Given finite set H of n halfspaces in Rd

and some direction c

find some x ∈
⋂
H

that is least in direction c

c

Possibility 3: No solution exisits
because the problem is infeasible,
i.e.

⋂
H is empty.

In this case there must be d+ 1
halfspaces in H that do not
intersect.

– 9 –

LP — Known Methods and Results

Fourier–Motzkin elimination slow

Simplex method fast in practice, bad in the worst case

Ellipsoid method good (polynomial time) theoretical bounds

Interior point methods good theoretical bounds,
can be made fast in practice

. . .

Polynomial time methods work in the bit model of computation and need inputs
to be integral.

No polynomial time algorithm is know for the algebraic model, where you count
operations on numbers (and not on bits).

– 10 –

LP for d = 2 variables and many constraints

Mainly intersted in algorithmic aspects.

Simplifying assumptions:
• optimization direction is vertical
• only upper halfplanes
• no degeneracies

– 11 –

LP for d = 2 variables and many constraints

Mainly intersted in algorithmic aspects.

Simplifying assumptions:
• optimization direction is vertical
• only upper halfplanes
• no degeneracies

minimize y s.t.
y ≥ ahx+ bh for each h ∈ H.

– 12 –

LP for d = 2 variables and many constraints

Mainly intersted in algorithmic aspects.

Easy Algorithm:
1. Compute the boundary of the
intersection of the upper halfplanes.

2. Find “lowest” point on that
boundary

minimize y s.t.
y ≥ ahx+ bh for each h ∈ H.

O(n log n) time

– 13 –

LP for d = 2 variables and many constraints

Mainly intersted in algorithmic aspects.

Decimation Algorithm:
Megiddo 1982, Dyer 1982

(i) Identify in linear time a constant
fraction of the halfplanes that cannot
possibly contribute to the optimum
point.

(ii) Remove those halfplanes from
consideration and recurse.

minimize y s.t.
y ≥ ahx+ bh for each h ∈ H.

Running Time: T (n) ≤ O(n) + T (cn)
for some c < 1.

=⇒ T (n) = O(n)

– 14 –

How to eliminate

– 15 –

How to eliminate

– 16 –

Removing Simplifying Assumptions

Simplifying assumptions:
• optimization direction is vertical
• only upper halfplanes
• no degeneracies

– 17 –

LP for d = 3 variables and many constraints

Simplifying assumptions:
• optimization direction is vertical
• only upper halfspaces
• no degeneracies

minimize z s.t.
z ≥ αhx+ βhy + bh for each h ∈ H.

Easy Algorithm:
1. Compute the boundary of the intersection of the upper halfplanes.

2. Find “lowest” point on that boundary

O(n log n) time (the first step can be done by 3d convex hull algorithm)

– 18 –

LP for d = 3 variables and many constraints

Decimation Algorithm:
Megiddo 1982, Dyer 1982

(i) Identify in linear time a constant fraction of the halfspaces that cannot possibly
contribute to the optimum point.

(ii) Remove those halfspaces from consideration and recurse.

– 19 –

LP for d = 3 variables and many constraints

Decimation Algorithm:
Megiddo 1982, Dyer 1982

(i) Identify in linear time a constant fraction of the halfspaces that cannot possibly
contribute to the optimum point. “redundant halfspaces”

(ii) Remove those redundant halfspaces from consideration and recurse.

– 20 –

How to identify a redundant halfspace

– 21 –

How to do an optimum-location query

– 22 –

How to answer many optimum-location queries using just two actual queries.

Abstract Problem: Given a set L of m lines in the plane and an oracle that tells, on
which side of a query line lies an (unknown) target point, decide for many lines in L which
side contains the target point.

Claim: With just two queries to the oracle for m/4 of the lines in L the location of the
target point can be decided.

– 23 –

Corollary: Given a set of n (upper) halfspaces in R3 in linear time n/8
redundant halfspaces can be identified.

Theorem: The lowest point in the intersection of n (upper) halfspaces in
R3 can be found in linear time.

“Linear Programming with 3 variables can be solved in linear time.”

Removing Simplifying assumptions: (exercise!)
• optimization direction is vertical
• only upper halfspaces
• no degeneracies

– 24 –

LP in constant dimension

Theorem: Megiddo (1984)
For any fixed d a linear program in d variables and with n constraints can be
solved in O(n) time.

– 25 –

LP in constant dimension

Theorem: Megiddo (1984)
For any fixed d a linear program in d variables and with n constraints can be

solved in O(22
d

n) time.

– 26 –

A simple randomized LP algorithm

– 27 –

A simple randomized LP algorithm

function SLP(H : set of halfspaces in Rd, c : direction in Rd) : optimum point

if |H| ≤ d then solve by brute force
else choose some h ∈ H uniformly at random

x =SLP(H \ {h} , c)
if x ∈ h then return x

else let H ′ = {f ∩ h◦ | f ∈ H \ {h}}
let c′ be projection of c into h◦

return SLP(H ′, c′)

– 28 –

A simple randomized LP algorithm

function SLP(H : set of halfspaces in Rd, c : direction in Rd) : optimum point

if |H| ≤ d then solve by brute force
else choose some h ∈ H uniformly at random

x =SLP(H \ {h} , c)
if x ∈ h then return x

else let H ′ = {f ∩ h◦ | f ∈ H \ {h}}
let c′ be projection of c into h◦

return SLP(H ′, c′)

Claim; If h is chosen uniformly at random from the n halfspaces in H then
the LP-Optimum for H differs from the LP-Optimum for H \ {h} with
probability at most d/n.

– 29 –

A simple randomized LP algorithm

function SLP(H : set of halfspaces in Rd, c : direction in Rd) : optimum point

if |H| ≤ d then solve by brute force
else choose some h ∈ H uniformly at random

x =SLP(H \ {h} , c)
if x ∈ h then return x

else let H ′ = {f ∩ h◦ | f ∈ H \ {h}}
let c′ be projection of c into h◦

return SLP(H ′, c′)

Claim; If h is chosen uniformly at random from the n halfspaces in H then
the LP-Optimum for H differs from the LP-Optimum for H \ {h} with
probability at most d/n.

Expected running time T (n, d) ≤ T (n− 1, d) + d
n (αdn+ T (n− 1, d− 1)).

– 30 –

A simple randomized LP algorithm

function SLP(H : set of halfspaces in Rd, c : direction in Rd) : optimum point

if |H| ≤ d then solve by brute force
else choose some h ∈ H uniformly at random

x =SLP(H \ {h} , c)
if x ∈ h then return x

else let H ′ = {f ∩ h◦ | f ∈ H \ {h}}
let c′ be projection of c into h◦

return SLP(H ′, c′)

Claim; If h is chosen uniformly at random from the n halfspaces in H then
the LP-Optimum for H differs from the LP-Optimum for H \ {h} with
probability at most d/n.

Expected running time T (n, d) ≤ T (n− 1, d) + d
n (αdn+ T (n− 1, d− 1)).

=⇒ T (n, d) = O(d!n)

– 31 –

– 32 –

A sampling LP algorithm

H set of n halfspaces in Rd;
we want to find the “lowest” point in their intersection

Assume you have some alternative LP algorithm ALP() for “small” input sets available

– 33 –

A sampling LP algorithm

H set of n halfspaces in Rd;
we want to find the “lowest” point in their intersection

Assume you have some alternative LP algorithm ALP() for “small” input sets available

function Sample-LP(H) : optimum point

if n ≤ 9d2 then return ALP(H)
else

r := d
√
n; G:={};

repeat
choose random R ∈

(
H
r

)
v :=ALP(G ∪R)
V := {h ∈ H|v “violates” h, i.e. v /∈ h}
if |V | ≤ 2

√
n then G := G ∪ V)

until V = ∅
return v

– 34 –

A sampling LP algorithm

H set of n halfspaces in Rd;
we want to find the “lowest” point in their intersection

Assume you have some alternative LP algorithm ALP() for “small” input sets available

function Sample-LP(H) : optimum point

if n ≤ 9d2 then return ALP(H)
else

r := d
√
n; G:={};

repeat
choose random R ∈

(
H
r

)
v :=ALP(G ∪R)
V := {h ∈ H|v “violates” h, i.e. v /∈ h}
if |V | ≤ 2

√
n then G := G ∪ V)

until V = ∅
return v

Claim:
• exp. number of calls to ALP()

is ≤ 2d
• in each such call the input

contains ≤ 3d
√
n halfspaces

• exp. number of arithmetic
operations (in violation tests)
is O(d2n)

– 35 –

A sampling LP algorithm

H set of n halfspaces in Rd;
we want to find the “lowest” point in their intersection

Assume you have some alternative LP algorithm ALP() for “small” input sets available

function Sample-LP(H) : optimum point

if n ≤ 9d2 then return ALP(H)
else

r := d
√
n; G:={};

repeat
choose random R ∈

(
H
r

)
v :=ALP(G ∪R)
V := {h ∈ H|v “violates” h, i.e. v /∈ h}
if |V | ≤ 2

√
n then G := G ∪ V)

until V = ∅
return v

Claim:
• exp. number of calls to ALP()

is ≤ 2d
• in each such call the input

contains ≤ 3d
√
n halfspaces

• exp. number of arithmetic
operations (in violation tests)
is O(d2n)

Problem of size n is reduced to ≤ 2d problems of size O(d
√
n)

in expected time O(d2n).

– 36 –

– 37 –

A Sampling Lemma

Lemma: Let G and H be finite sets of halfspaces in Rd, and let
1 ≤ r ≤ n = |H|.
Let R be a random subset of H of size r.

Let VR = {h ∈ H|h violates the optimum for G ∪R}.
Then in expectation the size of VR is at most dn−r

r+1 .

– 38 –

Best current time bounds

Combination of two kinds of sampling algorithm, a non-trivial improvement of the
simple incremental linear programmong algorithm (plus rather fancy generating
function based analysis) yields algorithm with expected running time

O(d2n+ eO(
√
d log d))

Clarkson, Matousek, Sharir, Welzl, Gärtner, Kalai

