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The obvious applciation

Database of cakes. sugar

Which cakes have 4
e sugar content [0.12,0.17]
e cocoa content [0.05,0.1]
e and sold btw. 3 and 4 tons
last year?

COCOa

b7

Orthogonal range query

>
tons sold last year

Task: support such queries efficiently



Problem definition

Given n points in Z4 or@d,

1. Preprocess them in O(n) time and space to

2. support orthogonal range queries in poly(logn) + O(k)
3. on a Word RAM.



Problem definition

Given n points in Z4 or@d,

1. Preprocess them in O(n) time and space to

2. support orthogonal range queries in poly(logn) + O(k)
3. on a Word RAM.

output size



Problem definition

Given n points in Z4 or@d,

1. Preprocess them in O(n) time and space to

2. support orthogonal range queries in poly(logn) + O(k)
3. on a Word RAM.

output size

Static: preprocess and answer queries

:

Dynamic: update insertions and deletions in poly(log(n))
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The 1-dimensional problem
Query: |z, ']

Option 1. Use sorted array:
: , o(\\\J
Binary search for x
Report next until exceeds x’

Option 2. Binary search tree:

P in the leaves
/ Query: [4,11]

1 3 5 / 10/ |16

inner vertex = largest value in left child’s subtree
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Binary search for Split(x,z’)
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Dynamic solution in R!

Answering a query
Binary search for Split(x,z’)
Search for x, reporting right child subtrees
Search for 2/, reporting left child subtrees

Space = O(n)

Preprocess = O(nlogn)
s Oplit(x, z') Update = O(logn)

Query = O(logn + k)

al Uiy
m(x) m(a)



Kd trees
Bentley 1975
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Kd tree anatomy

Space: O(n)
Tree has O(logn) depth.

Preprocessing: use linear time median:
T(n)=2T(n/2) 4+ 0O(Mn) = O(nlogn)

65 61
Lh Ds b7
75 D1 le o7 Each ¢ has a rectangular region
68 p3. 238 €3 T@g(gl) — RQ
o
].9 P10 Child regions of ¢:
0y £ D6 separated by /




Querying a kd tree




Querying a kd tree

Report subtree if reg(¢) C Q




Querying a kd tree

Report subtree if reg(¢) C Q

If reg(¢) intersects 0Q): check!




Querying a kd tree

Report subtree if reg(¢) C Q

If reg(¢) intersects 0Q): check!

Searching, reporting covered regions: O(logn + k)



Querying a kd tree

Report subtree if reg(¢) C Q

If reg(¢) intersects 0Q): check!

Searching, reporting covered regions: O(logn + k)
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Regions interseted by the boundary

[Claim. A vertical line intersects at most O(4/n) node regions.]

4 I(n): wvert. line intersects this
many regions in kd tree of size n

le(f)

Two grandchild regions are not in-
tersected

I(n)=242I(n/4)

¥

reg(¢) and reg(leftchild(¢)) Intersections in red subtrees
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Kd tree query time

I(n):2+2](n/4):2+2-(2—|—2-(...)):2—|-4_|_..._|_210g4n

= I(n) = O(v/n)

() has < 2 vertical and < 2 horizontal sides
= 0(Q) intersects O(4/n) regions

[Orthogonal range queries of a 2-dim kd tree take O(y/n + k) ]
time.
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v) Auxiliary tree
A BST on descendants of v
sorted for y-coord.

Construction:

e Presort on y-coord to array A O(nlogn)
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Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(logn) reported subtree roots

Do 1-dim query on each of the
O(logn) selected y-trees

(o) r ()
A ‘ ‘ ‘ A Each level stores chunks of

_ a (d — 1)-dim range tree
Total query time: /

S O(logn + ky,) = O(log” n + k)

In R, it gives O(log® n + k) {But! space is up to O(nlog®* n)]
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Handling degeneracies

Composite numbers: a,b € R — (al|b)
Sorted lexicographically.

repalce p = (z,y) with p* = ((z|y), (y|x)) for each p € P

= all first and second coords are distinct

Given query Q = [z, 2’| X |y, 4’|, replace by

Q" = [(z] —00), ('|o0)] x [(y] —00), (y'[o0)]

Observation. ) )
peER&p €@



(Special) Fractional cascading

Lueker 1978, Willard 1978
Chazelle and Guibas 1986
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Speeding up binary searches on subsets

Array and subarray, query |4, 45]
= two binary searhces?

A
' M
A 121315]8]|13[21{34{55/8 99
\&\& ! J NULL
Bl12|8|1334/559

Add pointer from A|x| to the smallest in B larger than A|x]

Binary search A, use pointer of smallest reported
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Layered range trees in R?

|dea:
Replace 2nd level BSTs for y-coords w/ sorted arrays A,
+ 2 pointers per entry

At node v, array A, has:

e Points in decendant leafs of v sorted by y-coords



Layered range trees in R?
|dea:

Replace 2nd level BSTs for y-coords w/ sorted arrays A,
+ 2 pointers per entry

At node v, array A, has:
e Points in decendant leafs of v sorted by y-coords

e Each entry (a,b) € A, has:

— Pointer to entry in A;.(,) with smallest y-coord > 0
— Pointer to entry in A,..(,) with smallest y-coord > b



Layered range trees in R?
|dea:

Replace 2nd level BSTs for y-coords w/ sorted arrays A,
+ 2 pointers per entry

At node v, array A, has:
e Points in decendant leafs of v sorted by y-coords

e Each entry (a,b) € A, has:

— Pointer to entry in A;.(,) with smallest y-coord > 0
— Pointer to entry in A,..(,) with smallest y-coord > b

A, | 2]3|5]|8[1321]34{55/89/9295/99

y-coords
of entries

Alc(v) Arc(v)



Layered range trees in R?
|dea:
Replace 2nd level BSTs for y-coords w/ sorted arrays A,

+ 2 pointers per entry
At node v, array A, has:
e Points in decendant leafs of v sorted by y-coords
e Each entry (a,b) € A, has:

— Pointer to entry in A;.(,) with smallest y-coord > 0
— Pointer to entry in A,..(,) with smallest y-coord > b
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Layered range trees in R?
|dea:

Replace 2nd level BSTs for y-coords w/ sorted arrays A,
+ 2 pointers per entry

At node v, array A, has:
e Points in decendant leafs of v sorted by y-coords

e Each entry (a,b) € A, has:

— Pointer to entry in A;.(,) with smallest y-coord > 0
— Pointer to entry in A,..(,) with smallest y-coord > b

A, | 2]3|5]|8[1321]34{55/89/9295/99
Y

/ AL LA y-coords
e ot
W of entries
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Querying a layered range tree
Query: [z,2'] x [y, /]

Search top (x-)tree for x and 2.
At v = Split(x,x"), binary search for y in A, — A,.find(y)

Stepping to lc(v), follow left pointer from A,.find(y)

=> Maintaining position in A;.(, at each step takes O(1) time!

If w 1s root of a selected subtree:
Reporting from T'(w) can be done from A,

in O(1 + k) time.

Total query time: O(logn + k)



Priority search trees

McCreight 1985
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Priority search tree

Priority queue (insert, pop max)

_I_
Binary search tree

Construction:

e root r stores point with max y-coord
med,(root) := median z-coordinate of P\ {r}

o left subtree: points p € P\ {r} with p, < med,(r)
e right subtree: points p € P\ {r} with p, > med;(r)

Space: O(n)
Construction: O(nlogn)
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Answering 3-sided queries

Wlog queries of the type |z, 2’| X |y, o0

To answer the query from root = v:

Report subtree of v:
O(1+ k) *

m(z) m(z)
+ check each node stored
on the search paths!

Query time: O(logn + k)



Current best data structures

Static Dynamic
s:0(n)
q:0(log" n + klog® n)
of s:0(nlog?/ 3T p)

s:0(nloglogn), S n
q:0( + k)
q:O(loglogn + kloglogn log log n
( or | u:O(log2/3+O(1) n)
s:0(nlog® n),
q:O(loglogn + k)

Chan-Larsen—Patrascu Chan—Tsakalidis




Range searching axis-parallel intervals

e o — Intervals end_ing in Q: |
R R range searching on endpoints
| e——— °
Lovenand — intervals " crossing” Q7
¢ ' °
—————— @ °
[




Range searching axis-parallel intervals

o o — Intervals ending in Q):
R R range searching on endpoints
""" — °
LY o — intervals " crossing” ()7
e — ° If horizontal, they cross left
boundary of )
[




Range searching axis-parallel intervals

o o — Intervals ending in Q):
R R range searching on endpoints

o |[o—— °

Lovenand — intervals " crossing” Q7

e . ° If horizontal, they cross left
° boundary of )

[
o

Given a vertical query segment, report all horizontal segments
It IS crossing.



Range searching axis-parallel intervals

o o — Intervals ending in Q):
R R range searching on endpoints

o |[o—— °

Lovenand — intervals " crossing” Q7

e . ° If horizontal, they cross left
° boundary of )

[
o

line
Given a vertical query segment, report all horizontal segments
It IS crossing.



Range searching axis-parallel intervals

o o — Intervals ending in Q):
R R range searching on endpoints

o |[o—— °

Lovenand — intervals " crossing” Q7

e . ° If horizontal, they cross left
° boundary of )

[
o

line
Given a vertical query segment, report all horizontal segments
It IS crossing.

< in R, which intervals contain query point ¢?



Interval trees (Edelsbrunner 1980 McCreight 1980)

root has intervals intersected by /
sorted for left endpoints in a list

(same for right)

stored In root

o
o
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Interval trees (Edelsbrunner 1980 McCreight 1980)

root has intervals intersected by /
sorted for left endpoints in a list
(same for right)

Preprocess: O(nlogn)
Space: O(n)
Query (RY): O(logn + k)

stored In root

o o
o
o o
—o —o
o o oo
o o o o
—eo
o
left child right child
14

median x-coord
of endpoints



Interval trees (Edelsbrunner 1980 McCreight 1980)

root has intervals intersected by /

stored In root

sorted for left endpoints in a list . o —
(same for right) . °
o*— o—
® @ -0
® @ ® @
*—1
® J
Preprocess: O(nlogn) left child right child
Space: O(n) 4
median z-coord

Query (RY): O(logn + k)

of endpoints

If segment query:
use priority search tree instead of list




