Orthogonal Range Searching

Sandor Kisfaludi-Bak

l ' I I I max planck institut
informatik



Overview

e Intro and problem definition



Overview

e Intro and problem definition

e Kd trees



Overview

e Intro and problem definition

e Kd trees

e Range trees



Overview

Intro and problem definition

Kd trees

Range trees

Fractional cascading



Overview

Intro and problem definition

Kd trees

Range trees

Fractional cascading

Priority search trees



The obvious applciation

Database of cakes. sugar

COCOa

/ tons sold last year



The obvious applciation

Database of cakes. sugar

Which cakes have 4
e sugar content [0.12,0.17]
e cocoa content [0.05,0.1]
e and sold btw. 3 and 4 tons
last year?

COCOa

>
tons sold last year



The obvious applciation

Database of cakes. sugar

Which cakes have A

e sugar content [0.12,0.17]
e cocoa content [0.05,0.1]
e and sold btw. 3 and 4 tons

COCOa

last year?
\7 /

Orthogonal range query

>
tons sold last year



The obvious applciation

Database of cakes. sugar

Which cakes have 4
e sugar content [0.12,0.17]
e cocoa content [0.05,0.1]
e and sold btw. 3 and 4 tons
last year?

COCOa

b7

Orthogonal range query

>
tons sold last year

Task: support such queries efficiently



Problem definition

Given n points in Z4 or@d,

1. Preprocess them in O(n) time and space to

2. support orthogonal range queries in poly(logn) + O(k)
3. on a Word RAM.



Problem definition

Given n points in Z4 or@d,

1. Preprocess them in O(n) time and space to

2. support orthogonal range queries in poly(logn) + O(k)
3. on a Word RAM.

output size



Problem definition

Given n points in Z4 or@d,

1. Preprocess them in O(n) time and space to

2. support orthogonal range queries in poly(logn) + O(k)
3. on a Word RAM.

output size

Static: preprocess and answer queries

:

Dynamic: update insertions and deletions in poly(log(n))



The 1-dimensional problem

Query: |z, ']



The 1-dimensional problem
Query: |z, ']

Option 1. Use sorted array:
Binary search for x
Report next until exceeds x’



The 1-dimensional problem
Query: |z, ']

Option 1. Use sorted array: \
: Q(\\J
Binary search for x

x\C
. Gre
Report next until exceeds x’



The 1-dimensional problem

Query: |z, ']

Option 1. Use sorted array:
Binary search for x
Report next until exceeds x’

Option 2. Binary search tree:

10

10

v

16

ot



The 1-dimensional problem
Query: |z, ']

Option 1. Use sorted array:
: , o(\\\J
Binary search for x
Report next until exceeds x’

Option 2. Binary search tree:

P in the leaves
/ Query: [4,11]

1 3 5 / 10/ |16

inner vertex = largest value in left child’s subtree



Dynamic solution in R!

Answering a query
Binary search for Split(x,z’)
Search for x, reporting right child subtrees
Search for 2/, reporting left child subtrees

J Split(x, x')

al Uiy
m(x) m(a)



Dynamic solution in R!

Answering a query
Binary search for Split(x,z’)
Search for x, reporting right child subtrees
Search for 2/, reporting left child subtrees

Space = O(n)

J Split(x, x')

al Uiy
m(x) m(a)



Dynamic solution in R!

Answering a query
Binary search for Split(x,z’)
Search for x, reporting right child subtrees
Search for 2/, reporting left child subtrees

Space = O(n)

Preprocess = O(nlogn)
J Split(x, x')

al Uiy
m(x) m(a)



Dynamic solution in R!

Answering a query
Binary search for Split(x,z’)
Search for x, reporting right child subtrees
Search for 2/, reporting left child subtrees

Space = O(n)
Preprocess = O(nlogn)
s Oplit(x, z') Update = O(logn)

al Uiy
m(x) m(a)



Dynamic solution in R!

Answering a query
Binary search for Split(x,z’)
Search for x, reporting right child subtrees
Search for 2/, reporting left child subtrees

Space = O(n)

Preprocess = O(nlogn)
s Oplit(x, z') Update = O(logn)

Query = O(logn + k)

al Uiy
m(x) m(a)



Kd trees
Bentley 1975



Kd trees in R?

|dea:



Kd trees in R?

|dea:
D1 ®Ps5
o
p4' pg. o7
pg. p.8
o
]‘99 P10



Kd trees in R?

|dea:
~ median z-coordinate
M
D1 D5
o
p4’ pg. D7
pg. ]38
o
]’? P10



|dea:

Kd trees in R?

~ median z-coordinate

o~ :

P5 @
p2,  OPT
]38 63
.plo



Kd trees in R?

|dea:
~ median z-coordinate

pg. P38 63
]’9 .plo
{4 g 46




Kd trees in R?

~ median z-coordinate




Kd trees in R?

~ median z-coordinate




Kd tree anatomy

Space: O(n)
Tree has O(logn) depth.

Preprocessing: use linear time median:
T(n)=2Tn/2)+0Mn) = O(nlogn)



Kd tree anatomy

Space: O(n)
Tree has O(logn) depth.

Preprocessing: use linear time median:
T(n)=2T(n/2) 4+ 0O(Mn) = O(nlogn)

65 61
Lh Ds b7
75 D1 le o7 Each ¢ has a rectangular region
@
68 pS. PS8 €3
]'9 *n10
by
54 Pé6




Kd tree anatomy

Space: O(n)
Tree has O(logn) depth.

Preprocessing: use linear time median:
T(n)=2T(n/2) 4+ 0O(Mn) = O(nlogn)

65 61
Lh Ds b7
75 D1 le o7 Each ¢ has a rectangular region
68 p3. 238 €3 T@g(gl) — RQ
o
].9 P10 Child regions of ¢:
0y £ D6 separated by /




Querying a kd tree




Querying a kd tree

Report subtree if reg(¢) C Q




Querying a kd tree

Report subtree if reg(¢) C Q

If reg(¢) intersects 0Q): check!




Querying a kd tree

Report subtree if reg(¢) C Q

If reg(¢) intersects 0Q): check!

Searching, reporting covered regions: O(logn + k)



Querying a kd tree

Report subtree if reg(¢) C Q

If reg(¢) intersects 0Q): check!

Searching, reporting covered regions: O(logn + k)



Regions interseted by the boundary

[Claim. A vertical line intersects at most O(4/n) node regions.]

4 I(n): wvert. line intersects this
many regions in kd tree of size n

lc(f)




Regions interseted by the boundary

[Claim. A vertical line intersects at most O(4/n) node regions.]

4 I(n): wvert. line intersects this
many regions in kd tree of size n

le(f)

Two grandchild regions are not in-
tersected




Regions interseted by the boundary

[Claim. A vertical line intersects at most O(4/n) node regions.]

4 I(n): wvert. line intersects this
many regions in kd tree of size n

le(f)

Two grandchild regions are not in-
tersected

I(n)=242I(n/4)

¥

reg(¢) and reg(leftchild(¢)) Intersections in red subtrees



Kd tree query time

I(n):2+2](n/4):2+2-(2—|—2-(...)):2—|-4_|_..._|_210g4n



Kd tree query time

I(n):2+21(n/4)=2+2-(2—|—2-(...)):2—|—4_|_..._|_210g4n

— I(n) = O(y/n)




Kd tree query time

I(n):2+2](n/4):2—|—2-(2—|—2-(...)):2—|-4_|_..._|_210g4n

= I(n) = O(v/n)

() has < 2 vertical and < 2 horizontal sides
= 0(Q) intersects O(4/n) regions




Kd tree query time

I(n):2+2](n/4):2+2-(2—|—2-(...)):2—|-4_|_..._|_210g4n

= I(n) = O(v/n)

() has < 2 vertical and < 2 horizontal sides
= 0(Q) intersects O(4/n) regions

[Orthogonal range queries of a 2-dim kd tree take O(y/n + k) ]
time.




Range trees



Range tree in R?

Binary search tree on z-xoordinates
Each node has a new BST for y-coords of descendant leaves

BST on x

T(v) Auxiliary tree

A BST on descendants of v

sorted for y-coord.




Range tree in R?

Binary search tree on z-xoordinates
Each node has a new BST for y-coords of descendant leaves

BST on x
v) Auxiliary tree
A BST on descendants of v
sorted for y-coord.

Construction:
e Presort on y-coord to array A

Construct(v, A):

e Construct T'(v) using A
e Find median z, split A to Ajcre, Aright
o Construct(lc(v), Ajest), Construct(re(v), Aright)




Range tree in R?

Binary search tree on z-xoordinates
Each node has a new BST for y-coords of descendant leaves

BST on x
v) Auxiliary tree
A BST on descendants of v
sorted for y-coord.

Construction:

e Presort on y-coord to array A O(nlogn)
Construct(v, A):
e Construct T'(v) using A O(n)

e Find median z, split A to Ajcre, Arigne O(n)
o Construct(lc(v), Ajest), Construct(re(v), Aright)



Range tree in R?

Binary search tree on z-xoordinates
Each node has a new BST for y-coords of descendant leaves

BST on x
v) Auxiliary tree
A BST on descendants of v
sorted for y-coord.

Construction:

e Presort on y-coord to array A O(nlogn)
Construct(v, A): o
e Construct T'(v) using A O(n) (nlogn)

e Find median z, split A to Ajcre, Arigne O(n)
o Construct(lc(v), Ajest), Construct(re(v), Aright)



Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(logn) reported subtree roots




Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(logn) reported subtree roots

-. Do 1-dim query on each of the
m(z')  O(logn) selected y-trees

-
A‘ ‘ A



Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(logn) reported subtree roots

Do 1-dim query on each of the
O(logn) selected y-trees

() (')
A‘ ‘ A i

Total query time:
S O(logn + ky,) = O(log” n + k)



Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(logn) reported subtree roots

Do 1-dim query on each of the
O(logn) selected y-trees

() (')
A‘ ‘ A i

Total query time:
S O(logn + ky,) = O(log” n + k)

In R, it gives O(log” n + k)



Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(logn) reported subtree roots

Do 1-dim query on each of the
O(logn) selected y-trees

(o) r ()
A ‘ ‘ ‘ A Each level stores chunks of

_ a (d — 1)-dim range tree
Total query time: /

S O(logn + ky,) = O(log” n + k)

In R, it gives O(log® n + k) {But! space is up to O(nlog®* n)]




Handling degeneracies

Composite numbers: a,b € R — (al|b)
Sorted lexicographically.



Handling degeneracies

Composite numbers: a,b € R — (al|b)
Sorted lexicographically.

repalce p = (z,y) with p* = ((z|y), (y|x)) for each p € P

= all first and second coords are distinct



Handling degeneracies

Composite numbers: a,b € R — (al|b)
Sorted lexicographically.

repalce p = (z,y) with p* = ((z|y), (y|x)) for each p € P

= all first and second coords are distinct

Given query Q = [z, 2’| X |y, 4’|, replace by
Q* — [(CB’ —OO), (x,‘oo)] X [(y‘ —OO), (y/\oo)}



Handling degeneracies

Composite numbers: a,b € R — (al|b)
Sorted lexicographically.

repalce p = (z,y) with p* = ((z|y), (y|x)) for each p € P

= all first and second coords are distinct

Given query Q = [z, 2’| X |y, 4’|, replace by

Q" = [(z] —00), ('|o0)] x [(y] —00), (y'[o0)]

Observation. ) )
peER&p €@



(Special) Fractional cascading

Lueker 1978, Willard 1978
Chazelle and Guibas 1986



Speeding up binary searches on subsets

Array and subarray, query |4, 45]
= two binary searhces?

A | 2]3]5]8|1321]34{55[89[92/9599




Speeding up binary searches on subsets

Array and subarray, query |4, 45]
= two binary searhces?

A | 2]3]5]8|1321]34{55[89[92/9599

B | 2| 8[13]34155/92/95

Add pointer from A|x| to the smallest in B larger than A|x]



Speeding up binary searches on subsets

Array and subarray, query |4, 45]
= two binary searhces?

A 121315]8]|13[21{34{55/8 99
\&\& ! J NULL
Bl12|8|1334/559

Add pointer from A|x| to the smallest in B larger than A|x]



Speeding up binary searches on subsets

Array and subarray, query |4, 45]
= two binary searhces?

A
' M
A 121315]8]|13[21{34{55/8 99
\&\& ! J NULL
Bl12|8|1334/559

Add pointer from A|x| to the smallest in B larger than A|x]

Binary search A, use pointer of smallest reported



Layered range trees in R?

|dea:
Replace 2nd level BSTs for y-coords w/ sorted arrays A,
+ 2 pointers per entry

At node v, array A, has:



Layered range trees in R?

|dea:
Replace 2nd level BSTs for y-coords w/ sorted arrays A,
+ 2 pointers per entry

At node v, array A, has:

e Points in decendant leafs of v sorted by y-coords



Layered range trees in R?
|dea:

Replace 2nd level BSTs for y-coords w/ sorted arrays A,
+ 2 pointers per entry

At node v, array A, has:
e Points in decendant leafs of v sorted by y-coords

e Each entry (a,b) € A, has:

— Pointer to entry in A;.(,) with smallest y-coord > 0
— Pointer to entry in A,..(,) with smallest y-coord > b



Layered range trees in R?
|dea:

Replace 2nd level BSTs for y-coords w/ sorted arrays A,
+ 2 pointers per entry

At node v, array A, has:
e Points in decendant leafs of v sorted by y-coords

e Each entry (a,b) € A, has:

— Pointer to entry in A;.(,) with smallest y-coord > 0
— Pointer to entry in A,..(,) with smallest y-coord > b

A, | 2]3|5]|8[1321]34{55/89/9295/99

y-coords
of entries

Alc(v) Arc(v)



Layered range trees in R?
|dea:
Replace 2nd level BSTs for y-coords w/ sorted arrays A,

+ 2 pointers per entry
At node v, array A, has:
e Points in decendant leafs of v sorted by y-coords
e Each entry (a,b) € A, has:

— Pointer to entry in A;.(,) with smallest y-coord > 0
— Pointer to entry in A,..(,) with smallest y-coord > b

y-coords

of entries
21 8113345592 """ 31 5121/8995/99
Alc(v) A"“C(’U)




Layered range trees in R?
|dea:

Replace 2nd level BSTs for y-coords w/ sorted arrays A,
+ 2 pointers per entry

At node v, array A, has:
e Points in decendant leafs of v sorted by y-coords

e Each entry (a,b) € A, has:

— Pointer to entry in A;.(,) with smallest y-coord > 0
— Pointer to entry in A,..(,) with smallest y-coord > b

A, | 2]3|5]|8[1321]34{55/89/9295/99

y-coords
of entries

Alc(v) Arc(v)



Layered range trees in R?
|dea:

Replace 2nd level BSTs for y-coords w/ sorted arrays A,
+ 2 pointers per entry

At node v, array A, has:
e Points in decendant leafs of v sorted by y-coords

e Each entry (a,b) € A, has:

— Pointer to entry in A;.(,) with smallest y-coord > 0
— Pointer to entry in A,..(,) with smallest y-coord > b

A, | 2]3|5]|8[1321]34{55/89/9295/99
Y

/ AL LA y-coords
e ot
W of entries




Querying a layered range tree
Query: [z,2'] x [y, /]

Search top (x-)tree for x and 2.
At v = Split(x,x"), binary search for y in A, — A,.find(y)



Querying a layered range tree
Query: [z,2'] x [y, /]

Search top (x-)tree for x and 2.
At v = Split(x,x"), binary search for y in A, — A,.find(y)

Stepping to lc(v), follow left pointer from A,.find(y)



Querying a layered range tree
Query: [z,2'] x [y, /]

Search top (x-)tree for x and 2.
At v = Split(x,x"), binary search for y in A, — A,.find(y)

Stepping to lc(v), follow left pointer from A,.find(y)

=> Maintaining position in A;.(, at each step takes O(1) time!

If w 1s root of a selected subtree:
Reporting from T'(w) can be done from A,

in O(1 + k) time.



Querying a layered range tree
Query: [z,2'] x [y, /]

Search top (x-)tree for x and 2.
At v = Split(x,x"), binary search for y in A, — A,.find(y)

Stepping to lc(v), follow left pointer from A,.find(y)

=> Maintaining position in A;.(, at each step takes O(1) time!

If w 1s root of a selected subtree:
Reporting from T'(w) can be done from A,

in O(1 + k) time.

Total query time: O(logn + k)



Priority search trees

McCreight 1985



Priority search tree

Priority queue (insert, pop max)

_I_
Binary search tree



Priority search tree

Priority queue (insert, pop max)

_I_
Binary search tree

Construction:

e root r stores point with max y-coord
med,(root) := median z-coordinate of P\ {r}



Priority search tree

Priority queue (insert, pop max)

_I_
Binary search tree

Construction:

e root r stores point with max y-coord
med,(root) := median z-coordinate of P\ {r}

o left subtree: points p € P\ {r} with p, < med,(r)



Priority search tree

Priority queue (insert, pop max)

_I_
Binary search tree

Construction:

e root r stores point with max y-coord
med,(root) := median z-coordinate of P\ {r}

o left subtree: points p € P\ {r} with p, < med,(r)
e right subtree: points p € P\ {r} with p, > med;(r)



Priority search tree

Priority queue (insert, pop max)

_I_
Binary search tree

Construction:

e root r stores point with max y-coord
med,(root) := median z-coordinate of P\ {r}

o left subtree: points p € P\ {r} with p, < med,(r)
e right subtree: points p € P\ {r} with p, > med;(r)



Priority search tree

Priority queue (insert, pop max)

_I_
Binary search tree

Construction:

e root r stores point with max y-coord
med,(root) := median z-coordinate of P\ {r}

o left subtree: points p € P\ {r} with p, < med,(r)
e right subtree: points p € P\ {r} with p, > med;(r)



Priority search tree

Priority queue (insert, pop max)

_I_
Binary search tree

Construction:

e root r stores point with max y-coord
med,(root) := median z-coordinate of P\ {r}

o left subtree: points p € P\ {r} with p, < med,(r)
e right subtree: points p € P\ {r} with p, > med;(r)

Space: O(n)
Construction: O(nlogn)



Answering 3-sided queries

Wlog queries of the type |z, 2] X |y, 0]




Answering 3-sided queries

Wlog queries of the type |z, 2’| X |y, o0

To answer the query from root = v:

Report subtree of v:
O(1+ k) °




Answering 3-sided queries

Wlog queries of the type |z, 2’| X |y, o0

To answer the query from root = v:

Report subtree of v:
O(1+ k) *

m(z) m(z)
+ check each node stored
on the search paths!



Answering 3-sided queries

Wlog queries of the type |z, 2’| X |y, o0

To answer the query from root = v:

Report subtree of v:
O(1+ k) *

m(z) m(z)
+ check each node stored
on the search paths!

Query time: O(logn + k)



Current best data structures

Static Dynamic
s:0(n)
q:0(log" n + klog® n)
of s:0(nlog?/ 3T p)

s:0(nloglogn), S n
q:0( + k)
q:O(loglogn + kloglogn log log n
( or | u:O(log2/3+O(1) n)
s:0(nlog® n),
q:O(loglogn + k)

Chan-Larsen—Patrascu Chan—Tsakalidis




Range searching axis-parallel intervals

e o — Intervals end_ing in Q: |
R R range searching on endpoints
| e——— °
Lovenand — intervals " crossing” Q7
¢ ' °
—————— @ °
[




Range searching axis-parallel intervals

o o — Intervals ending in Q):
R R range searching on endpoints
""" — °
LY o — intervals " crossing” ()7
e — ° If horizontal, they cross left
boundary of )
[




Range searching axis-parallel intervals

o o — Intervals ending in Q):
R R range searching on endpoints

o |[o—— °

Lovenand — intervals " crossing” Q7

e . ° If horizontal, they cross left
° boundary of )

[
o

Given a vertical query segment, report all horizontal segments
It IS crossing.



Range searching axis-parallel intervals

o o — Intervals ending in Q):
R R range searching on endpoints

o |[o—— °

Lovenand — intervals " crossing” Q7

e . ° If horizontal, they cross left
° boundary of )

[
o

line
Given a vertical query segment, report all horizontal segments
It IS crossing.



Range searching axis-parallel intervals

o o — Intervals ending in Q):
R R range searching on endpoints

o |[o—— °

Lovenand — intervals " crossing” Q7

e . ° If horizontal, they cross left
° boundary of )

[
o

line
Given a vertical query segment, report all horizontal segments
It IS crossing.

< in R, which intervals contain query point ¢?



Interval trees (Edelsbrunner 1980 McCreight 1980)

root has intervals intersected by /
sorted for left endpoints in a list

(same for right)

stored In root

o
o
o
—o —o
o o oo
o o o o
—eo
left child right child

14

median x-coord
of endpoints



Interval trees (Edelsbrunner 1980 McCreight 1980)

root has intervals intersected by /
sorted for left endpoints in a list
(same for right)

Preprocess: O(nlogn)
Space: O(n)
Query (RY): O(logn + k)

stored In root

o o
o
o o
—o —o
o o oo
o o o o
—eo
o
left child right child
14

median x-coord
of endpoints



Interval trees (Edelsbrunner 1980 McCreight 1980)

root has intervals intersected by /

stored In root

sorted for left endpoints in a list . o —
(same for right) . °
o*— o—
® @ -0
® @ ® @
*—1
® J
Preprocess: O(nlogn) left child right child
Space: O(n) 4
median z-coord

Query (RY): O(logn + k)

of endpoints

If segment query:
use priority search tree instead of list




