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The obvious applciation

tons sold last year

sugar

cocoa

Database of cakes.

Which cakes have
• sugar content [0.12,0.17]
• cocoa content [0.05,0.1]
• and sold btw. 3 and 4 tons

last year?

Orthogonal range query

Task: support such queries efficiently
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Problem definition

Given n points in Zd or Qd,
1. Preprocess them in Õ(n) time and space to
2. support orthogonal range queries in poly(logn) +O(k)
3. on a Word RAM.

output size

Static: preprocess and answer queries

Dynamic: update insertions and deletions in poly(log(n))
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The 1-dimensional problem

Query: [x, x′]

Option 1. Use sorted array:
Binary search for x
Report next until exceeds x′ Static

only

Option 2. Binary search tree:

7531 10 16
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7
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3

1

P in the leaves
Query: [4, 11]

10

inner vertex = largest value in left child’s subtree
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Answering a query
Binary search for Split(x, x′)
Search for x, reporting right child subtrees
Search for x′, reporting left child subtrees

Dynamic solution in R1

Split(x, x′)

π(x) π(x′)

Space = O(n)

Preprocess = O(n log n)

Update = O(log n)

Query = O(log n+ k)



Kd trees

Bentley 1975
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Kd tree anatomy

Space: O(n)
Tree has O(log n) depth.

Preprocessing: use linear time median:
T (n) = 2T (n/2) +O(n) ⇒ O(n log n)
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Each ` has a rectangular region

`3 reg(`1) = R2

Child regions of `:
separated by `
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Querying a kd tree

query

Report subtree if reg(`) ⊆ Q

If reg(`) intersects ∂Q: check!

Searching, reporting covered regions: O(log n+ k)

How many regions can intersect ∂Q?
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Regions interseted by the boundary

Claim. A vertical line intersects at most O(
√
n) node regions.

I(n): vert. line intersects this
many regions in kd tree of size n

Two grandchild regions are not in-
tersected

`

I(n) = 2 + 2I(n/4)

reg(`) and reg(leftchild(`)) Intersections in red subtrees

lc(`)
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Kd tree query time

Q has ≤ 2 vertical and ≤ 2 horizontal sides
⇒ ∂Q intersects O(

√
n) regions

⇒ I(n) = O(
√
n)

Orthogonal range queries of a 2-dim kd tree take O(
√
n+ k)

time.

I(n) = 2 + 2I(n/4) = 2 + 2 · (2 + 2 · (. . . )) = 2 + 4 + · · · + 2log4 n
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Binary search tree on x-xoordinates
Each node has a new BST for y-coords of descendant leaves

v

T (v)

BST on x

BST on descendants of v
sorted for y-coord.

Construction:
• Presort on y-coord to array A

Construct(v,A):

• Construct T (v) using A
• Find median x, split A to Aleft, Aright

• Construct(lc(v), Aleft), Construct(rc(v), Aright)

O(n log n)

O(n)
O(n)

O(n log n)

Auxiliary tree
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Querying a 2-dim range tree

Do 1-dim range query on x-coordiantes

Find O(log n) reported subtree roots

Do 1-dim query on each of the
O(log n) selected y-trees

∑
v O(log n+ kv) = O(log2 n+ k)

Total query time:

In Rd, it gives O(logd n+ k) But! space is up to Θ(n logd−1 n)

π(x) π(x′)

Each level stores chunks of
a (d− 1)-dim range tree
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Handling degeneracies

Composite numbers: a, b ∈ R→ (a|b)
Sorted lexicographically.

repalce p = (x, y) with p∗ = ((x|y), (y|x)) for each p ∈ P

⇒ all first and second coords are distinct

Given query Q = [x, x′]× [y, y′], replace by

Q∗ =
[
(x| −∞), (x′|∞)

]
×
[
(y| −∞), (y′|∞)

]
Observation.

p ∈ Q⇔ p∗ ∈ Q∗



(Special) Fractional cascading

Lueker 1978, Willard 1978
Chazelle and Guibas 1986
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Speeding up binary searches on subsets

2 3 5 8 13 21 34 55 89 92 95 99

8 13 34 552 92 95

Array and subarray, query [4, 45]
⇒ two binary searhces?

Add pointer from A[x] to the smallest in B larger than A[x]

NULL

A

B

Binary search A, use pointer of smallest reported
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Querying a layered range tree

Query: [x, x′]× [y, y′]

Search top (x-)tree for x and x′.
At v = Split(x, x′), binary search for y in Av → Av.find(y)

Stepping to lc(v), follow left pointer from Av.find(y)

⇒ Maintaining position in Alc(v) at each step takes O(1) time!

If w is root of a selected subtree:
Reporting from T (w) can be done from Aw

in O(1 + kw) time.

Total query time: O(log n+ k)



Priority search trees

McCreight 1985
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Priority search tree

Priority queue (insert, pop max)
+

Binary search tree

Construction:

• root r stores point with max y-coord
medx(root) := median x-coordinate of P \ {r}

• left subtree: points p ∈ P \ {r} with px ≤ medx(r)

• right subtree: points p ∈ P \ {r} with px > medx(r)

Space: O(n)

Construction: O(n log n)
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Answering 3-sided queries

Wlog queries of the type [x, x′]× [y,∞]

(x, y) (x′, y)

To answer the query from root = v:

Query time: O(log n+ k)

π(x) π(x′)

Report subtree of v:
O(1 + kv)

+ check each node stored
on the search paths!



Current best data structures

Assume coordinates fit in machine words on w bits.
Multiply all by logw ' log log n.

Static Dynamic

s:O(n)
q:O(logε n+ k logε n)

or
s:O(n log log n),

q:O(log log n+ k log log n)
or

s:O(n logε n),
q:O(log log n+ k)

s:O(n log2/3+o(1) n)
q:O( logn

log logn + k)

u:O(log2/3+o(1) n)

Chan–Larsen–Pătras,cu Chan–Tsakalidis

amortized
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Range searching axis-parallel intervals

→ intervals ending in Q:
range searching on endpoints

→ intervals ”crossing” Q?

if horizontal, they cross left
boundary of Q

Given a vertical query segment, report all horizontal segments
it is crossing.

line

⇔ in R1, which intervals contain query point q?
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Interval trees (Edelsbrunner 1980 McCreight 1980)

right childleft child

stored in root

`

root has intervals intersected by `
sorted for left endpoints in a list
(same for right)

median x-coord
of endpoints

Preprocess: O(n log n)

Query (R1): O(log n+ k)

If segment query:
use priority search tree instead of list

Q

Space: O(n)


