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Binary Search Trees

Keyset K = {3,7,12,18,25,29,37,43,51,55,61, 71} ;
Size n = | K|
T Binary Search Tree for K

v node of T": v.LC, v.RC, v.PAR, v.key
T, subtree rooted at v

K, keys in T,

Additional leaf for each primitive interval

T Extended Binary Search Tree for K

‘DiQ::D::D:D:D:D:D:D:D: [

I, is the union of the primitive intervals associated with the leaves of T, together with K,
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Binary Search Trees

Keyset K = {3,7,12,18,25,29,37,43,51,55,61, 71} ;
Size n = | K|
T Binary Search Tree for K

v node of T": v.LC, v.RC, v.PAR, v.key
T, subtree rooted at v

K, keys in T,

Additional leaf for each primitive interval

T Extended Binary Search Tree for K

: : : o : : : : Ik :
< i [ [] [ ] g CJ g 01y [ ] g0y [ [
I, is the union of the primitive intervals associated with the leaves of T, together with K,

key x € R:
path(z) = {v € T|xz € I}
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Binary Search Trees

Keyset K = {3,7,12,18,25,29,37,43,51,55,61, 71} ;
Size n = | K|
T Binary Search Tree for K

v node of T": v.LC, v.RC, v.PAR, v.key
T, subtree rooted at v

K, keys in T,

Additional leaf for each primitive interval

T Extended Binary Search Tree for K

: : : o : : : : Ik :
< i [ [] [ ] g CJ g 01y [ ] g0y [ [
I, is the union of the primitive intervals associated with the leaves of T, together with K,

key x € R:
path(z) = {v € T|xz € I}

interval [a, B] with o, B € K:
Span[aaﬁ] — {U S T|I’U g [aa B] but I’UPAR, g [Oé, /8]}
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Binary Search Trees

Size n = | K|

v node of T':
T, subtree rooted at v
K, keys in T,

I,, is the union of the primitive intervals
associated with the leaves of TY,
together with K,

key x € R:
path(z) = {v € T|x € Iy}
interval [a, B] with o, B € K:
spanfa, 8] = {v € T|Iy C [a, 8] but I, paR & [o, 81}

Lemma: T binary tree for n keys with height O (log n).
e for any key = we have |path(xz)| = O(logn)
e for any interval [, B] we have |span[a, B]| = O(logn)
o Ifa,B € K then [, B] = J{Iy|v € span|a, B]}.
e path(x) and span[a, 3] can be found in O (log n) time.
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Range Trees

Size n = | K|

v node of T':
T, subtree rooted at v
K, keys in T,

I,, is the union of the primitive intervals
associated with the leaves of TY,
together with K,

A set of objects, each a € A has a value a, key associated with it.

A range tree for A is a balanced binary search tree T" whose key set K contains {a.key|a € A} and that stores for each node v of T
theset Ay = {a € Ala.key € Ky }.
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Range Trees

Size n = | K|

v node of T':
T, subtree rooted at v
K, keys in T,

I, is the union of the primitive intervals
associated with the leaves of TY,
together with K,

A set of objects, each a € A has a value a.key associated with it.

A range tree for A is a balanced binary search tree T" whose key set K contains {a.key|a € A} and that stores for each node v of T
theset Ay = {a € Ala.key € Ky }.

Lemma: Let A be a set of objects with keys in K, and n = | K |. Let T be a range tree for A with key set K
® > ver lAv| = O(|Allogn)
e Given interval [, B] theset {a € A|a.key € [, B8]} can be found as a disjoint union of O (log n) blocks in
O (log n) time.
o If|A|] = O(n) and the A, 's are stored in data structures that admit updates in time O(logk n ) then the range tree
can be updated in time O(logl‘ﬂ“'i'1 n).
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Segment Trees

Size n = | K|

v node of T':
T, subtree rooted at v
K, keys in T,

I,, is the union of the primitive intervals
associated with the leaves of TY,
together with K,

A set of objects, each a € A has a segment a.seg associated with it.

A segment tree for A is a balanced binary search tree T" whose key set K contains all endpoints of segments {a.seg|a € A} and that
stores for each node v of T" theset Sy, = {a € A|v € span(a.seg)}.
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Segment Trees

Size n = | K|

v node of T':
T, subtree rooted at v
K, keys in T,

I, is the union of the primitive intervals
associated with the leaves of TY,
together with K,

A set of objects, each a € A has a segment a.seg associated with it.

A segment tree for A is a balanced binary search tree T" whose key set K contains all endpoints of segments {a.seg|a € A} and that
stores for each node v of T" theset Sy, = {a € A|v € span(a.seg)}.

Lemma: Let A be a set of objects each associated with a segment with endpoints in K. Let n = | K| and let T' be a segment
tree for A with key set K

® > ver |Svl = O(]A|logn)
o Givenkey x € Rtheset {a € A|x € a.seg} can be found as a disjoint union of O (log n) blocks in O (log n) time.
e If|A|] = O(n) and the Sy, 's are stored in data structures that admit updates in time O(logk n) then the segment tree

can be updated in time O(logl‘ﬂ“'i'1 n).
Saarland Informatics
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Hierarchies of Range and Segment Trees

Example 1:

A a set of n objects each having an xkey and ykey.
Build a data structure for A so that for any axis-parallel rectangle B = xseg X yseg you can tell quickly for which objects in A
you have (a.xkey, a.ykey) € B.
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- 13 - SIC Campus



Hierarchies of Range and Segment Trees

Example 2:

A a set of n objects each having an xseg and yseg, defining the axis-parallel rectangle a. Box = xseg X yseg.

Build a data structure for A so that for any query point ¢ € R2 you can determine quickly for which objects in A
you have ¢ € a.Box.
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Hierarchies of Range and Segment Trees

Example 3:

A a set of n horizontal segments a.xseg.
Build a data structure for A so that for any vertical query segment s you can determine quickly the segments in A that intersect q.
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Hierarchies of Range and Segment Trees

Example 3:

A a set of n horizontal segments a.xseg.
Build a data structure for A so that for any vertical query segment s you can determine quickly the segments in A that intersect q.
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Sweep Algorithms

Example: Given a set of axis parallel boxes in R2 compute area of their union.
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Sweep Algorithms

Example: Given a set of axis parallel boxes in R2 compute area of their union.

I

Sweep horizontal line L : y = t from bottom to top across the plane
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Sweep Algorithms

Example: Given a set of axis parallel boxes in R2 compute area of their union.

I

Sweep horizontal line L : y = t from bottom to top across the plane

and maintain an | nvaria nt so that in the end the veracity of the invariant implies correctness of the computation
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Sweep Algorithms

Example: Given a set of axis parallel boxes in R2 compute area of their union.

I

INV Invariant
SLS (Sweepline structure): Maintains interaction between L+ and the geometry

EQ (Event queue): Priority Queue for predicting the next “event”, i.e. qualitative change during the sweep
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Sweep Algorithms

Example: Given a set of axis parallel boxes in R2 compute area of their union.

I

INV Invariant Geometric-Semantic-Part: Maintain A; the area of the intersection of the boxes that is in Lt_

SLS (Sweepline structure): Maintains interaction between L and the geometry
EQ (Event queue): Priority Queue for predicting the next “event”, i.e. qualitative change during the sweep L—
t

Saarland Informatics
-21 - SIC Campus



Sweep Algorithms

Example: Given a set of axis parallel boxes in R2 compute area of their union.

I

SLS (Sweepline structure): Maintains interaction between L+ and the geometry

Let B4 the boxes in B that intersect L ;. SLS stores the interval set {b N L4 |b € By } in a strcuture that allows

updates and queries for the lenght of the union of all intervals in the structrue.
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Sweep Algorithms

Example: Given a set of axis parallel boxes in R2 compute area of their union.

I

EQ (Event Queue): Events happen when L ; meets a lower or upper edge of a box in B.
There are two types: lower and upper.

EQ maintains all these events in a priority queue. L—
t
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Sweep Algorithms

Example: Given a set of axis parallel boxes in R2 compute area of their union.

I

Invariant semantic-geometric:
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Sweep Algorithms

Example: Given a set of axis parallel boxes in R2 compute area of their union.

I

Invariant EQ:
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Sweep Algorithms

Example: Given a set of axis parallel boxes in R2 compute area of their union.

I

Invariant SLS:
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Sweep Algorithms

Example: Given a set S of n non-horitontal segements in the plane, report all their pairwise intersections.

AN
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Sweep Algorithms

Example: Given a set S of n non-horitontal segements in the plane, report all their pairwise intersections.

Invariant semantic-geometric:
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Sweep Algorithms

Example: Given a set S of n non-horitontal segements in the plane, report all their pairwise intersections.

AN
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Sweep Algorithms

Example: Given a set B of n non-horizontal, non-intersecting blue segements in the plane and given a set R of n non-horizontal,

non-intersecting red segments, report the number of red-blue intersections.
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