\notimes set $K = \{3, 7, 12, 18, 25, 29, 37, 43, 51, 55, 61, 71\}$

Size $n = |K|$

Size $n = |K|$

 I_{ϑ} is the union of the primitive intervals associated with the leaves of $\overline{T_{\vartheta}}$ together with K_{ϑ}

 I_{υ} is the union of the primitive intervals associated with the leaves of $\overline{T_{\upsilon}}$ together with K_{υ}

key $x \in \mathbb{R}$. $path(x) = \{v \in \overline{T} | x \in I_v\}$

 I_{ν} is the union of the primitive intervals associated with the leaves of $\overline{T_{\nu}}$ together with K_{ν}

key $x \in \mathbb{R}$: $path(x) = \{v \in \overline{T} | x \in I_v\}$

interval $[\alpha, \beta]$ with $\alpha, \beta \in K$: $\text{span}[\alpha, \beta] = \{v \in T | I_v \subseteq [\alpha, \beta] \text{ but } I_v \text{ }_{\text{PAR}} \not\in [\alpha, \beta] \}$

$$
path(x) = \{v \in \overline{T} | x \in I_v\}
$$

interval $[\alpha, \beta]$ with $\alpha, \beta \in K$:

 $\text{span}[\alpha, \beta] = \{v \in T | I_v \subseteq [\alpha, \beta] \text{ but } I_v \text{ } \text{PAR } \not\in [\alpha, \beta] \}$

Lemma: T binary tree for n keys with height $O(\log n)$.

- for any key x we have $|\text{path}(x)| = O(\log n)$
- for any interval $[\alpha, \beta]$ we have $|\text{span}[\alpha, \beta]| = O(\log n)$
- If $\alpha, \beta \in K$ then $[\alpha, \beta] = \dot{\bigcup} \{I_v | v \in \text{span}[\alpha, \beta] \}.$
- path (x) and span $[\alpha, \beta]$ can be found in $O(\log n)$ time.

A set of objects, each $a \in A$ has a value a , key associated with it.

A range tree for A is a balanced binary search tree T whose key set K contains $\{a \cdot \text{key} | a \in A\}$ and that stores for each node v of T the set $A_v = \{a \in A | a.\text{key} \in K_v\}.$

A set of objects, each $a \in A$ has a value a . key associated with it.

A range tree for A is a balanced binary search tree T whose key set K contains $\{a \cdot \text{key} | a \in A\}$ and that stores for each node v of T the set $A_v = \{a \in A | a.\text{key} \in K_v\}.$

Lemma: Let A be a set of objects with keys in K, and $n = |K|$. Let T be a range tree for A with key set K

- $\sum_{v \in T} |A_v| = O(|A| \log n)$
- Given interval $[\alpha, \beta]$ the set $\{a \in A | a.\text{key} \in [\alpha, \beta]\}$ can be found as a disjoint union of $O(\log n)$ blocks in $O(\log n)$ time.
- \bullet If $|A|=O(n)$ and the $A_{\,v}$'s are stored in data structures that admit updates in time $O(\log^k n)$ then the range tree can be updated in time $O(\log^{k+1} n)$.

A set of objects, each $a \in A$ has a segment a . seg associated with it.

A segment tree for A is a balanced binary search tree T whose key set K contains all endpoints of segments $\{a \cdot \text{seg} | a \in A\}$ and that stores for each node v of T the set $S_v = \{a \in A | v \in \text{span}(a.\text{seg})\}.$

A set of objects, each $a \in A$ has a segment $a \cdot \text{seg}$ associated with it.

A segment tree for A is a balanced binary search tree T whose key set K contains all endpoints of segments $\{a \cdot \text{seg} | a \in A\}$ and that stores for each node v of T the set $S_v = \{a \in A | v \in \text{span}(a.\text{seg})\}.$

Lemma: Let A be a set of objects each associated with a segment with endpoints in K. Let $n = |K|$ and let T be a segment tree for A with key set K

- $\sum_{v \in T} |S_v| = O(|A| \log n)$
- Given key $x \in \mathbb{R}$ the set $\{a \in A | x \in a \text{.seg}\}$ can be found as a disjoint union of $O(\log n)$ blocks in $O(\log n)$ time.
- \bullet If $|A|=O(n)$ and the $S_{\bm v}$'s are stored in data structures that admit updates in time $O(\log^kn)$ then the segment tree can be updated in time $O(\log^{k+1} n)$.

A a set of n objects each having an $x \text{key}$ and $y \text{key}$.

Example 1:

A a set of n objects each having an xikey and ykey.

Buld a data structure for A so that for any axis-parallel rectangle $H =$ xeeg \times yseg you can tell quickly for

you have $(a \times key, a, ykey) \in B$.
 \Box
 \Box Build a data structure for A so that for any axis-parallel rectangle $B = xseg \times yseg$ you can tell quickly for which objects in A you have $(a.\mathbf{xkey}, a.\mathbf{ykey}) \in B$.

Hierarchies of Range and Segment Trees
 Example 2:

A a sec of *n*, objects each hooing an acreg and year_g, defining the adepended rectangle *a*. Box = acreg x yearg,

Final a state arrestrict for *A* in that for any qu A a set of n objects each having an xseg and yseg, defining the axis-parallel rectangle a . $Box = xseg \times yseg$. Build a data structure for A so that for any query point $q\in\mathbb{R}^2$ you can determine quickly for which objects in A you have $q \in a$. Box .

Hierarchies of Range and Segment Trees

Example 3:

A a set of n horizontal segments a . xseg.

Build a data structure for A so that for any vertical query segment s you can determine quickly the segments in A that intersect q.

Hierarchies of Range and Segment Trees
 $\frac{1}{\text{Area of } n \text{ horizontal segments } a \text{.}\times \text{reg.}}$

Build a data structure for A so that for any vertical query segment a you can determine quickly the segments is
 $\frac{1}{2}$
 $-16-$

Build a data structure for A so that for any vertical query segment s you can determine quickly the segments in A that intersect q.

Sweep horizontal line $L_t : y = t$ from bottom to top across the plane

Sweep horizontal line $L_t : y = t$ from bottom to top across the plane

and maintain an **INVALIANT** so that in the end the veracity of the invariant implies correctness of the computation

SLS (Sweepline structure): Maintains interaction between L_t and the geometry

EQ (Event queue): Priority Queue for predicting the next "event", i.e. qualitative change during the sweep

INV Invariant Geometric-Semantic-Part: Maintain A_t the area of the intersection of the boxes that is in L_t^{\pm} t

SLS (Sweepline structure): Maintains interaction between L_t and the geometry

EQ (Event queue): Priority Queue for predicting the next "event", i.e. qualitative change during the sweep

SLS (Sweepline structure): Maintains interaction between L_t and the geometry

Let B_t the boxes in B that intersect L_t . SLS stores the interval set $\{b\cap L_t\,|\,b\in B_t\}$ in a strcuture that allows updates and queries for the lenght of the union of all intervals in the structrue.

 ${\sf EQ}$ (Event Queue): Events happen when L_t meets a lower or upper edge of a box in $B.$ There are two types: lower and upper.

EQ maintains all these events in a priority queue.

Invariant semantic-geometric:

Invariant EQ:

Invariant SLS:

Sweep Algorithms

Invariant semantic-geometric:

Invariant SLS:

Invariant EQ:

Example: Given a set B of n non-horizontal, non-intersecting blue segements in the plane and given a set R of n non-horizontal,

non-intersecting red segments, report the number of red-blue intersections.

Example: Given a set B of n non-horizontal, non-intersecting blue segements in the plane and given a set R of n non-horizontal,

non-intersecting red segments, report the number of red-blue intersections.

Example: Given a set B of n non-horizontal, non-intersecting blue segements in the plane and given a set R of n non-horizontal,

non-intersecting red segments, report the number of red-blue intersections.

