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Binary Search Trees

Size n = |K|

v node of T :

Tv subtree rooted at v

Kv keys in Tv

Iv is the union of the primitive intervals
associated with the leaves of Tv
together with Kv

key x ∈ R:

path(x) = {v ∈ T |x ∈ Iv}
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Lemma: T binary tree for n keys with height O(logn).
• for any key x we have |path(x)| = O(logn)
• for any interval [α, β] we have |span[α, β]| = O(logn)

• If α, β ∈ K then [α, β] =
⋃̇
{Iv|v ∈ span[α, β]}.

• path(x) and span[α, β] can be found in O(logn) time.
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A set of objects, each a ∈ A has a value a, key associated with it.

A range tree for A is a balanced binary search tree T whose key set K contains {a.key|a ∈ A} and that stores for each node v of T
the set Av = {a ∈ A|a.key ∈ Kv}.
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A set of objects, each a ∈ A has a value a.key associated with it.

A range tree for A is a balanced binary search tree T whose key set K contains {a.key|a ∈ A} and that stores for each node v of T
the set Av = {a ∈ A|a.key ∈ Kv}.

Lemma: Let A be a set of objects with keys in K, and n = |K|. Let T be a range tree for A with key set K
•

∑
v∈T |Av| = O(|A| logn)

• Given interval [α, β] the set {a ∈ A|a.key ∈ [α, β]} can be found as a disjoint union of O(logn) blocks in
O(logn) time.

• If |A| = O(n) and the Av ’s are stored in data structures that admit updates in time O(logk n) then the range tree

can be updated in time O(logk+1 n).
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A set of objects, each a ∈ A has a segment a.seg associated with it.

A segment tree for A is a balanced binary search tree T whose key set K contains all endpoints of segments {a.seg|a ∈ A} and that
stores for each node v of T the set Sv = {a ∈ A|v ∈ span(a.seg)}.



– 12 –

Segment Trees

Size n = |K|

v node of T :

Tv subtree rooted at v

Kv keys in Tv

Iv is the union of the primitive intervals
associated with the leaves of Tv
together with Kv

55

12

61

3718

7143

51

25

29

3

7

A set of objects, each a ∈ A has a segment a.seg associated with it.

A segment tree for A is a balanced binary search tree T whose key set K contains all endpoints of segments {a.seg|a ∈ A} and that
stores for each node v of T the set Sv = {a ∈ A|v ∈ span(a.seg)}.

Lemma: Let A be a set of objects each associated with a segment with endpoints in K. Let n = |K| and let T be a segment
tree for A with key set K
•

∑
v∈T |Sv| = O(|A| logn)

• Given key x ∈ R the set {a ∈ A|x ∈ a.seg} can be found as a disjoint union of O(logn) blocks in O(logn) time.

• If |A| = O(n) and the Sv ’s are stored in data structures that admit updates in time O(logk n) then the segment tree

can be updated in time O(logk+1 n).
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Hierarchies of Range and Segment Trees

Example 1:
A a set of n objects each having an xkey and ykey.
Build a data structure for A so that for any axis-parallel rectangle B = xseg × yseg you can tell quickly for which objects in A
you have (a.xkey, a.ykey) ∈ B.
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Hierarchies of Range and Segment Trees

Example 2:
A a set of n objects each having an xseg and yseg, defining the axis-parallel rectangle a.Box = xseg × yseg.

Build a data structure for A so that for any query point q ∈ R2 you can determine quickly for which objects in A
you have q ∈ a.Box.
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Hierarchies of Range and Segment Trees

Example 3:
A a set of n horizontal segments a.xseg.
Build a data structure for A so that for any vertical query segment s you can determine quickly the segments in A that intersect q.
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Example 3:
A a set of n horizontal segments a.xseg.
Build a data structure for A so that for any vertical query segment s you can determine quickly the segments in A that intersect q.



– 17 –

Sweep Algorithms
Example: Given a set of axis parallel boxes in R2 compute area of their union.
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Sweep Algorithms
Example: Given a set of axis parallel boxes in R2 compute area of their union.

Lt

L+
t

Lt

Lt

L−
t

Sweep horizontal line Lt : y = t from bottom to top across the plane

and maintain an Invariant so that in the end the veracity of the invariant implies correctness of the computation
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EQ (Event queue): Priority Queue for predicting the next “event”, i.e. qualitative change during the sweep



– 21 –

Sweep Algorithms
Example: Given a set of axis parallel boxes in R2 compute area of their union.

Lt
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INV Invariant Geometric-Semantic-Part: Maintain At the area of the intersection of the boxes that is in L
−
t

SLS (Sweepline structure): Maintains interaction between Lt and the geometry
EQ (Event queue): Priority Queue for predicting the next “event”, i.e. qualitative change during the sweep
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Sweep Algorithms
Example: Given a set of axis parallel boxes in R2 compute area of their union.

Lt
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t

SLS (Sweepline structure): Maintains interaction between Lt and the geometry

Let Bt the boxes in B that intersect Lt . SLS stores the interval set {b∩Lt|b ∈ Bt} in a strcuture that allows
updates and queries for the lenght of the union of all intervals in the structrue.
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Sweep Algorithms
Example: Given a set of axis parallel boxes in R2 compute area of their union.

Lt

L+
t

Lt

Lt

L−
t

EQ (Event Queue): Events happen when Lt meets a lower or upper edge of a box in B.
There are two types: lower and upper.

EQ maintains all these events in a priority queue.
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Sweep Algorithms
Example: Given a set of axis parallel boxes in R2 compute area of their union.
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Sweep Algorithms
Example: Given a set of axis parallel boxes in R2 compute area of their union.
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Sweep Algorithms
Example: Given a set S of n non-horitontal segements in the plane, report all their pairwise intersections.
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Sweep Algorithms
Example: Given a set B of n non-horizontal, non-intersecting blue segements in the plane and given a set R of n non-horizontal,

non-intersecting red segments, report the number of red-blue intersections.
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