Key set $K = \{3, 7, 12, 18, 25, 29, 37, 43, 51, 55, 61, 71\}$

Size n = |K|

 I_v is the union of the primitive intervals associated with the leaves of $\overline{T_v}$ together with K_v

 I_v is the union of the primitive intervals associated with the leaves of $\overline{T_v}$ together with K_v

key $x \in \mathbb{R}$: $path(x) = \{ v \in \overline{T} | x \in I_{v} \}$

 I_v is the union of the primitive intervals associated with the leaves of $\overline{T_v}$ together with K_v

key $x \in \mathbb{R}$: $path(x) = \{ v \in \overline{T} | x \in I_v \}$

interval $[\alpha, \beta]$ with $\alpha, \beta \in K$: $\operatorname{span}[\alpha, \beta] = \{ v \in \overline{T} | I_v \subseteq [\alpha, \beta] \text{ but } I_{v.\operatorname{PAR}} \not\in [\alpha, \beta] \}$

$$path(x) = \{ v \in \overline{T} | x \in I_v \}$$

interval $[\alpha, \beta]$ with $\alpha, \beta \in K$:

 $\operatorname{span}[\alpha,\beta] = \{ v \in \overline{T} | I_v \subseteq [\alpha,\beta] \text{ but } I_{v,\operatorname{PAR}} \not\in [\alpha,\beta] \}$

Lemma: T binary tree for n keys with height $O(\log n)$.

- for any key x we have $|\operatorname{path}(x)| = O(\log n)$
- for any interval $[\alpha, \beta]$ we have $|\operatorname{span}[\alpha, \beta]| = O(\log n)$
- If $\alpha, \beta \in K$ then $[\alpha, \beta] = \bigcup \{ I_v | v \in \operatorname{span}[\alpha, \beta] \}.$
- path(x) and $span[\alpha, \beta]$ can be found in $O(\log n)$ time.

Range Trees

A set of objects, each $a \in A$ has a value a, key associated with it.

A range tree for A is a balanced binary search tree T whose key set K contains $\{a \cdot \ker | a \in A\}$ and that stores for each node v of T the set $A_v = \{a \in A | a \cdot \ker \in K_v\}$.

Range Trees

A set of objects, each $a \in A$ has a value $a \cdot \text{key}$ associated with it.

A range tree for A is a balanced binary search tree T whose key set K contains $\{a \cdot \ker | a \in A\}$ and that stores for each node v of T the set $A_v = \{a \in A | a \cdot \ker \in K_v\}$.

Lemma: Let A be a set of objects with keys in K, and n = |K|. Let T be a range tree for A with key set K

- $\sum_{v \in T} |A_v| = O(|A| \log n)$
- Given interval $[\alpha, \beta]$ the set $\{a \in A | a \cdot \text{key} \in [\alpha, \beta]\}$ can be found as a disjoint union of $O(\log n)$ blocks in $O(\log n)$ time.
- If |A| = O(n) and the A_v 's are stored in data structures that admit updates in time $O(\log^k n)$ then the range tree can be updated in time $O(\log^{k+1} n)$.

Segment Trees

A set of objects, each $a \in A$ has a segment $a \cdot seg$ associated with it.

A segment tree for A is a balanced binary search tree T whose key set K contains all endpoints of segments $\{a \cdot seg | a \in A\}$ and that stores for each node v of T the set $S_v = \{a \in A | v \in span(a \cdot seg)\}$.

Segment Trees

A set of objects, each $a \in A$ has a segment $a \cdot seg$ associated with it.

A segment tree for A is a balanced binary search tree T whose key set K contains all endpoints of segments $\{a \cdot seg | a \in A\}$ and that stores for each node v of T the set $S_v = \{a \in A | v \in span(a \cdot seg)\}$.

Lemma: Let A be a set of objects each associated with a segment with endpoints in K. Let n = |K| and let T be a segment tree for A with key set K

- $\sum_{v \in T} |S_v| = O(|A| \log n)$
- Given key $x \in \mathbb{R}$ the set $\{a \in A | x \in a \text{.seg}\}$ can be found as a disjoint union of $O(\log n)$ blocks in $O(\log n)$ time.
- If |A| = O(n) and the S_v 's are stored in data structures that admit updates in time $O(\log^k n)$ then the segment tree can be updated in time $O(\log^{k+1} n)$.

Example 1:

A a set of n objects each having an xkey and ykey.

Build a data structure for A so that for any axis-parallel rectangle $B = x \text{seg} \times y \text{seg}$ you can tell quickly for which objects in A you have $(a.x \text{key}, a.y \text{key}) \in B$.

- 13 -

Example 2:

A a set of n objects each having an xseg and yseg, defining the axis-parallel rectangle $a.Box = xseg \times yseg$. Build a data structure for A so that for any query point $q \in \mathbb{R}^2$ you can determine quickly for which objects in A you have $q \in a.Box$.

Example 3:

A a set of n horizontal segments a.xseg.

Build a data structure for A so that for any vertical query segment s you can determine quickly the segments in A that intersect q.

- 15 -

Example 3:

A a set of n horizontal segments a.xseg.

Build a data structure for A so that for any vertical query segment s you can determine quickly the segments in A that intersect q.

- 16 -

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

Sweep horizontal line L_t : y = t from bottom to top across the plane

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

Sweep horizontal line L_t : y = t from bottom to top across the plane

and maintain an **Invariant** so that in the end the veracity of the invariant implies correctness of the computation

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

SLS (Sweepline structure): Maintains interaction between L_t and the geometry

EQ (Event queue): Priority Queue for predicting the next "event", i.e. qualitative change during the sweep

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

INV Invariant Geometric-Semantic-Part: Maintain A_t the area of the intersection of the boxes that is in L_t^-

SLS (Sweepline structure): Maintains interaction between L_t and the geometry

EQ (Event queue): Priority Queue for predicting the next "event", i.e. qualitative change during the sweep

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

SLS (Sweepline structure): Maintains interaction between L_t and the geometry

Let B_t the boxes in B that intersect L_t . SLS stores the interval set $\{b \cap L_t | b \in B_t\}$ in a structure that allows updates and queries for the lenght of the union of all intervals in the structrue.

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

EQ (Event Queue): Events happen when L_t meets a lower or upper edge of a box in B. There are two types: lower and upper.

EQ maintains all these events in a priority queue.

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

Invariant semantic-geometric:

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

Invariant EQ:

Example: Given a set of axis parallel boxes in \mathbb{R}^2 compute area of their union.

Invariant SLS:

Example: Given a set S of n non-horitontal segements in the plane, report all their pairwise intersections.

Example: Given a set S of n non-horitontal segements in the plane, report all their pairwise intersections.

Invariant semantic-geometric:

Example: Given a set S of n non-horitontal segements in the plane, report all their pairwise intersections.

Invariant SLS:

Example: Given a set S of n non-horitontal segements in the plane, report all their pairwise intersections.

Invariant EQ:

Example: Given a set S of n non-horitontal segements in the plane, report all their pairwise intersections.

Example: Given a set B of n non-horizontal, non-intersecting blue segements in the plane and given a set R of n non-horizontal,

non-intersecting red segments, report the number of red-blue intersections.

Example: Given a set B of n non-horizontal, non-intersecting blue segements in the plane and given a set R of n non-horizontal,

non-intersecting red segments, report the number of red-blue intersections.

Example: Given a set B of n non-horizontal, non-intersecting blue segements in the plane and given a set R of n non-horizontal,

non-intersecting red segments, report the number of red-blue intersections.

