
– 1 –

Planar Point Location

Preprocess a given polygon P so that for every query point q it can be determined
quickly whether q is inside P or not.

– 2 –

Planar Point Location

Preprocess a given polygon P so that for every query point q it can be determined
quickly whether q is inside P or not.

q given by its coordinates

P given by circular sequence of
its corners (by coordinates)

– 3 –

Planar Point Location

Preprocess a given polygon P so that for every query point q it can be determined
quickly whether q is inside P or not.

q given by its coordinates

P given by circular sequence of
its corners (by coordinates)

– 4 –

Point in Polygon Test

Preprocess a given polygon P so that for every query point q it can be determined
quickly whether q is inside P or not.

q given by its coordinates

P given by circular sequence of
its corners (by coordinates)

– 5 –

Planar Point Location

Preprocess a given partition of the plane (or a bounding box) so that for every query
point q it can be determined quickly which region of the partition contains q.

– 6 –

Planar Point Location

Preprocess a given partition of the plane (or a bounding box) so that for every query
point q it can be determined quickly which region of the partition contains q.

– 7 –

Vertical Ray Shooting

Preprocess a given set S of non-crossing segments in the plane (or a bounding box) so
that for every query point q it can be determined quickly which segment of S lies
immediately above(below) q.

q

– 8 –

Vertical Ray Shooting

Preprocess a given set S of non-crossing segments in the plane (or a bounding box) so
that for every query point q it can be determined quickly which segment of S lies
immediately above(below) q.

q

if they intersect, then they

intersect in a common endpoint

– 9 –

Vertical Ray Shooting

Preprocess a given set S of non-crossing curves in the plane (or a bounding box) so
that for every query point q it can be determined quickly which curve of S lies
immediately above(below) q.

q

– 10 –

Vertical Ray Shooting

Preprocess a given set S of non-crossing x-monotone curves in the plane (or a
bounding box) so that for every query point q it can be determined quickly which
curve of S lies immediately above(below) q.

q

– 11 –

Vertical Ray Shooting

Preprocess a given set S of non-crossing x-monotone curves in the plane (or a
bounding box) so that for every query point q it can be determined quickly which
curve of S lies immediately above(below) q.

q

– 12 –

Vertical Ray Shooting

Preprocess a given set S of non-crossing x-monotone curves in the plane (or a
bounding box) so that for every query point q it can be determined quickly which
curve of S lies immediately above(below) q.

q

Computational assumption
If the vertical line through a
point q intersects an
x-monotone segment s then it
can be determined in constant
time whether q lies above, on,
or below s.

– 13 –

Vertical Ray Shooting

Preprocess a given set S of non-crossing x-monotone curves in the plane (or a
bounding box) so that for every query point q it can be determined quickly which
curve of S lies immediately above(below) q.

Computational assumption
If the vertical line through a
point q intersects an
x-monotone segment s then it
can be determined in constant
time whether q lies above, on,
or below s.

q

s

– 14 –

The Slab Method of Dobkin & Lipton

1. Draw a vertical line through each segment endpoint, which partitions the bounding box
into slabs.
Build a binary search structure (x-structure) that allows to determine the slab containing
a query point in logarithmic time.

– 15 –

The Slab Method of Dobkin & Lipton

1. Draw a vertical line through each segment endpoint, which partitions the bounding box
into slabs.
Build a binary search structure (x-structure) that allows to determine the slab containing
a query point in logarithmic time.

2. In each slab the segments
crossing the slab are totally
ordered vertically.

For each slab build a binary
search structure (y-structure)
to determine the segments
immediately above and below
the query point.

– 16 –

The Slab Method of Dobkin & Lipton

1. Draw a vertical line through each segment endpoint, which partitions the bounding box
into slabs.
Build a binary search structure (x-structure) that allows to determine the slab containing
a query point in logarithmic time.

2. In each slab the segments
crossing the slab are totally
ordered vertically.

For each slab build a binary
search structure (y-structure)
to determine the segments
immediately above and below
the query point.

Query time is logarithmic:

Q(n) = 2 log2 n+O(1)

– 17 –

The Slab Method of Dobkin & Lipton

Query time: Q(n) = O(log n)

Space usage: S(n) = O(n2) in the worst case.

– 18 –

Inverse Range Searching Based Methods

Idea for processing query point q:

1 Identify the set S(q), the set of segments in S that intersect the vertical line
through q.

2 Find the correct answer within S(q).

– 19 –

Inverse Range Searching Based Methods

Idea for processing query point q:

1 Identify the set S(q), the set of segments in S that intersect the vertical line
through q.

2 Find the correct answer within S(q).

q

– 20 –

Inverse Range Searching Based Methods

Idea for processing query point q:

1 Identify the set S(q), the set of segments in S that intersect the vertical line
through q.

2 Find the correct answer within S(q).

q

– 21 –

Inverse Range Searching Based Methods

Idea for processing query point q:

1 Identify the set S(q), the set of segments in S that intersect the vertical line
through q.

2 Find the correct answer within S(q).

q

q′ projection of q onto horizontal axis;
s′ projection of s onto horizontal axis;

Step 1 corresponds to 1-dimensional
problem of finding the intervals s′ that
contain q′ (“inverse range searching”)

q′

– 22 –

Inverse Range Searching Based Methods

Idea for processing query point q:

1 Identify the set S(q), the set of segments in S that intersect the vertical line
through q.

2 Find the correct answer within S(q).

q

q′ projection of q onto horizontal axis;
s′ projection of s onto horizontal axis;

Step 1 corresponds to 1-dimensional
problem of finding the intervals s′ that
contain q′ (“inverse range searching”)

q′

Possible solutions via
segment tree or
interval tree

– 23 –

Inverse Range Searching Based Methods: Segment Tree

Idea for processing query point q:

1 Identify the set S(q), the set of segments in S that intersect the vertical line
through q.

2 Find the correct answer within S(q).

q

Segment tree provides S(q) as disjoint
union of O(logn) canonical sets of
segments (some Sv’s from the segment
tree)

Proprocess each canonical set Sv to allow
vertical binary search for q

Search for q in each of the relevant

canonical sets.

Query time Q(n) = O(log2 n)
Space usage S(n) = O(n log n)

q′

– 24 –

Inverse Range Searching Based Methods: Segment Tree

Idea for processing query point q:

1 Identify the set S(q), the set of segments in S that intersect the vertical line
through q.

2 Find the correct answer within S(q).

q

Segment tree provides S(q) as disjoint
union of O(logn) canonical sets of
segments (some Sv’s from the segment
tree)

Proprocess each canonical set Sv to allow
vertical binary search for q

Search for q in each of the relevant

canonical sets.

Query time Q(n) = O(log2 n)
Space usage S(n) = O(n log n)

q′With appropriate fractional cascading Q(n) can be improved

to O(logn). (homework)

– 25 –

Inverse Range Searching Based Methods: Interval Tree

Idea for processing query point q:

1 Identify the set S(q), the set of segments in S that intersect the vertical line
through q.

2 Find the correct answer within S(q).

q

Interval tree provides a superset of S(q) as
disjoint union of O(logn) canonical sets of
segments.

They have the following form (left attached):

q′

or mirror image

(right attached)

– 26 –

Inverse Range Searching Based Methods: Interval Tree

Want to do fast vertical ray shooting in left attached segments.

segments are vertically ordered according to their attachment point;

build binary tree T whose leaves are the segments in this vertical ordering;

for each node v in the tree store the segment sv from Tv that extends furthest away from the

attachment line;

sv

– 27 –

Inverse Range Searching Based Methods: Interval Tree

Want to do fast vertical ray shooting in left attached segments.

Vertical ray shooting among the sv’s from 4 nodes of T on the same level allows to eliminate
at least two subtrees from consideration.

Recurse in the remaining trees.

q

– 28 –

Inverse Range Searching Based Methods: Interval Tree

Want to do fast vertical ray shooting in left attached segments.

Vertical ray shooting among the sv’s from 4 nodes of T on the same level allows to eliminate
at least two subtrees from consideration.

Recurse in the remaining trees.

q

constant number of comparisons necessary to descend
down one level in the tree

Therefore logarithmis search time within one set of
attached segments

Q(n) = O(log2 n) since O(logn) attached sets

need to be searched

S(n) = O(n) since every segment occurs

in only two attachment sets

Cheng and Janardan 1992

– 29 –

Optimal Planar Point Location ?

Segment tree + fractional cascading: Q(n) = O(log n) S(n) = O(n log n)

Interval trees: Q(n) = O(log2 n) S(n) = O(n)

Is optimal query time Q(n) = O(log n) with space S(n) = O(n) possible?

– 30 –

Optimal Planar Point Location ?

Segment tree + fractional cascading: Q(n) = O(log n) S(n) = O(n log n)

Interval trees: Q(n) = O(log2 n) S(n) = O(n)

Is optimal query time Q(n) = O(log n) with space S(n) = O(n) possible?

YES
1978 Lipton and Tarjan using the new planar separator theorem (very complicated, horrible
constants)

1979 Kirkpatrick (simple, moderate consants, but specialized)

1984 Edelsbrunner, Guibas, and Stolfi (Q(n) ≤ 3 · log2 n)

1986 Sarnak and Tarjan using persistent search trees

1986 Cole based on searching similar lists

1997 Goodrich, Orletsky, and Ramaiyer (Q(n) ≤ 2 · log2 n)

1998 Adamy and Seidel Q(n) ≤ 1 · log2 n+ 2
√

log2 n+O(4
√
logn)

1990 Mulmuley / Seidel randomized methods

– 31 –

• Planar point location

Optimal methods:
• Lipton – Tarjan
• Kirkpatrick
• Edelsbrunner – Guibas - Stolfi
• Cole
• Sarnak – Tarjan
• randomized

Other methods:
• via segment trees / via interval trees
• trapezoidal search trees
• constant optimal methods
• via cuttings
• distribution adaptive methods
• ...

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove low degree vertex
and retriangulate hole

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove low degree vertex
and retriangulate hole

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove low degree vertex
and retriangulate hole

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove low degree vertex
and retriangulate hole

repeat recursively

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove low degree vertex
and retriangulate hole

repeat recursively

Query for point q :

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove low degree vertex
and retriangulate hole

repeat recursively

Query for point q :

locate q in G’

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove low degree vertex
and retriangulate hole

repeat recursively

Query for point q :

locate q in G’

if q in “black” triangle then determine correct triangle of G
else triangle is correct answer already

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove large independent
set of low degree vertices
and retriangulate holes

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove large independent
set of low degree vertices
and retriangulate holes

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove large independent
set of low degree vertices
and retriangulate holes

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove large independent
set of low degree vertices
and retriangulate holes

repeat recursively

Kirkpatrick’s hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G’

remove large independent
set of low degree vertices
and retriangulate holes

repeat recursively

Query for point q :

if q in “black” triangle then determine correct triangle of G
else triangle is correct answer already

locate q in G’

Lemma: For every d≥6 there exists an α>0 such that
every n-vertex planar graph has an independent set of

at least αn vertices of degree � d .

Lemma: For every d≥6 there exists an α>0 such that
every n-vertex planar graph has an independent set of

at least αn vertices of degree � d .

⇒⇒⇒⇒ height of hierarchy of subdivisions can be made O(log n)

Lemma: For every d≥6 there exists an α>0 such that
every n-vertex planar graph has an independent set of

at least αn vertices of degree � d .

⇒⇒⇒⇒ height of hierarchy of subdivisions can be made O(log n)

⇒⇒⇒⇒ Query time O(log n)

Space O(n)
Preprocessing O(n)

Lemma: For every d≥6 there exists an α>0 such that
every n-vertex planar graph has an independent set of

at least αn vertices of degree � d .

⇒⇒⇒⇒ height of hierarchy of subdivisions can be made O(log n)

⇒⇒⇒⇒ Query time O(log n)

Space O(n)
Preprocessing O(n)

Shortcomings:

• only works for straight edge subdivisions

• constants are large

• “complicated” (needs to find independent sets)

Shortcomings:

• only works for straight edge subdivisions

• constants are large

• “complicated” (needs to find independent sets)

Shortcomings:

• only works for straight edge subdivisions

• constants are large

• “complicated” (needs to find independent sets)

Idea: apply this hierarchical approach
to trapezoidations and but remove
segments instead of vertices.

trapezoidation G

trapezoidation G

to obtain smaller G’

trapezoidation G

to obtain smaller G’

remove some segment

trapezoidation G

to obtain smaller G’

remove some segment
and “retrapezoidalize” hole

trapezoidation G

to obtain smaller G’

remove some segment
and “retrapezoidalize” hole

trapezoidation G

to obtain smaller G’

remove some segment
and “retrapezoidalize” hole

repeat recursively

trapezoidation G

to obtain smaller G’

remove some segment
and “retrapezoidalize” hole

repeat recursively

Query for point q :

trapezoidation G

to obtain smaller G’

remove some segment
and “retrapezoidalize” hole

repeat recursively

Query for point q :

locate q in G’

trapezoidation G

to obtain smaller G’

remove some segment
and “retrapezoidalize” hole

repeat recursively

Query for point q :

locate q in G’

if q in “black” trapezoid then determine correct trapezoid of G
else trapezoid is correct answer already

trapezoidation G

to obtain smaller G’

remove some segment
and “retrapezoidalize” hole

repeat recursively

Query for point q :

locate q in G’

if q in “black” trapezoid then determine correct trapezoid of G
else trapezoid is correct answer already

1 or 2 comparisons !!

trapezoidation G

to obtain smaller G’

remove some segment
and “retrapezoidalize” hole

repeat recursively

Query for point q :

locate q in G’

if q in “black” trapezoid then determine correct trapezoid of G
else trapezoid is correct answer already

1 or 2 comparisons !!

trapezoidation G

trapezoidation G

to obtain smaller G’

trapezoidation G

to obtain smaller G’

remove set of independent
segments

trapezoidation G

to obtain smaller G’

remove set of independent
segments

and “retrapezoidalize” holes

trapezoidation G

to obtain smaller G’

remove set of independent
segments

and “retrapezoidalize” holes

trapezoidation G

to obtain smaller G’

remove set of independent
segments

and “retrapezoidalize” holes

repeat recursively

trapezoidation G

to obtain smaller G’

remove set of independent
segments

and “retrapezoidalize” holes

repeat recursively

Query for point q :

if q in “black” trapezoid then determine correct trapezoid of G
else trapezoid is correct answer already

locate q in G’
1 or 2 comparisons !!

trapezoidation G

to obtain smaller G’

remove set of independent
segments

and “retrapezoidalize” holes

repeat recursively

Query for point q :

if q in “black” trapezoid then determine correct trapezoid of G
else trapezoid is correct answer already

locate q in G’
1 or 2 comparisons !!

Lemma 1: In every set of n≥4 x-monotone segments
there exists an “independent” set of size at least n/4.

Lemma 1: In every set of n≥4 x-monotone segments
there exists an “independent” set of size at least n/4.

Lemma 2: In every set of m “exposed” vertical segments there

exists an “independent” set of size at least m/2.

Lemma 1: In every set of n≥4 x-monotone segments
there exists an “independent” set of size at least n/4.

Lemma 2: In every set of m “exposed” vertical segments there

exists an “independent” set of size at least m/2.

⇒⇒⇒⇒ height of hierarchy of trapezoidations can be
made O(log n)

Lemma 1: In every set of n≥4 x-monotone segments
there exists an “independent” set of size at least n/4.

Lemma 2: In every set of m “exposed” vertical segments there

exists an “independent” set of size at least m/2.

⇒⇒⇒⇒ height of hierarchy of trapezoidations can be
made O(log n)

⇒⇒⇒⇒ Query time O(log n) � 3.5 log2 n
Space O(n)
Preprocessing O(n)

O(n log n)

Shortcomings of Kirkpatrick’s original method:

• only works for straight edge subdivisions

• constants are large

• “complicated” (needs to find independent sets)

Shortcomings of Kirkpatrick’s original method:

• only works for straight edge subdivisions

• constants are large

• “complicated” (needs to find independent sets)

Shortcomings of Kirkpatrick’s original method:

• only works for straight edge subdivisions

• constants are large

• “complicated” (needs to find independent sets)

Shortcomings of Kirkpatrick’s original method:

• only works for straight edge subdivisions

• constants are large

• “complicated” (needs to find independent sets)

Use randomization !!!

– 1 –

Randomized Planar Point Location

Idea: Use single segment removal, but remove a random segment, each with equal
probability (1/n for each of the n segments)

T (S) . . . trapezoidation for segment set S
Q(S) . . . query structure for segment set S

trapezoids of T (S) correspond 1-1 with
sinks of Q(S).

– 2 –

Randomized Planar Point Location

Creating T (S) and Q(S) from S:
1. choose a random s from S, let S′ = S \ {s}
2. recursively construct T (S′) and Q(S′)
3. use Q(S′) to locate the endpoints a and b of s in T (S′)
4. split those two trapezoids verticallly by the vertical lines through a and b respecdtively
5. make the corresponding nodes in Q(S′) to x-comparison nodes (w.r.t. a and b)
6. “Thread” segment s from a to b in T (S′):
7. for each trapezoid cut by s make the corresponding node in Q(S′) to a y-comparison node w.r.t s
8. Generate a sink node of Q(S′) for each new trapezoid in the resulting trapezoidation and connect the newly

created y-comparison nodes to the appropriate sink node

– 3 –

Randomized Planar Point Location

1. For each query point q the expected search time for q is O(log n)
2. The expected size of the structures constructed is O(n).
3. The expected preprocessing time is O(n log n).

