Planar Point Location

Preprocess a given polygon P so that for every query point ¢ it can be determined
quickly whether ¢ is inside P or not.
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Planar Point Location

Preprocess a given polygon P so that for every query point ¢ it can be determined
quickly whether ¢ is inside P or not.

—
g given by its coordinates

P given by circular sequence of

its corners (by coordinates)
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Planar Point Location

Preprocess a given polygon P so that for every query point ¢ it can be determined
quickly whether ¢ is inside P or not.

—
g given by its coordinates

P given by circular sequence of
its corners (by coordinates)
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Point in Polygon Test

Preprocess a given polygon P so that for every query point ¢ it can be determined
quickly whether ¢ is inside P or not.

—
g given by its coordinates

P given by circular sequence of
its corners (by coordinates)

SI Saarland Informatics
Campus
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Planar Point Location

Preprocess a given partition of the plane (or a bounding box) so that for every query
point ¢ it can be determined quickly which region of the partition contains g.
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Planar Point Location

Preprocess a given partition of the plane (or a bounding box) so that for every query
point ¢ it can be determined quickly which region of the partition contains g.

o

O
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Vertical Ray Shooting

Preprocess a given set .S of non-crossing segments in the plane (or a bounding box) so
that for every query point ¢ it can be determined quickly which segment of S lies
immediately above(below) g.
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Vertical Ray Shooting

Preprocess a given set .S of non-crossing segments in the plane (or a bounding box) so

that for every query point ¢ it can
immediately above(below) q.

determined quickly which segment of S lies

if they intersect, then they
intersect in a common endpoint

Sl
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Vertical Ray Shooting

Preprocess a given set S of non-crossing curves in the plane (or a bounding box) so
that for every query point ¢ it can be determined quickly which curve of S lies

immediately above(below) g.

O
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Vertical Ray Shooting

Preprocess a given set S of non-crossing x-monotone curves in the plane (or a
bounding box) so that for every query point ¢ it can be determined quickly which
curve of S lies immediately above(below) g¢.

o

O
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Vertical Ray Shooting

Preprocess a given set S of non-crossing x-monotone curves in the plane (or a
bounding box) so that for every query point ¢ it can be determined quickly which
curve of S lies immediately above(below) g¢.

U

O
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Vertical Ray Shooting

Preprocess a given set S of non-crossing x-monotone curves in the plane (or a
bounding box) so that for every query point ¢ it can be determined quickly which
curve of S lies immediately above(below) g¢.

Computational assumption
If the vertical line through a

point g Intersects an
x-monotone segment s then it

can be determined in constant Q
time whether ¢ lies above, on,
or below s.

Saarland Informatics
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Vertical Ray Shooting

Preprocess a given set S of non-crossing x-monotone curves in the plane (or a
bounding box) so that for every query point ¢ it can be determined quickly which
curve of S lies immediately above(below) g¢.

Computational assumption
If the vertical line through a

point g Intersects an
x-monotone segment s then it
can be determined in constant
time whether ¢ lies above, on,
or below s.
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The Slab Method of Dobkin & Lipton

1. Draw a vertical line through each segment endpoint, which partitions the bounding box

into slabs.
Build a binary search structure (z-structure) that allows to determine the slab containing

a query point in logarithmic time.

Saarland Informatics
— 14 - SIC Campus



1.

- 15—

The Slab Method of Dobkin & Lipton

Draw a vertical line through each segment endpoint, which partitions the bounding box

into slabs.
Build a binary search structure (z-structure) that allows to determine the slab containing

a query point in logarithmic time.

In each slab the segments

>
crossing the slab are totally )
ordered vertically. /
~

For each slab build a binary ¢
search structure (y-structure)

to determine the segments o
immediately above and below o ’

the query point. \
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The Slab Method of Dobkin & Lipton

1. Draw a vertical line through each segment endpoint, which partitions the bounding box

into slabs.
Build a binary search structure (z-structure) that allows to determine the slab containing

a query point in logarithmic time.

2. In each slab the segments

>
crossing the slab are totally )
ordered vertically. /
~

For each slab build a binary ¢
search structure (y-structure)

to determine the segments o
immediately above and below o ’

the query point. \

Query time is logarithmic:
Q(n) = 210gyn + O(1)

Saarland Informatics
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The Slab Method of Dobkin & Lipton

Query time:  Q(n) = O(logn)

Space usage: S(n) = O(n?) in the worst case.




Inverse Range Searching Based Methods

Idea for processing query point ¢:

1 ldentify the set S(q), the set of segments in S that intersect the vertical line
through q.
2 Find the correct answer within S(q).
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Inverse Range Searching Based Methods

Idea for processing query point ¢:
1 ldentify the set S(q), the set of segments in S that intersect the vertical line
through q.
2 Find the correct answer within S(q).
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Inverse Range Searching Based Methods

Idea for processing query point ¢:
1 ldentify the set S(q), the set of segments in S that intersect the vertical line
through q.
2 Find the correct answer within S(q).
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Inverse Range Searching Based Methods

Idea for processing query point ¢:

1 ldentify the set S(q), the set of segments in S that intersect the vertical line
through q.
2 Find the correct answer within S(q).

g’ projection of ¢ onto horizontal axis;
s’ projection of s onto horizontal axis; o

Step 1 corresponds to 1-dimensional
problem of finding the intervals s’ that —
contain ¢’ (“inverse range searching”) 9 ¢ ~

- —‘ -
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Inverse Range Searching Based Methods

Idea for processing query point ¢:

1 ldentify the set S(q), the set of segments in S that intersect the vertical line
through q.
2 Find the correct answer within S(q).

g’ projection of ¢ onto horizontal axis;
s’ projection of s onto horizontal axis; o

Step 1 corresponds to 1-dimensional
problem of finding the intervals s’ that —
contain ¢’ (“inverse range searching”) '

Possible solutions via
segment tree or

interval tree
< 4‘ >
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Inverse Range Searching Based Methods: Segment Tree

Idea for processing query point ¢:

1 ldentify the set S(q), the set of segments in S that intersect the vertical line

through q.

2 Find the correct answer within S(q).

Segment tree provides S(q) as disjoint
union of O(logn) canonical sets of
segments (some S,'s from the segment
tree)

Proprocess each canonical set S, to allow
vertical binary search for ¢

Search for ¢ in each of the relevant
canonical sets.

Query time Q(n) = O(log® n)
Space usage S(n) = O(nlogn)

- 23—
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Inverse Range Searching Based Methods: Segment Tree

Idea for processing query point ¢:

1 ldentify the set S(q), the set of segments in S that intersect the vertical line
through q.
2 Find the correct answer within S(q).

Segment tree provides S(q) as disjoint
union of O(logn) canonical sets of

segments (some S,'s from the segment
tree) —

Proprocess each canonical set S, to allow
vertical binary search for ¢ —

Search for ¢ in each of the relevant
canonical sets.

Query time Q(n) = O(log” n)
Space usage S(n) = O(nlogn) - ‘ .

With appropriate fractional cascading Q(n) can be improved q
~24= to O(logn). (homework)
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Inverse Range Searching Based Methods: Interval Tree

Idea for processing query point ¢:

1 ldentify the set S(q), the set of segments in S that intersect the vertical line
through q.
2 Find the correct answer within S(q).

Interval tree provides a superset of S(q) as
disjoint union of O(logn) canonical sets of
segments.

They have the following form (left attached): -

V :
T or mirror image

\\ (right attached) B 4‘ _

q S I Saarland Informatics

Campus
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Inverse Range Searching Based Methods: Interval Tree

Want to do fast vertical ray shooting in left attached segments.

segments are vertically ordered according to their attachment point;

build binary tree T" whose leaves are the segments in this vertical ordering;

for each node v in the tree store the segment s, from T, that extends furthest away from the
attachment line;

Saarland Informatics
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Inverse Range Searching Based Methods: Interval Tree

Want to do fast vertical ray shooting in left attached segments.

Vertical ray shooting among the s,’s from 4 nodes of I’ on the same level allows to eliminate

at least two subtrees from consideration.

Recurse in the remaining trees.

—27 —
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Inverse Range Searching Based Methods: Interval Tree

Want to do fast vertical ray shooting in left attached segments.

Vertical ray shooting among the s,’'s from 4 nodes of I’ on the same level allows to eliminate
at least two subtrees from consideration.

Recurse in the remaining trees.

- 28 —

constant number of comparisons necessary to descend
down one level in the tree

Therefore logarithmis search time within one set of
attached segments

Q(n) = O(log”n) since O(logn) attached sets
need to be searched
S(n) =0(n)  since every segment occurs
in only two attachment sets

Cheng and Janardan 1992
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Optimal Planar Point Location 7

Segment tree + fractional cascading: Q(n) = O(logn) S(n) = O(nlogn)
Interval trees: Q(n) = O(log®n) S(n) = O(n)

Is optimal query time Q(n) = O(logn) with space S(n) = O(n) possible?
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Optimal Planar Point Location 7

Segment tree + fractional cascading: Q(n) = O(logn) S(n) = O(nlogn)
Interval trees: Q(n) = O(log®n) S(n) = O(n)

Is optimal query time Q(n) = O(logn) with space S(n) = O(n) possible?

YES

1978 Lipton and Tarjan using the new planar separator theorem (very complicated, horrible
constants)

1979 Kirkpatrick (simple, moderate consants, but specialized)
1984 Edelsbrunner, Guibas, and Stolfi (Q(n) < 3 -log, n)
1986 Sarnak and Tarjan using persistent search trees

1986 Cole based on searching similar lists

1997 Goodrich, Orletsky, and Ramaiyer (Q(n) < 2 -log, n)

1998 Adamy and Seidel Q(n) < 1 -log,n + 24/log, n + O(+/logn)

1990 Mulmuley / Seidel randomized methods

Saarland Informatics
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* Planar point location

Optimal methods:
* Lipton - Tarjan
* Kirkpatrick
« Edelsbrunner - Guibas - Stolfi
* Cole
* Sarnak - Tarjan
* randomized

Other methods:
* via segment trees / via interval trees
* trapezoidal search trees
« constant optimal methods
* via cuttings
- distribution adaptive methods
. SAARLAND gff
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Kirkpatrick's hierarchy for straight edge,
triangulated subdivisions

subdivision G
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Kirkpatrick's hierarchy for straight edge,
triangulated subdivisions

subdivision G
to obtain smaller G
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Kirkpatrick's hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G

remove low degree vertex
and retriangulate hole
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Kirkpatrick's hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G

remove low degree vertex
and retriangulate hole

repeat recursively
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triangulated subdivisions

subdivision G

to obtain smaller G

remove low degree vertex
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Kirkpatrick's hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G

remove low degree vertex
and retriangulate hole

repeat recursively

locate q inG
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Kirkpatrick's hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G

remove low degree vertex
and retriangulate hole

repeat recursively

locate q inG

q in "black” triangle determine correct triangle of G
triangle is correct answer already

SAARLAND gl
UNIVERSITY U=
om0

COMPUTER SCIENCE



Kirkpatrick's hierarchy for straight edge,
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Kirkpatrick's hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G

remove large independent
set of low degree vertices
and retriangulate holes
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subdivision G

to obtain smaller G

remove large independent
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Kirkpatrick's hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G

remove large independent
set of low degree vertices
and retriangulate holes

repeat recursively
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Kirkpatrick's hierarchy for straight edge,
triangulated subdivisions

subdivision G

to obtain smaller G
remove large independent

set of low degree vertices
and retriangulate holes

repeat recursively

locate q inG

q in "black” triangle determine correct triangle of G
triangle is correct answer already
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For every d>6 there exists an x>0 such that
every n-vertex planar graph has an independent set of

at least an vertices of degree < d.
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For every d>6 there exists an x>0 such that
every n-vertex planar graph has an independent set of

at least an vertices of degree < d.

= height of hierarchy of subdivisions can be made O(log n)
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For every d>6 there exists an x>0 such that
every n-vertex planar graph has an independent set of

at least an vertices of degree < d.

= height of hierarchy of subdivisions can be made O(log n)

= Query time  O(log n)
Space O(n)
Preprocessing O(n)
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For every d>6 there exists an x>0 such that
every n-vertex planar graph has an independent set of

at least an vertices of degree < d.

= height of hierarchy of subdivisions can be made O(log n)

= Query time  O(log n)
Space O(n)
Preprocessing O(n)

Shortcomings:
- only works for straight edge subdivisions
* constants are large

. \‘COmpliCGTQd'l (needs to find independerﬁ, SeTS)
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Shortcomings:

- only works for straight edge subdivisions

* constants are large

» "complicated” (needs to find independent sets)
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Shortcomings:

- only works for straight edge subdivisions

* constants are large

» "complicated” (needs to find independent sets)

Idea: apply this hierarchical approach
to trapezoidations and but remove
segments instead of vertices.
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remove set of independent
segments

to obtain smaller G
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determine correct trapezoid of G
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segments

"

remove set of independent
and "retrapezoidalize” holes

to obtain smaller G
repeat recursively
1 or 2 comparisons !
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In every set of n>4 x-monotone segments
there exists an "independent” set of size at least n/4.
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In every set of n>4 x-monotone segments
there exists an "independent” set of size at least n/4.

In every set of m "exposed” vertical segments there
exists an “"independent” set of size at least m/2.
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In every set of n>4 x-monotone segments
there exists an "independent” set of size at least n/4.

In every set of m "exposed” vertical segments there
exists an “"independent” set of size at least m/2.

= height of hierarchy of trapezoidations can be
made O(log n)
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In every set of n>4 x-monotone segments
there exists an "independent” set of size at least n/4.

In every set of m "exposed” vertical segments there
exists an “"independent” set of size at least m/2.

= height of hierarchy of trapezoidations can be
made O(log n)

= Query time O(logn) < 3.5log,n

Space O(n)
Preprocessing O(n)
O(n log n)
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Shortcomings of Kirkpatrick's original method:
- only works for straight edge subdivisions

* constants are large

» "complicated” (needs to find independent sets)
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Shortcomings of Kirkpatrick's original method:

N A

e constants are large
* "complicated” (needs to find independent sets)
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Shortcomings of Kirkpatrick's original method:
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* "complicated” (needs to find independent sets)
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Shortcomings of Kirkpatrick's original method:

l < a l s
_—

* "complicated” (needs to find independent sets)

Use randomization !l
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Randomized Planar Point Location

Idea: Use single segment removal, but remove a random segment, each with equal
probability (1/n for each of the n segments)

T(S) ...trapezoidation for segment set S
Q(S) ...query structure for segment set S

trapezoids of 7 (.5) correspond 1-1 with
sinks of Q(.5).

-1- SIC gziqupa&dlnformatics



Randomized Planar Point Location

Creatmg T(S) and Q(S) from S:

choose a random s from S, let S’ = S\ {s}

recursively construct 7 (S’) and Q(S")

use Q(S’) to locate the endpoints a and b of s in T(S’)

split those two trapezoids verticallly by the vertical lines through a and b respecdtively

make the corresponding nodes in Q(S’) to z-comparison nodes (w.r.t. a and b)

“Thread” segment s from a to b in T (S’):

for each trapezoid cut by s make the corresponding node in Q(S’) to a y-comparison node w.r.t s

Generate a sink node of Q(S’) for each new trapezoid in the resulting trapezoidation and connect the newly
created y-comparison nodes to the appropriate sink node

®NO U A WN R
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Randomized Planar Point Location

1. For each query point ¢ the expected search time for ¢ is O(logn)
2. The expected size of the structures constructed is O(n).
3. The expected preprocessing time is O(nlogn).
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