S finite set of points in \mathbb{R}^d

Geometric graph on S : edge-weighted graph

vertex set S ,

edges correspond to straight segments connecting points in S weight of an edge is its euclidean length

S finite set in \mathbb{R}^d

"stretch factor" $t > 1$
 t-spanner for *S*:

a geometric graph *G* on *S* so that for every $p, q \in S$ you
 $d_G() \dots$ shortest path distance in *G*
 $\delta() \dots$ euclidean distance
 δ . S finite set in \mathbb{R}^d "stretch factor" $t > 1$ t-spanner for S : a geometric graph G on S so that for every $p, q \in S$ you have $d_G(p, q) \le t \cdot \delta(p, q)$

 $d_G()$. . shortest path distance in G $\delta()$... euclidean distance

Geometric Spanners

S finite set in \mathbb{R}^d

"stretch factor" $t > 1$
 t -spanner for S:

a geometric graph G on S so that for every $p, q \in S$ you
 $d_G() \dots$ shortest path distance in G
 $\delta() \dots$ euclidean distance
 Goal S finite set in \mathbb{R}^d "stretch factor" $t > 1$ t-spanner for S : a geometric graph G on S so that for every $p, q \in S$ you have $d_G(p, q) \le t \cdot \delta(p, q)$

 $d_G()$. . shortest path distance in G $\delta()$... euclidean distance

Goal: Given S and $t > 1$

prove existence/find t-spanner G for S s.t.

- G has few edges $(O(n))$
- \bullet G is planar
- G has small maximum degree $(O(1))$
- G has small total edge weight $(O(wt(MST(S))))$
- Construction takes little time

Delaunay triangulations as spanners
 Theorem: (Dobkin, Friedman, Supowit)

For S in the plane the Delaunay triangulation of S is a t-sp
 $t \leq (1 + \sqrt{5})\pi/2 \approx 5.08$ Theorem: (Dobkin, Friedman, Supowit) For S in the plane the Delaunay triangulation of S is a t-spanner for S with For S in the plane the D
 $t \leq (1+\sqrt{5})\pi/2 \approx 5.08$

Delaunay triangulations as spanners
 Theorem: (Dobkin, Friedman, Supowit)

For S in the plane the Delaunay triangulation of S is a t-sp
 $t \leq (1 + \sqrt{5})\pi/2 \approx 5.08$

Sketch of proof
 $\frac{1}{2}$

Sketch of proof Theorem: (Dobkin, Friedman, Supowit) For S in the plane the Delaunay triangulation of S is a t-spanner for S with For S in the plane the D
 $t \leq (1+\sqrt{5})\pi/2 \approx 5.08$

Sketch of proof

Theorem: (Dobkin, Friedman, Supowit) For S in the plane the Delaunay triangulation of S is a t-spanner for S with For S in the plane the D
 $t \leq (1+\sqrt{5})\pi/2 \approx 5.08$

Sketch of proof

general case, where path crosses connecting segment is similar but more complicated This method does not generalize to $d > 2$.

best proven stretch factor 1.998

Delaunay triangulations wirth respect to other metrics work as well or better

 θ some angle, sufficiently small (e.g. less than $\pi/3$); $\phi = \theta/2$

Let U be a "small" set of directions, so that every possible direction has angle at most ϕ with some $u \in U$.

for point p and $u \in U$ let $R_u(p)$ be the ray in direction u starting at p

for point p and $u \in U$ let $S_u(p) = \{q \in S \setminus \{q\} | \angle(p\vec{q}, u) \leq \phi\}$

for point p and $u \in U$ let $k_u(p)$ be the point in $S_u(p)$ whose orthogonal projection onto ray $R_u(p)$ is closest to p. , $R_u(p)$

 θ some angle, sufficiently small (e.g. less than $\pi/3$); $\phi = \theta/2$

Let U be a "small" set of directions, so that every possible direction has angle at most ϕ with some $u \in U$.

for point p and $u \in U$ let $R_u(p)$ be the ray in direction u starting at p

for point p and $u \in U$ let $S_u(p) = \{q \in S \setminus \{p\} | \angle(p\vec{q}, u) \leq \phi\}$

θ-graphs as geometric spanners

θ some angle, sufficiently small (e.g. less than π/3); $\phi = \theta$,

Let *U* be a "small" set of directions, so that every possible direct

φ with some *u* ∈ *U*.

for point *p* and *u* ∈ *U* for point p and $u \in U$ let $k_u(p)$ be the point in $S_u(p)$ whose orthogonal projection onto ray $R_u(p)$ is closest to p. , $R_u(p)$

The θ -graph for S consists of the edges

 $\{ \{p, k_u(p)\} | p \in S \text{ and } u \in U \}$

Finding a short path from p to q in θ -graph:

```
\theta-graphs as geometric spanners<br>
Finding a short path from p to q in \theta-graph:<br>
p_0 = p; i := 0<br>
while p_i \neq q do<br>
let u_i be such that q \in S_{u_i}(p_i)<br>
p_{i+1} = k_{u_i}(p_i)<br>
i := i + 1<br>
i := 1 + 1p_0 = p, i := 0while p_i\neq q do
        let u_i be such that q \in S_{u_i}(p_i)p_{i+1} = k_{u_i}(p_i)i := i + 1
```


θ -graphs as geometric spanners

Lemma: Let $\delta_i = \delta(p_i, p_{i+1})$ and let $\ell_i = \delta(p_i, q)$.
 $\delta_i + \ell_{i+1} \leq \ell_i + 2\delta_i \sin \phi$
 $\delta_i + \ell_{i+1} \leq \ell_i + 2\delta_i$

Lemma: Let $\delta_i = \delta(p_i, p_{i+1})$ and let $\ell_i = \delta(p_i, q)$.

 $\delta_i + \ell_{i+1} \leq \ell_i + 2\delta_i \sin \phi$

Lemma: Let $\delta_i = \delta(p_i, p_{i+1})$ and let $\ell_i = \delta(p_i, q)$.

 $\delta_i + \ell_{i+1} \leq \ell_i + 2\delta_i \sin \phi$

Corollary:

θ-graphs as geometric spanners

Lemma: Let $\delta_i = \delta(p_i, p_{i+1})$ and let $\ell_i = \delta(p_i, q)$.
 $\delta_i + \ell_{i+1} \leq \ell_i + 2\delta_i \sin \phi$

Corollary:
 $\sum_{0 \leq i < m} \delta_i \leq \frac{\delta(p, q)}{1 - 2 \sin \phi}$

The *θ*-graph is a *t*-spanner with $t \leq \frac{1}{1 - 2 \$ The θ -graph is a t-spanner with $t \leq \frac{1}{1-2\sin(\theta/2)}$ and $\lceil 2\pi/\theta \rceil \cdot |S|$ edges.

Geometric spanners from WSPD

Well Separated Pair Decomposition for a set S of n points

Well Separated Pair Decomposition for a set S of n points with parameter $1/\varepsilon$

sequence of pairs of subsets of $S^+(A_i,B_i)$ with $i=1,\ldots,s$ with 1. $A_i \cap B_i = \emptyset$ for each i

- Geometric spanners from WSPD

Well Separated Pair Decomposition for a set S c

parameter $1/\varepsilon$

sequence of pairs of subsets of S: (A_i, B_i) with $i = 1, ...$

1. $A_i \cap B_i = \emptyset$ for each i

2. for every pair $p, q \in S$ there is 2. for every pair $p,q\in S$ there is exactly on pair (A_i,B_i) s.t. $p\in A_i$ and $q \in B_i$ (or vice versa)
	- 3. for each i the sets A_i and B_i are $(1/\varepsilon)$ -separated.

Well Separated Pair Decomposition for a set S of n points with parameter $1/\varepsilon$

sequence of pairs of subsets of $S^+(A_i,B_i)$ with $i=1,\ldots,s$ with 1. $A_i \cap B_i = \emptyset$ for each i

- 2. for every pair $p,q\in S$ there is exactly on pair (A_i,B_i) s.t. $p\in A_i$ and $q \in B_i$ (or vice versa)
- 3. for each i the sets A_i and B_i are $(1/\varepsilon)$ -separated.

Geometric spanners from WSPD

Well Separated Pair Decomposition for a set S c

parameter $1/\varepsilon$

sequence of pairs of subsets of S: (A_i, B_i) with $i = 1, ...$

1. $A_i \cap B_i = \emptyset$ for each i

2. for every pair $p, q \in S$ there i the largest distance between points in the same set is at most ε time the smallest distance between points from different sets.

 $\max(\mathrm{diam}(A_i),\mathrm{diam}(B_i))\leq \varepsilon\cdot \delta(A_i,B_i)$

Geometric spanners from WSPD
the largest distance between points in the same
at most ε time the smallest distance between p
from different sets.
 $\max(\text{diam}(A_i), \text{diam}(B_i)) \leq \varepsilon \cdot \delta(A_i, B_i)$
 \cdots
 \cdots the largest distance between points in the same set is at most ε time the smallest distance between points from different sets.

 $\max(\mathrm{diam}(A_i),\mathrm{diam}(B_i))\leq \varepsilon\cdot \delta(A_i,B_i)$

Geometric spanners from WSPD
 Theorem: Given a set S of n points in \mathbb{R}^d and a parame

WSPD for S you can compute a $(1+\varepsilon)$ -spanner for S wi

in time $O(n \log n + n/\varepsilon^d)$. **Theorem:** Given a set S of n points in \mathbb{R}^d and a parameter $\varepsilon > 0$ via a WSPD for S you can compute a $(1+\varepsilon)$ -spanner for S with $O(n/\varepsilon^d)$ edges in time $O(n \log n + n/\varepsilon^d)$.

Geometric spanners from WSPD
 Theorem: Given a set S of n points in \mathbb{R}^d and a parame

WSPD for S you can compute a $(1 + \varepsilon)$ -spanner for S wi

in time $O(n \log n + n/\varepsilon^d)$.
 Sketch of proof:

let $c \ge 16$ and $\delta =$ **Theorem:** Given a set S of n points in \mathbb{R}^d and a parameter $\varepsilon > 0$ via a WSPD for S you can compute a $(1+\varepsilon)$ -spanner for S with $O(n/\varepsilon^d)$ edges in time $O(n \log n + n/\varepsilon^d)$.

Sketch of proof:

let $c \ge 16$ and $\delta = \varepsilon/c$.

Compute a $(1/\delta)$ -WSPD for S and for every pair (u, v) in the decomposition take edge $\{\operatorname{rep}_u,\operatorname{rep}_v\}$

- 1. Compute a quadtree (octtree) T for S (compressed)
- 2. Execute CompWSPD(root(T),root(T),T), where

1. Compute a quadtree (octtree) T for S (comp

2. Execute CompWSPD(root(T),root(T),T), wh

CompWSPD(u, v, T)
 if $\Delta(u) < \Delta(v)$ **then** exchange u and v
 if $\Delta(u) \leq \varepsilon \cdot \delta(u, v)$ **then return** {{ u, v }}
 return $\bigcup_{w \text$ $CompWSPD(u, v, T)$ if $\Delta(u) < \Delta(v)$ then exchange u and v if $\Delta(u) \leq \varepsilon \cdot \delta(u, v)$ then return $\{\{u, v\}\}\$ return $\bigcup_{w\ \text{childof}\ \,u}\ \mathsf{CompWSPD}(w,v,T)$

