Geometric Spanners

S finite set of points in \mathbb{R}^d

Geometric graph on S: edge-weighted graph

vertex set S,

edges correspond to straight segments connecting points in S weight of an edge is its euclidean length

Geometric Spanners

S finite set in \mathbb{R}^d "stretch factor" t > 1t-spanner for S: a geometric graph G on S so that for every $p, q \in S$ you have $d_G(p,q) \leq t \cdot \delta(p,q)$

 $d_G()$... shortest path distance in G $\delta()$... euclidean distance

Geometric Spanners

S finite set in \mathbb{R}^d "stretch factor" t > 1t-spanner for S: a geometric graph G on S so that for every $p, q \in S$ you have $d_G(p,q) \leq t \cdot \delta(p,q)$

 $d_G()$... shortest path distance in G $\delta()$... euclidean distance

Goal: Given S and t > 1

prove existence/find t-spanner G for S s.t.

- G has few edges (O(n))
- G is planar
- G has small maximum degree (O(1))
- G has small total edge weight (O(wt(MST(S))))
- Construction takes little time

Theorem: (Dobkin, Friedman, Supowit) For S in the plane the Delaunay triangulation of S is a t-spanner for S with $t \le (1 + \sqrt{5})\pi/2 \approx 5.08$

Theorem: (Dobkin, Friedman, Supowit) For S in the plane the Delaunay triangulation of S is a t-spanner for S with $t \le (1 + \sqrt{5})\pi/2 \approx 5.08$

Sketch of proof

Theorem: (Dobkin, Friedman, Supowit) For S in the plane the Delaunay triangulation of S is a t-spanner for S with $t \le (1 + \sqrt{5})\pi/2 \approx 5.08$

Sketch of proof

general case, where path crosses connecting segment is similar but more complicated This method does not generalize to d > 2.

best proven stretch factor 1.998

Delaunay triangulations wirth respect to other metrics work as well or better

 θ some angle, sufficiently small (e.g. less than $\pi/3$); $\phi = \theta/2$

Let U be a "small" set of directions, so that every possible direction has angle at most ϕ with some $u \in U$.

for point p and $u \in U$ let $R_u(p)$ be the ray in direction u starting at p

for point p and $u \in U$ let $S_u(p) = \{q \in S \setminus \{q\} \mid \angle(\vec{pq}, u) \le \phi\}$

for point p and $u \in U$ let $k_u(p)$ be the point in $S_u(p)$ whose orthogonal projection onto ray $R_u(p)$ is closest to p.

 θ some angle, sufficiently small (e.g. less than $\pi/3$); $\phi = \theta/2$

Let U be a "small" set of directions, so that every possible direction has angle at most ϕ with some $u \in U$.

for point p and $u \in U$ let $R_u(p)$ be the ray in direction u starting at p

for point p and $u \in U$ let $S_u(p) = \{q \in S \setminus \{p\} \mid \angle(\vec{pq}, u) \le \phi\}$

for point p and $u \in U$ let $k_u(p)$ be the point in $S_u(p)$ whose orthogonal projection onto ray $R_u(p)$ is closest to p.

The θ -graph for S consists of the edges $\{\{p, k_u(p)\} \mid p \in S \text{ and } u \in U\}$

Finding a short path from p to q in θ -graph:

```
p_0 = p; i := 0

while p_i \neq q do

let u_i be such that q \in S_{u_i}(p_i)

p_{i+1} = k_{u_i}(p_i)

i := i + 1
```


Lemma: Let $\delta_i = \delta(p_i, p_{i+1})$ and let $\ell_i = \delta(p_i, q)$.

 $\delta_i + \ell_{i+1} \le \ell_i + 2\delta_i \sin \phi$

Lemma: Let $\delta_i = \delta(p_i, p_{i+1})$ and let $\ell_i = \delta(p_i, q)$.

 $\delta_i + \ell_{i+1} \le \ell_i + 2\delta_i \sin \phi$

Corollary:

The θ -graph is a *t*-spanner with $t \leq \frac{1}{1-2\sin(\theta/2)}$ and $\lceil 2\pi/\theta \rceil \cdot |S|$ edges.

Well Separated Pair Decomposition for a set S of n points

Well Separated Pair Decomposition for a set S of n points with parameter $1/\varepsilon$

sequence of pairs of subsets of S: (A_i, B_i) with i = 1, ..., s with 1. $A_i \cap B_i = \emptyset$ for each i

- 2. for every pair $p, q \in S$ there is exactly on pair (A_i, B_i) s.t. $p \in A_i$ and $q \in B_i$ (or vice versa)
- 3. for each *i* the sets A_i and B_i are $(1/\varepsilon)$ -separated.

Well Separated Pair Decomposition for a set S of n points with parameter $1/\varepsilon$

sequence of pairs of subsets of S: (A_i, B_i) with i = 1, ..., s with 1. $A_i \cap B_i = \emptyset$ for each i

- 2. for every pair $p, q \in S$ there is exactly on pair (A_i, B_i) s.t. $p \in A_i$ and $q \in B_i$ (or vice versa)
- 3. for each *i* the sets A_i and B_i are $(1/\varepsilon)$ -separated.

the largest distance between points in the same set is at most ε time the smallest distance between points from different sets.

 $\max(\operatorname{diam}(A_i), \operatorname{diam}(B_i)) \le \varepsilon \cdot \delta(A_i, B_i)$

the largest distance between points in the same set is at most ε time the smallest distance between points from different sets.

 $\max(\operatorname{diam}(A_i), \operatorname{diam}(B_i)) \leq \varepsilon \cdot \delta(A_i, B_i)$

Theorem: Given a set S of n points in \mathbb{R}^d and a parameter $\varepsilon > 0$ via a WSPD for S you can compute a $(1 + \varepsilon)$ -spanner for S with $O(n/\varepsilon^d)$ edges in time $O(n \log n + n/\varepsilon^d)$.

Theorem: Given a set S of n points in \mathbb{R}^d and a parameter $\varepsilon > 0$ via a WSPD for S you can compute a $(1 + \varepsilon)$ -spanner for S with $O(n/\varepsilon^d)$ edges in time $O(n \log n + n/\varepsilon^d)$.

Sketch of proof:

let $c \geq 16$ and $\delta = \varepsilon/c$.

Compute a $(1/\delta)$ -WSPD for S and for every pair (u, v) in the decomposition take edge $\{\operatorname{rep}_u, \operatorname{rep}_v\}$

Computing a WSPD

- 1. Compute a quadtree (octtree) T for S (compressed)
- 2. Execute CompWSPD(root(T),root(T),T), where

CompWSPD(u, v, T)if $\Delta(u) < \Delta(v)$ then exchange u and vif $\Delta(u) \le \varepsilon \cdot \delta(u, v)$ then return $\{\{u, v\}\}$ return $\bigcup_{w \text{ childof } u} \text{CompWSPD}(w, v, T)$

> SIC Saarland Informatics Campus

