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Geometric Spanners

S finite set of points in Rd

Geometric graph on S: edge-weighted graph
vertex set S,
edges correspond to straight segments connecting points in S
weight of an edge is its euclidean length
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Geometric Spanners

S finite set in Rd “stretch factor” t > 1

t-spanner for S:
a geometric graph G on S so that for every p, q ∈ S you have dG(p, q) ≤ t · δ(p, q)

dG() . . . shortest path distance in G
δ() . . . euclidean distance
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Geometric Spanners

S finite set in Rd “stretch factor” t > 1

t-spanner for S:
a geometric graph G on S so that for every p, q ∈ S you have dG(p, q) ≤ t · δ(p, q)

dG() . . . shortest path distance in G
δ() . . . euclidean distance

Goal: Given S and t > 1
prove existence/find t-spanner G for S s.t.
• G has few edges (O(n))
• G is planar
• G has small maximum degree (O(1))
• G has small total edge weight (O(wt(MST (S)))

• Construction takes little time
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Delaunay triangulations as spanners

Theorem: (Dobkin, Friedman, Supowit)
For S in the plane the Delaunay triangulation of S is a t-spanner for S with
t ≤ (1 +

√
5)π/2 ≈ 5.08



– 5 –

Delaunay triangulations as spanners

Theorem: (Dobkin, Friedman, Supowit)
For S in the plane the Delaunay triangulation of S is a t-spanner for S with
t ≤ (1 +

√
5)π/2 ≈ 5.08

Sketch of proof
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Delaunay triangulations as spanners
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Delaunay triangulations as spanners
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Delaunay triangulations as spanners

p q

general case, where path crosses connecting segment is similar but more complicated

This method does not generalize to d > 2.

best proven stretch factor 1.998

Delaunay triangulations wirth respect to other metrics work as well or better
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θ-graphs as geometric spanners

θ some angle, sufficiently small (e.g. less than π/3); φ = θ/2

Let U be a “small” set of directions, so that every possible direction has angle at most
φ with some u ∈ U .

for point p and u ∈ U let Ru(p) be the ray in direction u starting at p

for point p and u ∈ U let Su(p) = {q ∈ S \ {q} |∠( ~pq, u) ≤ φ}

for point p and u ∈ U let ku(p) be the point in Su(p) whose orthogonal projection
onto ray Ru(p) is closest to p.

φ = π/8
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θ-graphs as geometric spanners

The θ-graph for S consists of the edges{
{p, ku(p)} | p ∈ S and u ∈ U

}

θ some angle, sufficiently small (e.g. less than π/3); φ = θ/2

Let U be a “small” set of directions, so that every possible direction has angle at most
φ with some u ∈ U .

for point p and u ∈ U let Ru(p) be the ray in direction u starting at p

for point p and u ∈ U let Su(p) = {q ∈ S \ {p} |∠( ~pq, u) ≤ φ}

for point p and u ∈ U let ku(p) be the point in Su(p) whose orthogonal projection
onto ray Ru(p) is closest to p.
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θ-graphs as geometric spanners

Finding a short path from p to q in θ-graph:

p0 = p; i := 0
while pi 6= q do

let ui be such that q ∈ Sui(pi)
pi+1 = kui(pi)
i := i+ 1
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θ-graphs as geometric spanners

Lemma: Let δi = δ(pi, pi+1) and let `i = δ(pi, q).

δi + `i+1 ≤ `i + 2δi sinφ
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θ-graphs as geometric spanners

Lemma: Let δi = δ(pi, pi+1) and let `i = δ(pi, q).

δi + `i+1 ≤ `i + 2δi sinφ

Corollary: ∑
0≤i<m

δi ≤
δ(p, q)

1− 2 sinφ

The θ-graph is a t-spanner with t ≤ 1
1−2 sin(θ/2) and d2π/θe · |S| edges.
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Geometric spanners from WSPD

Well Separated Pair Decomposition for a set S of n points
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Geometric spanners from WSPD

Well Separated Pair Decomposition for a set S of n points with
parameter 1/ε

sequence of pairs of subsets of S: (Ai, Bi) with i = 1, . . . , s with
1. Ai ∩Bi = ∅ for each i
2. for every pair p, q ∈ S there is exactly on pair (Ai, Bi) s.t. p ∈ Ai and
q ∈ Bi (or vice versa)

3. for each i the sets Ai and Bi are (1/ε)-separated.
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Geometric spanners from WSPD

Well Separated Pair Decomposition for a set S of n points with
parameter 1/ε

sequence of pairs of subsets of S: (Ai, Bi) with i = 1, . . . , s with
1. Ai ∩Bi = ∅ for each i
2. for every pair p, q ∈ S there is exactly on pair (Ai, Bi) s.t. p ∈ Ai and
q ∈ Bi (or vice versa)

3. for each i the sets Ai and Bi are (1/ε)-separated.

the largest distance between points in the same set is
at most ε time the smallest distance between points
from different sets.

max(diam(Ai),diam(Bi)) ≤ ε · δ(Ai, Bi)
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Geometric spanners from WSPD

the largest distance between points in the same set is
at most ε time the smallest distance between points
from different sets.

max(diam(Ai),diam(Bi)) ≤ ε · δ(Ai, Bi)
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Geometric spanners from WSPD

Theorem: Given a set S of n points in Rd and a parameter ε > 0 via a
WSPD for S you can compute a (1 + ε)-spanner for S with O(n/εd) edges
in time O(n log n+ n/εd).
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Geometric spanners from WSPD

Theorem: Given a set S of n points in Rd and a parameter ε > 0 via a
WSPD for S you can compute a (1 + ε)-spanner for S with O(n/εd) edges
in time O(n log n+ n/εd).

Sketch of proof:
let c ≥ 16 and δ = ε/c.

Compute a (1/δ)-WSPD for S and for every pair (u, v) in the
decomposition take edge {repu, repv}
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Computing a WSPD

1. Compute a quadtree (octtree) T for S (compressed)
2. Execute CompWSPD(root(T ),root(T ),T ), where

CompWSPD(u, v, T )
if ∆(u) < ∆(v) then exchange u and v
if ∆(u) ≤ ε · δ(u, v) then return {{u, v}}

return
⋃
w childof u CompWSPD(w, v, T )
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