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k-center, greedy clustering

k-median, local search 1
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Lifting to a paraboloid

L(z,y) = (z,y, 2" +y°)
L projects (z,y) vertically up to the paraboloid A : z = 2% + y?

v (x—20)®+ (y —yo)? =17
x,y) €7 = A

2% + % =12 4+ 2za0 + 2yyo — 12 — Y2

= 01T + QY + C /l

L(QE,y) — (xvya 1T + a2y + C)

L(v) Cc Hy :={(x,y,2) | —1z — ay + 2 = ¢}



Lifting an empty circumcircle

pp'p” is a Delaunay-triangle of P
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v = circumcircle of pp'p” is empty
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Lifting an empty circumcircle

pp'p” is a Delaunay-triangle of P
)

v = circumcircle of pp'p” is empty

)
AN H,t IS empty

/!

) /

H, is a face of conv¥(L(P))

DT(P) = proj,_g(conv*(L(P)))




Lifting a paraboloid

Lifting all of R?: iy
L(z,y,2) = (x,y,z +x° + y°) (')

By ={(z,y,2) | 2= —(z —2')* — (y — v)*}
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Lifting all of R?: —
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Lifting a paraboloid

Lifting all of R?: —
L(xayaz):($7y72+w2+y2) (ZU,y)

By ={(z,y,2) | 2= —(z —2')* — (y — v)*}

L(z,y,—(¢' —2)? = (v —y)?) = (z,y,2"% + y'* + 22"z + 2y'y)

— M
—

a plane!
touches A at L(z',y")
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Lifting many paraboloids: Voronoi

Opaque hanging paraboloid
B, for each p € P.

dist(q,p’) = dist(q, p)
<~
q € Bp A Bq

upper envelope of | . p By looks like Vor(P) from (0,0, o)

— _/
—

Apply L(.): polyhedron B with face L(B,) touching A at L(p).
L does not change view from (0,0, co)

Vor(P) = pron:O(B\) = Proj,_g ﬂ touchplaneA(L(p))T
peP
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Voronoi and Delaunay in higher dimensions?

Paraboloid lifting works in R?.
Vor(P) and DT (P) are projections of convex hulls in R4,

e Vor(P) and DT(P) in R have complexity O(n!?/21)

e Vor(P) and DT(P) in R? can be computed by convex hull
algorithm in R9*1

R3: e.g. skew lines have Vor(P) complexity ©(n?)

A
addle




Clustering variants in metric spaces



Metric spaces and clustering

.
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o
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'Definition. (X, dist) metric space with distance

: X X X = Ry iff Va, b, c € X:
ist(a, b) = dist(b, a) (symmetric)
ist(a,b) =0 a =10

o (

ist(a, b) + dist(b, ¢) > dist(a, c) (triangle ineq.)
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Metric spaces and clustering

'Definition. (X, dist) metric space with distance
dist : X X X — R>¢ iff Va, b, c € X:

e dist(a,b) = dist(b,a) (symmetric)

e dist(a,b) =0 a=0»

e dist(a,b) + dist(b, c) > dist(a, c) (triangle ineq.)

.

Clustering:
given data, find similar entries and put them together

Given P C X, find a set of k centers C C X s.t.

veco = (dist(pl, ('), dist(ps, C), ..., dist(py, C))

"small”

1S
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Clustering variants
e k-center:

min  ||veco|lco = min  maxdist(p, C)
CCX,|C|=k CCX,|C|=k pEP

“minimize the max distance to nearest center”
a.k.a. cover X with k disks of radius r, minimizing r

e k-median:

min ||vecollt =  min Z dist(p, C)
CCX,|Cl=k CCX,|C=k £,

“minimize sum of distances to nearest center”

e k-means:
2
‘ _ ' dist(p. C
chg'lg':k\\veco\!z s mn > (dist(p,C))

peP

“minimize sum of squared distances to nearest center”



Clustering variants
e k-center:

min  ||veco|lco = min  maxdist(p, C)
(Jc;)ﬂ@:k CcX,|C|=k peP

“minimize the max Aim*~n7n tn monvas tomondapr”

a.k.a. cover X withC € F: dlscrete imizing r

_ clustering
e f-median:

min |lveC € X: continuous list(p, O)

C%X’m':k clustering

“minimize sum Of dIdeIILCD LU liediteoL LCIILCr”

e k-means:

min ||vecollz =  min g (dist(p, C
CC*,|C|=k CCX,|Cl=k

“minimize sum of squared distances to nearest center”



Facility location

Opening a center at x € X has cost y(x). Total cost is

S” 2(@) + [lvecels

rxeC

“Hip" topic.

o - n n
Scholar k-means Scholar "traveling salesman"



k-center via greedy
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Theorem (Feder—Greene 1988). There is no polynomial
time 1.8-approximation for k-center in R?, unless P = N P.
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Hardness of k-center

|

Theorem (Feder—Greene 1988). There is no polynomial
time 1.8-approximation for k-center in R?, unless P = N P.

Reduction from planar vertex cover of max degree 3

Double subdivision:

E
O O O O

Makes equivalent instance of VC with k — k + 1.

Q
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Hardness of k-center
[Theorem (Feder—Greene 1988). There is no polynomial ]

time 1.8-approximation for k-center in R?, unless P = N P.

Reduction from planar vertex cover of max degree 3

Double subdivision:

E
O O O O O O

Makes equivalent instance of VC' with &k — k + 1.
Subdivide, get length 2 edges and smooth turns only:

W—5ﬂ+d

/& 2 g, 28 4 ¢



Hardness of k-center: disk radii

P := edge midpoints of smooth drawing of G’

--------
......

o



Hardness of k-center: disk radii

P := edge midpoints of smooth drawing of G’
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Hardness of k-center: disk radii

P := edge midpoints of smooth drawing of G’

R T 3 VC of size k in G’
u_ 1 "I-' 1 v 3 &
' o k-center with radius 1

o

Otherwise needs > 1 disk
covering 2 non-neighbors u, v
dist(u,v) > 2-1.8

= r > 1.8




Greedy centers

Given C' C P, the greedy next center is ¢ € P where dist(q, C)
IS maximized.

Greedy clustering:
start with arbitrary ¢; € P.
For:=2,...,k:

Let ¢; = GreedyNext(cy,...,¢i—1).
Return {c1,...,cr}
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Greedy centers

Given C' C P, the greedy next center is ¢ € P where dist(q, C)
IS maximized.

Greedy clustering:
start with arbitrary ¢; € P.

For:=2,...,k:
Let ¢; = GreedyNext(cy,...,¢i—1).
Return {ci,...,c}
Let r; = max,ecp dist(p, {c1,...,¢i}).
Balls of radius r; with centers {cq,...,c;} cover P for any 1.
= Tk, {c1,...,ck} is valid k-center

Store most distant center and update in each step
= O(nk) time
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Greedy k-center approximation quality

[Theorem. Greedy k-center gives a 2-approximation.

Proof
ry=>Te = - 2Tk

Cr+1 1= point realizing 7y,
If 1 <5 < k41, then
diSt(Cz', Cj) > diSt(Cj, {Cl, ce ey Cj—l}) — Tj—1 > Tk

Topt := 1S optimal k-cover radius, suppose 27, < 7

{

each ball in opt has <1 pt from cy1,...,cpa1

7




r-packing from greedy

‘Definition. S C X is an r-packing if

\

e r-balls cover X: dist(x,S) < r for each x € X
e S is sparse: dist(s,s’) > r for each s,s' € S




r-packing from greedy

‘Definition. S C X is an r-packing if
e r-balls cover X: dist(x,S) < r for each x € X
e S is sparse: dist(s,s’) > r for each s,s' € S

\

[Theorem. For any ¢, {c1,...,¢;} is an r;-packing.
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Exact k-center in R?, approximating k
Trivial: O(n*+1)

R2 nO k) or 20(v/n)
V\ /v

“optimal”
~a

Rd’ d — const. no no(k) knOWH 2O(,nl—l/d>

Fix r, approximate k instead:

poly (1 + e)-approximation for any fixed d,e (PTAS)



Exact k-center in R?, approximating k
Trivial: O(n*+1)

R? nOWk) or 20(vn)

R, d = const. no n°%) known

| ater lectures!
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k-median via local search

Compute C' = {c1,...,ci} and r : k-center 2-approx.
Gives 2n-approx for k-median as

lvecollr < njlvece|lo

so OPT(k-med)< nOPT(k-cent)< 2nry,

Iteratively replace ¢ € C' with ¢ if it improves ||vecc||

(by at least factor 1 — 7, 7 = =)

= Results in local opt center set L



k-median via local search

e Compute C ={cyq,...,cx} and ry : k-center 2-approx.
Gives 2n-approx for k-median as

lvecollr < njlvece|lo

so OPT(k-med)< nOPT(k-cent)< 2nry,

e lteratively replace ¢ € C with ¢’ if it improves ||veco||;

(by at least factor 1 — 7, 7 = =)

= Results in local opt center set L

Running time: O(nk) possible swaps, O(nk) to compute new
distances. At most log% 2n swaps.

O((nk)? log_1_2n) = O((nk)?log, ., n)
= O((nk)* - 10klogn) = O(k*n®logn)



k-median: quality of approximation

Theorem. The local optimum L gives a 5-approximation for
k-median.

Challange: L and OPT may be very different.
ldea: use “intermediate’ clustering II to relate them




k-median: quality of approximation

Theorem. The local optimum L gives a 5-approximation for
k-median.

Challange: L and OPT may be very different.
ldea: use “intermediate’ clustering II to relate them

‘ D\ - OPT

assign cluster of center o € OPT to nn(o, L)



k-median: quality of approximation

Theorem. The local optimum L gives a 5-approximation for
k-median.

Challange: L and OPT may be very different.
ldea: use “intermediate’ clustering II to relate them

like L, but respects clusters of OPT
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Cost of moving from L to II

II(p), L(p), OPT(p) be the center (= nearest neighbor) of p in
each clustering.

(Claim. [jvecnl|y — [lvecz |1 < 2[lvecopr |-

dist(p, [I(p)) < dist(p, OPT(p)) + dist(OPT (p

)
dist(p, OPT(p)) + dist(OPT (p),
)
)

=

VAN VAN VAN

dist(p, OPT (p)) + dist(OPT (p

+ dist(p, L(p)
= 2dist(p, OPT(p)) + dist(p, L(p))




Cost of moving from L to II

II(p), L(p), OPT(p) be the center (= nearest neighbor) of p in
each clustering.

(Claim. [jvecnl|y — [lvecz |1 < 2[lvecopr |-

dist(p, I1(p)) < dist(p, OPT(p)) + dist(OPT (p),11(p))
< dist(p, OPT (p)) + dist(OPT (p), L(p))
< dist(p, OPT(p)) 4+ dist(OPT(p), p)
)

+ dist(p, L(p)
= 2dist(p, OPT(p)) + dist(p, L(p))

For ¢ € L, the cost of reassigning its cluster to II is

ran(c) := ZpECl(L,c)\Cl(H,C) (dist(p, II(p)) — dist(p, L(p)))
claim ={ > ., ran(c) < 2||lvecopr|1
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Lo, Ll, LZQ, OPTl, OPTZQ

c € L may be assigned to 0, 1 , or > 2 centers of OPT.
L =LoULjUL>s

OPTy: subset of OPT assigned to [
OPT>9: subset of OPT assigned to L>»
OPT = OPT) UOPT>s

For o € OPT, cost(o) and localcost(o) is the cost of
Cluster(o,OPT) in OPT and L

Lemma. For c € Ly and o € OPT we have
localcost(o) < ran(c) + cost(0).

Proof. Removing ¢ and adding o to L does not improve:

0 < ran(c) — localcost(o) + cost(o).



Bounding the contribution of O PT>,

Since |L1| = |OPTy| (mathcing) and
Lol + [L1| + [L>2| = [OPTh| + |OPT>2| =

| Lo| = |OPT>3| — |L>2| > |OPT>2|/2
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Bounding the contribution of O PT>,

Since |L1| = |OPTy| (mathcing) and
Lol + [L1| + [L>2| = [OPTh| + |OPT>2| =

| Lo| = |OPT>3| — |L>2| > |OPT>2|/2

'Lemma.
Z localcost(o) < 2 Z ran(c) + Z cost (o)
OEOPTZQ ceLg OEOPTZQ

4

Proof. Let ¢* € Ly minimize ran(c). Earlier lemma:
localcost(o) < ran(c*) + cost(o)
Summing over o € OPT>:

Z localcost(o) < |OPT>s|ran(c™) + Z cost(0)

OGOPTZQ OEOPTZQ




Bounding the contribution of OPT}

,
Lemma.

Z localcost(o) < Z ran(L(o)) + Z cost (o)

ocOPTh ocOPTh ocOPTh

.




Bounding the contribution of OPT}

'Lemma.
Z localcost(0) < Z ran(L(o)) + Z cost (o)
ocOPTh ocOPTh ocOPTh

4

Proof. o € OPT} is assigned to L(o) = II(o).
Claim: localcost(o) < ran(L(o)) + cost(o).
Replacing L(o) with o in L doesn't improve.

Potential increased prices in Cl(L, L(0o)) UCI(OPT,o).

Replace cost in (CZ(L, L(o)) \ CI(OPT, 0)) is ran(L(0)).

Replace cost in CI(OPT,o0) is < —localcost(o) + cost(o).
= 0 < ran(L(0)) — localcost(o) + cost(0).
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k-median approximation quality wrap-up

Theorem. The local optimum L gives a 5-approximation for
k-median.

|vecr |1 = Z localcost(o) + Z localcost(o)

ocOPT] o€OPT>-

< Z ran(c) + Z cost(0)

CELO OEOPTZQ

+ Z ran(L(0)) + Z cost (o)

ocOPTH ocOPTH
< 2 Z ran(c) + Z cost (o)
ceL ocOPT

< d||lvecopr|1 + ||[vecoprr||1




k-median, k-means with local search

‘Theorem. For any € > 0 the local optimum L wrp.
1 — 7-improvements (7 := €/10k) gives a 5 4 e-approximation
for k-median in O(n2k®1%52) time.
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k-median, k-means with local search

‘Theorem. For any € > 0 the local optimum L wrp.
1 — 7-improvements (7 := €/10k) gives a 5 + e-approximation
for k-median in O(n2k®1%52) time.

— Can get 3 + 2/p-approx with p-swaps (tight)

‘"Theorem. For any € > 0 local search gives a
25 4 e-approximation for k-means in O(n2k3k’%) time.

§

— Can get (3 + 2/p)?-approx with p-swaps (tight)
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k-median, k-means in R?

k-median is NP-hard if k,d both in input. (Guruswami—Indyk
2003), but if at least one is cosntant, there is a PTAS.

For k-means with constant d, local search with
(1/e)®M)-swaps gives PTAS. (e.g. Cohen-Addad et al. 2019)



Next week:
SoCG 2020! Check it out.



