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Lifting to a paraboloid

L(x, y) = (x, y, x2 + y2)

L projects (x, y) vertically up to the paraboloid A : z = x2 + y2

A

γ : (x− x0)2 + (y − y0)2 = r2

(x, y) ∈ γ ⇒

x2 + y2 = r2 + 2xx0 + 2yy0 − x2
0 − y2

0

= α1x+ α2y + c

L(x, y) = (x, y, α1x+ α2y + c)

L(γ) ⊂ Hγ := {(x, y, z) | −α1x− α2y + z = c}
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A ∩H↓γ is empty
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p p′

p′′

Lifting an empty circumcircle

pp′p′′ is a Delaunay-triangle of P

⇔
γ = circumcircle of pp′p′′ is empty

⇔

A ∩H↓γ is empty

⇔

Hγ is a face of conv↓(L(P ))

DT (P ) = projz=0(conv↓(L(P )))
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Bx′,y′ = {(x, y, z) | z = −(x− x′)2 − (y − y′)2}
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Lifting a paraboloid

Bx′,y′

L(x, y, z) = (x, y, z + x2 + y2)

Lifting all of R3:
(x′, y′)

Bx′,y′ = {(x, y, z) | z = −(x− x′)2 − (y − y′)2}

L(x, y,−(x′ − x)2 − (y′ − y)2) = (x, y, x′2 + y′2 + 2x′x+ 2y′y)

a plane!
touches A at L(x′, y′)
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Lifting many paraboloids: Voronoi

p′

Bp′

Opaque hanging paraboloid
Bp for each p ∈ P .

q

q∗

dist(q, p′) = dist(q, p)
⇔

q∗ ∈ Bp ∩Bq

upper envelope of
⋃
p∈P Bp looks like Vor(P ) from (0, 0,∞)upper envelope of

⋃
p∈P Bp looks like Vor(P ) from (0, 0,∞)

Apply L(.): polyhedron B̂ with face L(Bp) touching A at L(p).
L does not change view from (0, 0,∞)

Vor(P ) = projz=0(B̂) = projz=0

⋂
p∈P

touchplaneA(L(p))↑





Voronoi and Delaunay in higher dimensions?Voronoi and Delaunay in higher dimensions?

Paraboloid lifting works in Rd.
Vor(P ) and DT (P ) are projections of convex hulls in Rd+1.



Voronoi and Delaunay in higher dimensions?Voronoi and Delaunay in higher dimensions?

Paraboloid lifting works in Rd.
Vor(P ) and DT (P ) are projections of convex hulls in Rd+1.

• Vor(P ) and DT (P ) in Rd have complexity O(ndd/2e)



Voronoi and Delaunay in higher dimensions?Voronoi and Delaunay in higher dimensions?

Paraboloid lifting works in Rd.
Vor(P ) and DT (P ) are projections of convex hulls in Rd+1.

• Vor(P ) and DT (P ) in Rd have complexity O(ndd/2e)

• Vor(P ) and DT (P ) in Rd can be computed by convex hull
algorithm in Rd+1



Voronoi and Delaunay in higher dimensions?Voronoi and Delaunay in higher dimensions?

Paraboloid lifting works in Rd.
Vor(P ) and DT (P ) are projections of convex hulls in Rd+1.

• Vor(P ) and DT (P ) in Rd have complexity O(ndd/2e)

• Vor(P ) and DT (P ) in Rd can be computed by convex hull
algorithm in Rd+1

R3: e.g. skew lines have Vor(P ) complexity Θ(n2)

n/2

n/2

saddle
n
2 ×

n
2 grid



Clustering variants in metric spaces



Metric spaces and clustering

Definition. (X,dist) metric space with distance
dist : X ×X → R≥0 iff ∀a, b, c ∈ X:
• dist(a, b) = dist(b, a) (symmetric)
• dist(a, b) = 0⇔ a = b
• dist(a, b) + dist(b, c) ≥ dist(a, c) (triangle ineq.)
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Metric spaces and clustering

Definition. (X,dist) metric space with distance
dist : X ×X → R≥0 iff ∀a, b, c ∈ X:
• dist(a, b) = dist(b, a) (symmetric)
• dist(a, b) = 0⇔ a = b
• dist(a, b) + dist(b, c) ≥ dist(a, c) (triangle ineq.)

Clustering:
given data, find similar entries and put them together

Given P ⊆ X, find a set of k centers C ⊆ X s.t.

vecC :=
(

dist(p1, C),dist(p2, C), . . . ,dist(pn, C)
)

is
”small”



Clustering variants

• k-center:

min
C⊂X,|C|=k

‖vecC‖∞ = min
C⊂X,|C|=k

max
p∈P

dist(p, C)

“minimize the max distance to nearest center”
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Clustering variants

• k-center:

min
C⊂X,|C|=k

‖vecC‖∞ = min
C⊂X,|C|=k

max
p∈P

dist(p, C)

“minimize the max distance to nearest center”
a.k.a. cover X with k disks of radius r, minimizing r

• k-median:

min
C⊂X,|C|=k

‖vecC‖1 = min
C⊂X,|C|=k

∑
p∈P

dist(p, C)

“minimize sum of distances to nearest center”

• k-means:

min
C⊂X,|C|=k

‖vecC‖2 = min
C⊂X,|C|=k

√∑
p∈P

(
dist(p, C)

)2
“minimize sum of squared distances to nearest center”

P

P

P

C ⊆ P : discrete
clustering

C ⊆ X: continuous
clustering



Facility location

Opening a center at x ∈ X has cost γ(x). Total cost is∑
x∈C

γ(x) + ‖vecC‖1

“Hip” topic.



k-center via greedy



Hardness of k-center

Theorem (Feder–Greene 1988). There is no polynomial
time 1.8-approximation for k-center in R2, unless P = NP .
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Hardness of k-center

Reduction from planar vertex cover of max degree 3

Double subdivision:

Makes equivalent instance of V C with k → k + 1.

Theorem (Feder–Greene 1988). There is no polynomial
time 1.8-approximation for k-center in R2, unless P = NP .



Hardness of k-center

Reduction from planar vertex cover of max degree 3

Double subdivision:

Makes equivalent instance of V C with k → k + 1.

G
G′

∈ [π − ε, π + ε]

∈ [ 2π
3 − ε,

2π
3 + ε]

Subdivide, get length 2 edges and ”smooth” turns only:

Theorem (Feder–Greene 1988). There is no polynomial
time 1.8-approximation for k-center in R2, unless P = NP .



P := edge midpoints of smooth drawing of G′

∈ P

u v1 1

Hardness of k-center: disk radii
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P := edge midpoints of smooth drawing of G′

∈ P

u v1 1

Hardness of k-center: disk radii

≥ 2 · 1.8

∃ VC of size k in G′

⇔
∃ k-center with radius 1

Otherwise needs ≥ 1 disk
covering 2 non-neighbors u, v
dist(u, v) ≥ 2 · 1.8
⇒ r ≥ 1.8



Greedy centers

Given C ⊆ P , the greedy next center is q ∈ P where dist(q, C)
is maximized.

Greedy clustering:
start with arbitrary c1 ∈ P .
For i = 2, . . . , k:

Let ci = GreedyNext(c1, . . . , ci−1).
Return {c1, . . . , ck}
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Greedy centers

Given C ⊆ P , the greedy next center is q ∈ P where dist(q, C)
is maximized.

Greedy clustering:
start with arbitrary c1 ∈ P .
For i = 2, . . . , k:

Let ci = GreedyNext(c1, . . . , ci−1).
Return {c1, . . . , ck}

Store most distant center and update in each step
⇒ O(nk) time

Let ri = maxp∈P dist(p, {c1, . . . , ci}).
Balls of radius ri with centers {c1, . . . , ci} cover P for any i.
⇒ rk, {c1, . . . , ck} is valid k-center
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Greedy k-center approximation quality

Proof

Theorem. Greedy k-center gives a 2-approximation.

r1 ≥ r2 ≥ · · · ≥ rk

ck+1 := point realizing rk

If i < j ≤ k + 1, then

dist(ci, cj) ≥ dist(cj , {c1, . . . , cj−1}) = rj−1 ≥ rk

ropt := is optimal k-cover radius, suppose 2ropt < rk⇒

each ball in opt has ≤ 1 pt from c1, . . . , ck+1



r-packing from greedy

Definition. S ⊂ X is an r-packing if
• r-balls cover X: dist(x, S) ≤ r for each x ∈ X
• S is sparse: dist(s, s′) ≥ r for each s, s′ ∈ S



r-packing from greedy

Definition. S ⊂ X is an r-packing if
• r-balls cover X: dist(x, S) ≤ r for each x ∈ X
• S is sparse: dist(s, s′) ≥ r for each s, s′ ∈ S

Theorem. For any i, {c1, . . . , ci} is an ri-packing.



Exact k-center in Rd, approximating k
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R2 or 2O(
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nO(
√
k)

Trivial: O(nk+1)

R2 or 2O(
√
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no no(k) known 2O(n1−1/d)

“optimal”

Fix r, approximate k instead:

poly (1 + ε)-approximation for any fixed d, ε (PTAS)

Rd, d = const.



Exact k-center in Rd, approximating k

nO(
√
k)

Trivial: O(nk+1)

R2 or 2O(
√
n)

no no(k) known 2O(n1−1/d)

“optimal”

Fix r, approximate k instead:

poly (1 + ε)-approximation for any fixed d, ε (PTAS)

Rd, d = const.

Later lectures!
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k-median via local search

• Compute C = {c1, . . . , ck} and rk : k-center 2-approx.
Gives 2n-approx for k-median as

‖vecC‖1 ≤ n‖vecC‖∞

so OPT(k-med)≤ nOPT(k-cent)≤ 2nrk

• Iteratively replace c ∈ C with c′ if it improves ‖vecC‖1
(by at least factor 1− τ , τ = 1

10k )
⇒ Results in local opt center set L



k-median via local search

• Compute C = {c1, . . . , ck} and rk : k-center 2-approx.
Gives 2n-approx for k-median as

‖vecC‖1 ≤ n‖vecC‖∞

so OPT(k-med)≤ nOPT(k-cent)≤ 2nrk

• Iteratively replace c ∈ C with c′ if it improves ‖vecC‖1
(by at least factor 1− τ , τ = 1

10k )
⇒ Results in local opt center set L

Running time: O(nk) possible swaps, O(nk) to compute new
distances. At most log 1

1−τ
2n swaps.

O((nk)2 log 1
1−τ

2n) = O((nk)2 log1+τ n)

= O((nk)2 · 10k log n) = O(k3n2 log n)



k-median: quality of approximation

Theorem. The local optimum L gives a 5-approximation for
k-median.

Challange: L and OPT may be very different.
Idea: use “intermediate” clustering Π to relate them

OPT

L
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assign cluster of center o ∈ OPT to nn(o, L)



k-median: quality of approximation

Theorem. The local optimum L gives a 5-approximation for
k-median.

Challange: L and OPT may be very different.
Idea: use “intermediate” clustering Π to relate them

OPT

LΠ

like L, but respects clusters of OPT



Cost of moving from L to Π
Π(p), L(p), OPT (p) be the center (= nearest neighbor) of p in
each clustering.



Cost of moving from L to Π
Π(p), L(p), OPT (p) be the center (= nearest neighbor) of p in
each clustering.

dist(p,Π(p)) ≤ dist(p,OPT (p)) + dist(OPT (p),Π(p))

≤ dist(p,OPT (p)) + dist(OPT (p), L(p))

≤ dist(p,OPT (p)) + dist(OPT (p), p)

+ dist(p, L(p))

= 2dist(p,OPT (p)) + dist(p, L(p))

Claim. ‖vecΠ‖1 − ‖vecL‖1 ≤ 2‖vecOPT ‖1.



Cost of moving from L to Π
Π(p), L(p), OPT (p) be the center (= nearest neighbor) of p in
each clustering.

dist(p,Π(p)) ≤ dist(p,OPT (p)) + dist(OPT (p),Π(p))

≤ dist(p,OPT (p)) + dist(OPT (p), L(p))

≤ dist(p,OPT (p)) + dist(OPT (p), p)

+ dist(p, L(p))

= 2dist(p,OPT (p)) + dist(p, L(p))

For c ∈ L, the cost of reassigning its cluster to Π is

ran(c) :=
∑
p∈Cl(L,c)\Cl(Π,c)

(
dist(p,Π(p))− dist(p, L(p))

)
claim ⇒

∑
c∈L ran(c) ≤ 2‖vecOPT ‖1

Claim. ‖vecΠ‖1 − ‖vecL‖1 ≤ 2‖vecOPT ‖1.
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L0, L1, L≥2, OPT1, OPT≥2

c ∈ L may be assigned to 0, 1 , or ≥ 2 centers of OPT .
L = L0 ∪ L1 ∪ L≥2

OPT1: subset of OPT assigned to L1

OPT≥2: subset of OPT assigned to L≥2

OPT = OPT1 ∪OPT≥2

For o ∈ OPT , cost(o) and localcost(o) is the cost of
Cluster(o,OPT ) in OPT and L

Lemma. For c ∈ L0 and o ∈ OPT we have
localcost(o) ≤ ran(c) + cost(o).

Proof. Removing c and adding o to L does not improve:

0 ≤ ran(c)− localcost(o) + cost(o).



Bounding the contribution of OPT≥2

Since |L1| = |OPT1| (mathcing) and
|L0|+ |L1|+ |L≥2| = |OPT1|+ |OPT≥2| = k

|L0| = |OPT≥2| − |L≥2| ≥ |OPT≥2|/2
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Bounding the contribution of OPT≥2

Since |L1| = |OPT1| (mathcing) and
|L0|+ |L1|+ |L≥2| = |OPT1|+ |OPT≥2| = k

|L0| = |OPT≥2| − |L≥2| ≥ |OPT≥2|/2

Proof. Let c∗ ∈ L0 minimize ran(c). Earlier lemma:
localcost(o) ≤ ran(c∗) + cost(o)

Summing over o ∈ OPT≥2:∑
o∈OPT≥2

localcost(o) ≤ |OPT≥2|ran(c∗) +
∑

o∈OPT≥2

cost(o)

Lemma.∑
o∈OPT≥2

localcost(o) ≤ 2
∑
c∈L0

ran(c) +
∑

o∈OPT≥2

cost(o)



Bounding the contribution of OPT1

Lemma.∑
o∈OPT1

localcost(o) ≤
∑

o∈OPT1

ran(L(o)) +
∑

o∈OPT1

cost(o)



Bounding the contribution of OPT1

Proof. o ∈ OPT1 is assigned to L(o) = Π(o).
Claim: localcost(o) ≤ ran(L(o)) + cost(o).
Replacing L(o) with o in L doesn’t improve.

Lemma.∑
o∈OPT1

localcost(o) ≤
∑

o∈OPT1

ran(L(o)) +
∑

o∈OPT1

cost(o)

Potential increased prices in Cl(L,L(o)) ∪ Cl(OPT, o).

Replace cost in
(
Cl(L,L(o)) \ Cl(OPT, o)

)
is ran(L(o)).

Replace cost in Cl(OPT, o) is ≤ −localcost(o) + cost(o).

⇒ 0 ≤ ran(L(o))− localcost(o) + cost(o).



Theorem. The local optimum L gives a 5-approximation for
k-median.

k-median approximation quality wrap-up



Theorem. The local optimum L gives a 5-approximation for
k-median.

k-median approximation quality wrap-up

‖vecL‖1 =
∑

o∈OPT1

localcost(o) +
∑

o∈OPT≥2

localcost(o)

≤
∑
c∈L0

ran(c) +
∑

o∈OPT≥2

cost(o)

+
∑

o∈OPT1

ran(L(o)) +
∑

o∈OPT1

cost(o)

≤ 2
∑
c∈L

ran(c) +
∑

o∈OPT
cost(o)

≤ 4‖vecOPT ‖1 + ‖vecOPT ‖1



k-median, k-means with local search

Theorem. For any ε > 0 the local optimum L wrp.
1− τ -improvements (τ := ε/10k) gives a 5 + ε-approximation
for k-median in O(n2k3 logn

ε ) time.
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→ Can get 3 + 2/p-approx with p-swaps (tight)
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Theorem. For any ε > 0 local search gives a
25 + ε-approximation for k-means in O(n2k3 logn

ε ) time.

→ Can get (3 + 2/p)2-approx with p-swaps (tight)



k-median, k-means in Rd



k-median, k-means in Rd

For k-means with constant d, local search with
(1/ε)Θ(1)-swaps gives PTAS. (e.g. Cohen-Addad et al. 2019)

k-median is NP-hard if k, d both in input. (Guruswami–Indyk
2003), but if at least one is cosntant, there is a PTAS.



Next week:
SoCG 2020! Check it out.


