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Planar graphs

Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton,Tarjan 1979)

For any planar graph G = (V,E) there is a separator S ⊂ V of
size O(

√
n) such that V \ S can be partitioned into subsets A and

B, each of size at most 2
3n and with no edges between them.

Such a (2/3)-balanced separator can be computed in O(n) time.

A B

S
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Fact: Any planar graph is the contact graph of a set of
interior-disjoint disks.

Proof idea: Find a square σ
intersecting O(

√
n) disks

that is a balanced separator.
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A geometric proof of the Planar Separator Theorem

Theorem. For any contact graph of n interior-disjoint disks, there
is an α-balanced separator of size O(

√
n), where α = 36/37.

Proof.

smallest square
containing at least
n/37 disks

3

√
n squares σ1, . . . ,σ√

n

at distance 1/
√
n from each other

Constructing the separator:
Select a square σi that intersects
O(

√
n) disks and put these disks

into the separator.

Things to check
• separator is (36/37)-balanced
• does square σi with the desired

property actually exist ??
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A geometric proof of the Planar Separator Theorem

Theorem. For any contact graph of n interior-disjoint disks, there
is an α-balanced separator of size O(

√
n), where α = 36/37.

Proof.

smallest square
containing at least
n/37 disks

3

separator is (36/37)-balanced

• at least n/37 disk inside
• at most 36n/37 disks inside
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A geometric proof of the Planar Separator Theorem

Theorem. For any contact graph of n interior-disjoint disks, there
is an α-balanced separator of size O(

√
n), where α = 36/37.

Proof.

smallest square
containing at least
n/37 disks

3

Does σi intersecting O(
√
n) disks exist?

total number of disk-square intersections

�
�nsmall

i=1 (1 + diam(Di) ·
√
n)

� nsmall +O(
√
n) ·�nsmall

i=1

�
area(Di)

= O(n)

last step uses

• �nsmall
i=1 area(Di) = O(1) (sort of . . . )

• �k
i=1

√
ai �

�k
i=1

��k
i=1 ai

k
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A geometric proof of the Planar Separator Theorem

Theorem. For any contact graph of n interior-disjoint disks, there
is an α-balanced separator of size O(

√
n), where α = 36/37.

Proof.

smallest square
containing at least
n/37 disks

3

Does σi intersecting O(
√
n) disks exist?

total number of disk-square intersections

�
�nsmall

i=1 (1 + diam(Di) ·
√
n)

� nsmall +O(
√
n) ·�nsmall

i=1

�
area(Di)

= O(n)

=⇒ one of the σi’s intersects O(
√
n) disks

slide by Mark de Berg
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Subexponential algorithms on planar graphs

Theorem. Independent Set can be solved in 2O(
√
n) time in

planar graphs.

T (n) � O(n) + 2O(
√
n) · T (2n/3) =⇒ T (n) = 2O(

√
n)

Running time

slide by Mark de Berg
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Intersection graphs

Given a set S of n objects in Rd, their intersection graph has
vertex set S and edge set

E[S] := {ss′ | s, s′ ∈ S and s ∩ s′ 6= ∅}

arbitrary subset of Rd ball (disk) axis-parallel box

Planar graphs ⊂ Disk graphs (object: disks in R2)



Packing: discrete vs continuous

Continuous:

Given n objects, do they fit
in some other object without
overlap?



Packing: discrete vs continuous

Continuous:

Given n objects, do they fit
in some other object without
overlap?



Packing: discrete vs continuous

Continuous:

Given n objects, do they fit
in some other object without
overlap?



Packing: discrete vs continuous

Continuous: Discrete:

Given n objects, do they fit
in some other object without
overlap?

Given n objects, find
maximum subset of
non-overlapping objects



Packing: discrete vs continuous

Continuous: Discrete:

Given n objects, do they fit
in some other object without
overlap?

Given n objects, find
maximum subset of
non-overlapping objects



Packing: discrete vs continuous

Continuous: Discrete:

Given n objects, do they fit
in some other object without
overlap?

Given n objects, find
maximum subset of
non-overlapping objects

Same as max. independent
set in intersection graph
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Exact algorithm for discrete packing

Theorem. Independent set in intersection graphs of disks can

be solved in nO(
√
k) time, where k = size of max indep. set.

Proof.

Solution I has k interior-disjoint disks.
There is a balanced separator square σ intersecting O(

√
k)

disks from I.

Claim. Given S, we can compute a
family Y of poly(n) squares containing
all attainable square separators of all
subsets of S.
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Exact algorithm for discrete packing II

for each separator σ ∈ Y do
for each intersecting Iσ⊂S of size O(

√
k) do

Remove disks in S intersecting σ
Remove neighbors of Iσ
Recurse on disks inside σ
Recurse on disks outside σ

return largest indep. set found

T (n, k) = poly(n) · nO(
√
k) · 2T

(
n,

36

37
k

)

T (n, k) = nc
√
k+c
√

(36/37)k+c
√

(36/37)2k+... = nO(
√
k)
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General graphs: Independent set is NP-hard, has O(nkk2) algo

Exponential-Time Hypothesis (ETH). There is γ > 0 such
that there is no 2γn algorithm for 3-SAT on n varaibles.

ETH ⇒ P6= NP

Theorem. There is no f(k)no(k) algorithm for Independent
Set for any computable f , unless ETH fails.

Theorem. There is no f(k)no(
√
k) algorithm for Independent

Set in planar graphs for any computable f , unless ETH fails.⇒

Theorem. There is no f(k)no(
√
k) algorithm for Independent

Set in disk graphs for any computable f , unless ETH fails.
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Geometric set cover: discrete vs continuous

Set cover : given m subsets of {1, . . . , n}, are there k among
them whose union is {1, . . . , n}

very hard, can’t be approximated efficiently

Continuous:

Geometric set cover:

Given P ⊂ R2, can we cover
P with k unit disks?

similar to cont. k-center!

Discrete:

Given P ⊂ R2 and m unit
disks D, can we cover P with
k disks from D?
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Theorem (Marx–Pilipczuk, 2015) Discrete geometric set

cover with disks can be solved in mO(
√
k)poly(n) time, where
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Exact algroithms for covering

Theorem (Marx–Pilipczuk, 2015) Discrete geometric set

cover with disks can be solved in mO(
√
k)poly(n) time, where

k = size of min cover.

Proof based on guessing separator in solution’s Voronoi diagram.

Theorem (Marx–Pilipczuk, 2015). There is no

f(k)(m+ n)o(
√
k) algorithm for covering points with disks for

any computable f , unless ETH fails.



Shifting grids

Approximation schemes

Hochbaum–Maass 1985
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PTASes

Definition. A polynomial time approximation scheme (PTAS)
for a minimization problem is an algorithm, which given ε > 0
and the input instance, outputs a feasible solution of value at
most (1 + ε)OPT in polyε(n) time.

E.g. possible running time: O(n1/ε) or nO(21/ε)

related complexity classes: PTAS versus APX-hardness
P is APX-hard ⇒ P has no PTAS unless P=NP

Example: Independent set is APX-hard on general graphs.
But! Independent set in planar graphs has a PTAS. (Baker ’83)
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(1− ε)OPT in nO(1/ε) time.
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Packing unit disks via shifting

Theorem. The discrete packing of unit disks has a PTAS:
given n unit disks, we can compute an independent set of size
(1− ε)OPT in nO(1/ε) time.

Proof.

Grid of distance 2
⇒ each (open) disk intersects ≤ 1
horizontal and ≤ 1 vertical grid line

Let t = d2/εe.
For a shift (a, b) (a, b ∈ {0, . . . , t− 1}),
select horizontal lines a, a+t, a+2t, . . .
select vertical lines b, b+t, b+2t, . . .

a

a+ t

a+ 2t

b b+ t b+ 2t

Remove disks intersecting selected lines
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Shifting startegy: solving cells

Large cells have area O(1/ε2)
⇒ max indep. set has size
k = O(1/ε2)
⇒ max indep. set found in

nO(
√
k) = nO(1/ε) time.

Claim. The union of large cell solutions has size at least
(1− ε)OPT for some shift (a, b).



a

a+ t
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Shifting startegy: solving cells

Large cells have area O(1/ε2)
⇒ max indep. set has size
k = O(1/ε2)
⇒ max indep. set found in

nO(
√
k) = nO(1/ε) time.

Proof. Of the t = d2/εe shifts for horizontals, there is some
a ∈ {0, . . . , t− 1} intersecting ≤ ε

2OPT solution disks.
Similarly there is b s.t. verticals intersect ≤ ε

2OPT .
⇒ (a, b) works.

Claim. The union of large cell solutions has size at least
(1− ε)OPT for some shift (a, b).
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Discrete packing outlook

• Extends to unit balls in higher dimensions: nO(1/εd−1)

• nO(1/ε) is essentially tight in R2 (Marx 2007)

• Local search: slower PTAS for “pseudodisks” (last lecture?)

But! major open problem:
Is there a PTAS for Independent set of axis-parallel rectangles?

or for axis parallel segments?

Best known: nO((log logn/ε)4) (Chuzhoy–Ene 2016)
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Continous covering: canonizing

Theorem. There is a PTAS for the coninuous covering of
points with unit disks with running time nO(1/ε).

Proof. A unit disk is canonical if it has 2 input points on its
boundary, or its topmost point is an input point.

There is a cover of size k ⇔ there is a canonical cover of size k.

2 disks per point pair p, p′ ∈ P ,
one disk for each p ∈ P
2
(
n
2

)
+ n ≤ n2 canonical disks
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Grid of side length 2, set t = d6/εe
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Whole cell can be covered by
O(1/ε2) (non-canoncical) disks.
⇒ Min cover in a cell solved in
(n2)O(

√
1/ε2) = nO(1/ε)

In C, solution |S(C)|≤|OPT (C)|. Return U :=
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C S(C)



Shifting for set cover with unit disks

a

a+ t

a+ 2t

b b+ t b+ 2t

Grid of side length 2, set t = d6/εe

Cell disks: canonical disks inside
and those intersecting the boundary
Whole cell can be covered by
O(1/ε2) (non-canoncical) disks.
⇒ Min cover in a cell solved in
(n2)O(

√
1/ε2) = nO(1/ε)

In C, solution |S(C)|≤|OPT (C)|. Return U :=
⋃
C S(C)

For some shift a blue intersects ≤ |OPT |/t disks.
⇒ ∃(a, b) intersecting 2|OPT |/t ≤ ε|OPT |/3 disks.
Each disk of OPT counted in ≤ 4 cells.

|U | ≤
∑
C

|OPT (C)| ≤ |OPT |+ 3ε|OPT |/3 = (1 + ε)|OPT |


