Packing and covering: planar separator and shifting

Sándor Kisfaludi-Bak

Computaional Geometry Summer semester 2020

• Planar separator theorem (slides by Mark de Berg)

- Planar separator theorem (slides by Mark de Berg)
- Indepedent set in planar graphs (slides by MdB)

- Planar separator theorem (slides by Mark de Berg)
- Indepedent set in planar graphs (slides by MdB)
- Exact algroithms for packing and covering

- Planar separator theorem (slides by Mark de Berg)
- Indepedent set in planar graphs (slides by MdB)
- Exact algroithms for packing and covering
- Shifting strategy: approximation schemes

Planar graphs: graphs that can be drawn without crossing edges

Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton, Tarjan 1979)

Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton, Tarjan 1979)

For any planar graph G = (V, E) there is a separator $S \subset V$ of size $O(\sqrt{n})$ such that $V \setminus S$ can be partitioned into subsets A and B, each of size at most $\frac{2}{3}n$ and with no edges between them.

Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton, Tarjan 1979)

For any planar graph G = (V, E) there is a separator $S \subset V$ of size $O(\sqrt{n})$ such that $V \setminus S$ can be partitioned into subsets A and B, each of size at most $\frac{2}{3}n$ and with no edges between them.

Planar graphs: graphs that can be drawn without crossing edges

Planar Separator Theorem (Lipton, Tarjan 1979)

For any planar graph G = (V, E) there is a separator $S \subset V$ of size $O(\sqrt{n})$ such that $V \setminus S$ can be partitioned into subsets A and B, each of size at most $\frac{2}{3}n$ and with no edges between them.

Such a (2/3)-balanced separator can be computed in O(n) time.

Fact: Any planar graph is the contact graph of a set of interior-disjoint disks.

Fact: Any planar graph is the contact graph of a set of interior-disjoint disks.

Proof idea: Find a square σ intersecting $O(\sqrt{n})$ disks that is a balanced separator.

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

smallest square containing at least n/37 disks

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

• \sqrt{n} squares $\sigma_1, \ldots, \sigma_{\sqrt{n}}$ at distance $1/\sqrt{n}$ from each other

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

 \sqrt{n} squares $\sigma_1, \ldots, \sigma_{\sqrt{n}}$ at distance $1/\sqrt{n}$ from each other

smallest square containing at least n/37 disks

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

smallest square containing at least n/37 disks

slide by Mark de Berg

 \sqrt{n} squares $\sigma_1, \ldots, \sigma_{\sqrt{n}}$ at distance $1/\sqrt{n}$ from each other

Constructing the separator: Select a square σ_i that intersects $O(\sqrt{n})$ disks and put these disks into the separator.

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

smallest square containing at least n/37 disks

slide by Mark de Berg

 \sqrt{n} squares $\sigma_1, \ldots, \sigma_{\sqrt{n}}$ at distance $1/\sqrt{n}$ from each other

Constructing the separator: Select a square σ_i that intersects $O(\sqrt{n})$ disks and put these disks into the separator.

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

smallest square containing at least n/37 disks

slide by Mark de Berg

 \sqrt{n} squares $\sigma_1, \ldots, \sigma_{\sqrt{n}}$ at distance $1/\sqrt{n}$ from each other

Constructing the separator: Select a square σ_i that intersects $O(\sqrt{n})$ disks and put these disks into the separator.

Things to check

- separator is (36/37)-balanced
- does square σ_i with the desired property actually exist ??

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

separator is (36/37)-balanced

smallest square containing at least n/37 disks

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

smallest square containing at least n/37 disks

slide by Mark de Berg

separator is (36/37)-balanced

- at least n/37 disk inside
- at most 36n/37 disks inside

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

smallest square containing at least n/37 disks

slide by Mark de Berg

Does σ_i intersecting $O(\sqrt{n})$ disks exist? total number of disk-square intersections $\leq \sum_{i=1}^{n_{\text{small}}} (1 + \text{diam}(D_i) \cdot \sqrt{n})$ $\leq n_{\text{small}} + O(\sqrt{n}) \cdot \sum_{i=1}^{n_{\text{small}}} \sqrt{\text{area}(D_i)}$ = O(n)

last step uses

• $\sum_{i=1}^{n_{\text{small}}} \operatorname{area}(D_i) = O(1)$ (sort of ...)

•
$$\sum_{i=1}^{k} \sqrt{a_i} \leqslant \sum_{i=1}^{k} \sqrt{\frac{\sum_{i=1}^{k} a_i}{k}}$$

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

smallest square containing at least n/37 disks

Does σ_i intersecting $O(\sqrt{n})$ disks exist? total number of disk-square intersections $\leq \sum_{i=1}^{n_{\text{small}}} (1 + \text{diam}(D_i) \cdot \sqrt{n})$ $\leq n_{\text{small}} + O(\sqrt{n}) \cdot \sum_{i=1}^{n_{\text{small}}} \sqrt{\text{area}(D_i)}$ = O(n)

Theorem. For any contact graph of n interior-disjoint disks, there is an α -balanced separator of size $O(\sqrt{n})$, where $\alpha = 36/37$.

Proof.

Does σ_i intersecting $O(\sqrt{n})$ disks exist? total number of disk-square intersections $\leq \sum_{i=1}^{n_{\text{small}}} (1 + \text{diam}(D_i) \cdot \sqrt{n})$ $\leq n_{\text{small}} + O(\sqrt{n}) \cdot \sum_{i=1}^{n_{\text{small}}} \sqrt{\text{area}(D_i)}$ = O(n)

 \Rightarrow one of the σ_i 's intersects $O(\sqrt{n})$ disks

smallest square containing at least n/37 disks

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for $B \setminus \{ \text{neighbors of } I_S \}$
 - (c) $I(S) := I_S \cup I_A \cup I_B$
- 3. Return the largest of the sets I(S) found in Step 2.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for $B \setminus \{ \text{neighbors of } I_S \}$
 - (c) $I(S) := I_S \cup I_A \cup I_B$
- 3. Return the largest of the sets I(S) found in Step 2.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for $B \setminus \{ \text{neighbors of } I_S \}$
 - (c) $I(S) := I_S \cup I_A \cup I_B$
- 3. Return the largest of the sets I(S) found in Step 2.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for $B \setminus \{ \text{neighbors of } I_S \}$
 - (c) $I(S) := I_S \cup I_A \cup I_B$
- 3. Return the largest of the sets I(S) found in Step 2.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for $B \setminus \{ \text{neighbors of } I_S \}$
 - (c) $I(S) := I_S \cup I_A \cup I_B$
- 3. Return the largest of the sets I(S) found in Step 2.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for $B \setminus \{ \text{neighbors of } I_S \}$
 - (c) $I(S) := I_S \cup I_A \cup I_B$
- 3. Return the largest of the sets I(S) found in Step 2.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for $B \setminus \{ \text{neighbors of } I_S \}$
 - (c) $I(S) := I_S \cup I_A \cup I_B$
- 3. Return the largest of the sets I(S) found in Step 2.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for $B \setminus \{ \text{neighbors of } I_S \}$
 - (c) $I(S) := I_S \cup I_A \cup I_B$
- 3. Return the largest of the sets I(S) found in Step 2.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 - (c) $I(S) := I_S \cup I_A \cup I_B$
- 3. Return the largest of the sets I(S) found in Step 2.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for $B \setminus \{\text{neighbors of } I_S\}$
 - (c) $I(S) := I_S \cup I_A \cup I_B$
- 3. Return the largest of the sets I(S) found in Step 2.

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

- 1. Compute (2/3)-balanced separator S of size $O(\sqrt{n})$.
- 2. For each independent set $I_S \subseteq S$ (including empty set) do
 - (a) Recursively find max independent set I_A for $A \setminus \{\text{neighbors of } I_S\}$
 - (b) Recursively find max independent set I_B for $B \setminus \{ \text{neighbors of } I_S \}$
 - (c) $I(S) := I_S \cup I_A \cup I_B$
- 3. Return the largest of the sets I(S) found in Step 2.
Subexponential algorithms on planar graphs

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

Running time

slide by Mark de Berg

Subexponential algorithms on planar graphs

Theorem. INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time in planar graphs.

Running time

$$T(n) \leq O(n) + 2^{O(\sqrt{n})} \cdot T(2n/3) \implies T(n) = 2^{O(\sqrt{n})}$$

slide by Mark de Berg

Overview

- Planar separator theorem (slides by Mark de Berg)
- Indepedent set in planar graphs (slides by MdB)
- Exact algroithms for packing and covering
- Shifting strategy: approximation schemes

Intersection graphs

Given a set S of n objects in \mathbb{R}^d , their *intersection graph* has vertex set S and edge set

$$E[S] := \{ ss' \mid s, s' \in S \text{ and } s \cap s' \neq \emptyset \}$$

Intersection graphs

arbitrary subset of \mathbb{R}^d ball (disk) axis-parallel box

Given a set S of n objects in \mathbb{R}^d , their *intersection graph* has vertex set S and edge set

$$E[S] := \{ ss' \mid s, s' \in S \text{ and } s \cap s' \neq \emptyset \}$$

Intersection graphs

arbitrary subset of \mathbb{R}^d ball (disk) axis-parallel box

Given a set S of n objects in \mathbb{R}^d , their *intersection graph* has vertex set S and edge set

$$E[S] := \{ ss' \mid s, s' \in S \text{ and } s \cap s' \neq \emptyset \}$$

Planar graphs \subset Disk graphs (object: disks in \mathbb{R}^2)

Continuous: Given n objects, do they fit in some other object without overlap?

Continuous: Given n objects, do they fit in some other object without overlap?

Continuous: Given n objects, do they fit in some other object without overlap?

Continuous: Given *n* objects, do they fit in some other object without overlap?

Discrete: Given *n* objects, find maximum subset of non-overlapping objects

Continuous: Given *n* objects, do they fit in some other object without overlap?

Discrete: Given *n* objects, find maximum subset of non-overlapping objects

Continuous: Given *n* objects, do they fit in some other object without overlap?

Discrete: Given *n* objects, find maximum subset of non-overlapping objects

Same as max. independent set in intersection graph

Exact algorithm for discrete packing

Theorem. Independent set in intersection graphs of disks can be solved in $n^{O(\sqrt{k})}$ time, where k = size of max indep. set.

Exact algorithm for discrete packing

Theorem. Independent set in intersection graphs of disks can be solved in $n^{O(\sqrt{k})}$ time, where k = size of max indep. set.

Proof. Solution I has k interior-disjoint disks. There is a balanced separator square σ intersecting $O(\sqrt{k})$ disks from I.

Exact algorithm for discrete packing

Theorem. Independent set in intersection graphs of disks can be solved in $n^{O(\sqrt{k})}$ time, where k = size of max indep. set.

Proof. Solution I has k interior-disjoint disks. There is a balanced separator square σ intersecting $O(\sqrt{k})$ disks from I.

Claim. Given S, we can compute a family Y of poly(n) squares containing all attainable square separators of all subsets of S.

Exact algorithm for discrete packing II

for each separator $\sigma \in Y$ do for each intersecting $I_{\sigma} \subset S$ of size $O(\sqrt{k})$ do Remove disks in S intersecting σ Remove neighbors of I_{σ} Recurse on disks inside σ Recurse on disks outside σ return largest indep. set found Exact algorithm for discrete packing II

for each separator $\sigma \in Y$ do for each intersecting $I_{\sigma} \subset S$ of size $O(\sqrt{k})$ do Remove disks in S intersecting σ Remove neighbors of I_{σ} Recurse on disks inside σ Recurse on disks outside σ return largest indep. set found

$$T(n,k) = \text{poly}(n) \cdot n^{O(\sqrt{k})} \cdot 2T\left(n,\frac{36}{37}k\right)$$

Exact algorithm for discrete packing II

for each separator $\sigma \in Y$ do for each intersecting $I_{\sigma} \subset S$ of size $O(\sqrt{k})$ do Remove disks in S intersecting σ Remove neighbors of I_{σ} Recurse on disks inside σ Recurse on disks outside σ return largest indep. set found

$$T(n,k) = \text{poly}(n) \cdot n^{O(\sqrt{k})} \cdot 2T\left(n, \frac{36}{37}k\right)$$

$$T(n,k) = n^{c\sqrt{k} + c\sqrt{(36/37)k} + c\sqrt{(36/37)^2k} + \dots} = n^{O(\sqrt{k})}$$

General graphs: Independent set is NP-hard, has ${\cal O}(n^k k^2)$ algo

General graphs: Independent set is NP-hard, has $O(n^k k^2)$ algo

Exponential-Time Hypothesis (ETH). There is $\gamma > 0$ such that there is no $2^{\gamma n}$ algorithm for 3-SAT on n variables.

 $\mathsf{ETH} \Rightarrow \mathsf{P} \neq \mathsf{NP}$

General graphs: Independent set is NP-hard, has $O(n^k k^2)$ algo

Exponential-Time Hypothesis (ETH). There is $\gamma > 0$ such that there is no $2^{\gamma n}$ algorithm for 3-SAT on n variables.

 $\mathsf{ETH} \Rightarrow \mathsf{P} \neq \mathsf{NP}$

Theorem. There is no $f(k)n^{o(k)}$ algorithm for Independent Set for any computable f, unless ETH fails.

General graphs: Independent set is NP-hard, has $O(n^k k^2)$ algo

Exponential-Time Hypothesis (ETH). There is $\gamma > 0$ such that there is no $2^{\gamma n}$ algorithm for 3-SAT on n variables.

 $\mathsf{ETH} \Rightarrow \mathsf{P} \neq \mathsf{NP}$

Theorem. There is no $f(k)n^{o(k)}$ algorithm for Independent Set for any computable f, unless ETH fails.

Theorem. There is no $f(k)n^{o(\sqrt{k})}$ algorithm for Independent Set in planar graphs for any computable f, unless ETH fails.

General graphs: Independent set is NP-hard, has $O(n^k k^2)$ algo

Exponential-Time Hypothesis (ETH). There is $\gamma > 0$ such that there is no $2^{\gamma n}$ algorithm for 3-SAT on n variables.

 $\mathsf{ETH} \Rightarrow \mathsf{P} \neq \mathsf{NP}$

Theorem. There is no $f(k)n^{o(k)}$ algorithm for Independent Set for any computable f, unless ETH fails.

Theorem. There is no $f(k)n^{o(\sqrt{k})}$ algorithm for Independent Set in planar graphs for any computable f, unless ETH fails.

Theorem. There is no $f(k)n^{o(\sqrt{k})}$ algorithm for Independent Set in disk graphs for any computable f, unless ETH fails.

Set cover: given m subsets of $\{1, \ldots, n\}$, are there k among them whose union is $\{1, \ldots, n\}$

very hard, can't be approximated efficiently

Set cover: given m subsets of $\{1, \ldots, n\}$, are there k among them whose union is $\{1, \ldots, n\}$

very hard, can't be approximated efficiently

Geometric set cover:

Continuous:

Given $P \subset \mathbb{R}^2$, can we cover P with k unit disks?

Set cover: given m subsets of $\{1, \ldots, n\}$, are there k among them whose union is $\{1, \ldots, n\}$

very hard, can't be approximated efficiently

Geometric set cover:

Continuous:

Given $P \subset \mathbb{R}^2$, can we cover P with k unit disks?

Set cover: given m subsets of $\{1, \ldots, n\}$, are there k among them whose union is $\{1, \ldots, n\}$

very hard, can't be approximated efficiently

Geometric set cover:

Continuous:

Given $P \subset \mathbb{R}^2$, can we cover P with k unit disks?

Discrete: Given $P \subset \mathbb{R}^2$ and m unit disks \mathcal{D} , can we cover P with k disks from \mathcal{D} ?

Exact algroithms for covering

Theorem (Marx–Pilipczuk, 2015) Discrete geometric set cover with disks can be solved in $m^{O(\sqrt{k})} \operatorname{poly}(n)$ time, where k = size of min cover.

Exact algroithms for covering

Theorem (Marx–Pilipczuk, 2015) Discrete geometric set cover with disks can be solved in $m^{O(\sqrt{k})} \operatorname{poly}(n)$ time, where k = size of min cover.

[>]Proof based on guessing separator in solution's Voronoi diagram.

Theorem (Marx–Pilipczuk, 2015). There is no $f(k)(m+n)^{o(\sqrt{k})}$ algorithm for covering points with disks for any computable f, unless ETH fails.

Shifting grids Approximation schemes Hochbaum–Maass 1985

PTASes

Definition. A polynomial time approximation scheme (PTAS) for a minimization problem is an algorithm, which given $\varepsilon > 0$ and the input instance, outputs a feasible solution of value at most $(1 + \varepsilon)OPT$ in $poly_{\varepsilon}(n)$ time.

E.g. possible running time: $O(n^{1/\varepsilon})$ or $n^{O(2^{1/\varepsilon})}$

PTASes

Definition. A polynomial time approximation scheme (PTAS) for a minimization problem is an algorithm, which given $\varepsilon > 0$ and the input instance, outputs a feasible solution of value at most $(1 + \varepsilon)OPT$ in $poly_{\varepsilon}(n)$ time.

E.g. possible running time:
$$O(n^{1/arepsilon})$$
 or $n^{O(2^{1/arepsilon})}$

related complexity classes: PTAS versus APX-hardness \mathcal{P} is APX-hard $\Rightarrow \mathcal{P}$ has no PTAS unless P=NP

PTASes

Definition. A polynomial time approximation scheme (PTAS) for a minimization problem is an algorithm, which given $\varepsilon > 0$ and the input instance, outputs a feasible solution of value at most $(1 + \varepsilon)OPT$ in $poly_{\varepsilon}(n)$ time.

E.g. possible running time:
$$O(n^{1/arepsilon})$$
 or $n^{O(2^{1/arepsilon})}$

related complexity classes: PTAS versus APX-hardness \mathcal{P} is APX-hard $\Rightarrow \mathcal{P}$ has no PTAS unless P=NP

Example: Independent set is APX-hard on general graphs. But! Independent set in planar graphs has a PTAS. (Baker '83)

Packing unit disks via shifting

Theorem. The discrete packing of unit disks has a PTAS: given n unit disks, we can compute an independent set of size $(1 - \varepsilon)OPT$ in $n^{O(1/\varepsilon)}$ time.

Packing unit disks via shifting

Theorem. The discrete packing of unit disks has a PTAS: given n unit disks, we can compute an independent set of size $(1 - \varepsilon)OPT$ in $n^{O(1/\varepsilon)}$ time.

Grid of distance 2 \Rightarrow each (open) disk intersects ≤ 1

horizontal and ≤ 1 vertical grid line

Packing unit disks via shifting

Theorem. The discrete packing of unit disks has a PTAS: given n unit disks, we can compute an independent set of size $(1 - \varepsilon)OPT$ in $n^{O(1/\varepsilon)}$ time.

Grid of distance 2 \Rightarrow each (open) disk intersects ≤ 1 horizontal and ≤ 1 vertical grid line Let $t = \lceil 2/\varepsilon \rceil$. For a shift (a, b) $(a, b \in \{0, \dots, t-1\})$, select horizontal lines $a, a+t, a+2t, \dots$ select vertical lines $b, b+t, b+2t, \dots$
Packing unit disks via shifting

Theorem. The discrete packing of unit disks has a PTAS: given n unit disks, we can compute an independent set of size $(1 - \varepsilon)OPT$ in $n^{O(1/\varepsilon)}$ time.

Grid of distance 2 \Rightarrow each (open) disk intersects ≤ 1 horizontal and ≤ 1 vertical grid line Let $t = \lceil 2/\varepsilon \rceil$. For a shift (a, b) $(a, b \in \{0, \dots, t-1\})$, select horizontal lines $a, a+t, a+2t, \dots$ select vertical lines $b, b+t, b+2t, \dots$

Remove disks intersecting selected lines

Shifting startegy: solving cells

Large cells have area $O(1/\varepsilon^2)$ \Rightarrow max indep. set has size $k = O(1/\varepsilon^2)$ \Rightarrow max indep. set found in $n^{O(\sqrt{k})} = n^{O(1/\varepsilon)}$ time.

Claim. The union of large cell solutions has size at least $(1 - \varepsilon)OPT$ for some shift (a, b).

Claim. The union of large cell solutions has size at least $(1 - \varepsilon)OPT$ for some shift (a, b).

Proof. Of the $t = \lceil 2/\varepsilon \rceil$ shifts for horizontals, there is some $a \in \{0, \ldots, t-1\}$ intersecting $\leq \frac{\varepsilon}{2}OPT$ solution disks. Similarly there is b s.t. verticals intersect $\leq \frac{\varepsilon}{2}OPT$. $\Rightarrow (a, b)$ works.

Discrete packing outlook

- Extends to unit balls in higher dimensions: $n^{O(1/\varepsilon^{d-1})}$
- $n^{O(1/\varepsilon)}$ is essentially tight in \mathbb{R}^2 (Marx 2007)
- Local search: slower PTAS for "pseudodisks" (last lecture?)

Discrete packing outlook

- Extends to unit balls in higher dimensions: $n^{O(1/\varepsilon^{d-1})}$
- $n^{O(1/\varepsilon)}$ is essentially tight in \mathbb{R}^2 (Marx 2007)
- Local search: slower PTAS for "pseudodisks" (last lecture?)

But! major open problem: Is there a PTAS for Independent set of axis-parallel rectangles? or for axis parallel segments?

Discrete packing outlook

- Extends to unit balls in higher dimensions: $n^{O(1/\varepsilon^{d-1})}$
- $n^{O(1/\varepsilon)}$ is essentially tight in \mathbb{R}^2 (Marx 2007)
- Local search: slower PTAS for "pseudodisks" (last lecture?)

But! major open problem: Is there a PTAS for Independent set of axis-parallel rectangles? or for axis parallel segments?

Best known: $n^{O((\log \log n/\varepsilon)^4)}$ (Chuzhoy–Ene 2016)

Continous covering: canonizing

Theorem. There is a PTAS for the coninuous covering of points with unit disks with running time $n^{O(1/\varepsilon)}$.

Continous covering: canonizing

Theorem. There is a PTAS for the coninuous covering of points with unit disks with running time $n^{O(1/\varepsilon)}$.

Proof. A unit disk is canonical if it has 2 input points on its boundary, or its topmost point is an input point.

Continous covering: canonizing

Theorem. There is a PTAS for the coninuous covering of points with unit disks with running time $n^{O(1/\varepsilon)}$.

Proof. A unit disk is canonical if it has 2 input points on its boundary, or its topmost point is an input point.

There is a cover of size $k \Leftrightarrow$ there is a canonical cover of size k.

2 disks per point pair $p, p' \in P$, one disk for each $p \in P$ $2\binom{n}{2} + n \leq n^2$ canonical disks

Grid of side length 2, set $t = \lceil 6/\varepsilon \rceil$

Cell disks: canonical disks inside and those intersecting the boundary

Grid of side length 2, set $t = \lceil 6/\varepsilon \rceil$

Cell disks: canonical disks inside and those intersecting the boundary

Grid of side length $2\text{, set }t=\lceil 6/\varepsilon\rceil$

Cell disks: canonical disks inside and those intersecting the boundary Whole cell can be covered by $O(1/\varepsilon^2)$ (non-canoncical) disks. \Rightarrow Min cover in a cell solved in $(n^2)^{O(\sqrt{1/\varepsilon^2})} = n^{O(1/\varepsilon)}$

In C, solution $|S(C)| \leq |OPT(C)|$. Return $U := \bigcup_C S(C)$

Grid of side length 2, set $t = \lceil 6/\varepsilon \rceil$

Cell disks: canonical disks inside and those intersecting the boundary Whole cell can be covered by $O(1/\varepsilon^2)$ (non-canoncical) disks. \Rightarrow Min cover in a cell solved in $(n^2)^{O(\sqrt{1/\varepsilon^2})} = n^{O(1/\varepsilon)}$

In C, solution $|S(C)| \leq |OPT(C)|$. Return $U := \bigcup_C S(C)$ For some shift a blue intersects $\leq |OPT|/t$ disks. $\Rightarrow \exists (a, b)$ intersecting $2|OPT|/t \leq \varepsilon |OPT|/3$ disks. Each disk of OPT counted in ≤ 4 cells. $|U| \leq \sum_C |OPT(C)| \leq |OPT| + 3\varepsilon |OPT|/3 = (1 + \varepsilon)|OPT|$