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For any planar graph G = (V, E)) there is a separator S C V of
size O(4/n) such that V' \ S can be partitioned into subsets A and
B, each of size at most %n and with no edges between them.
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Planar graphs: graphs that can be drawn without crossing edges

S

O
A B

Planar Separator Theorem (Lipton,Tarjan 1979)

For any planar graph G = (V, E)) there is a separator S C V of
size O(4/n) such that V' \ S can be partitioned into subsets A and
B, each of size at most %n and with no edges between them.

Such a (2/3)-balanced separator can be computed in O(n) time.

slide by Mark de Berg
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Fact: Any planar graph is the contact graph of a set of
interior-disjoint disks.
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A geometric proof of the Planar Separator Theorem

Fact: Any planar graph is the contact graph of a set of
interior-disjoint disks.

&0

Proof idea: Find a square o
intersecting O(+/n) disks
that is a balanced separator.
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Proof.
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A geometric proof of the Planar Separator Theorem

Theorem. For any contact graph of n interior-disjoint disks, there
is an a-balanced separator of size O(/n), where o = 36/37.

Proof.

VN squares 01,...,0 /m
at distance 1/4/n from each other

Constructing the separator:
Select a square o; that intersects

O(y/n) disks and put these disks
Into the separator.

Things to check

smallest square e separator is (36/37)-balanced
containing at least e does square o; with the desired
n/37 disks property actually exist 77
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A geometric proof of the Planar Separator Theorem

Theorem. For any contact graph of n interior-disjoint disks, there
is an a-balanced separator of size O(/n), where o = 36/37.

Proof.

separator is (36/37)-balanced

e at least n/37 disk inside
e at most 36n/37 disks inside

smallest square
containing at least

n/37 disks
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A geometric proof of the Planar Separator Theorem

Theorem. For any contact graph of n interior-disjoint disks, there
is an a-balanced separator of size O(/n), where o = 36/37.

Proof.

Does o; intersecting O(+/n) disks exist?

total number of disk-square intersections
< Yo emell(1 4+ diam(D;) - /n)
< Nsman + O(y/n) - 37=pal \ /area(D;)

smallest square
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A geometric proof of the Planar Separator Theorem

Theorem. For any contact graph of n interior-disjoint disks, there
is an a-balanced separator of size O(/n), where o = 36/37.

Proof.

Does o; intersecting O(+/n) disks exist?

total number of disk-square intersections
< Yo emell(1 4 diam(D;) - /n)
< Nsman + O(y/n) - 37=pal \ /area(D;)

— one of the o;’s intersects O(y/n) disks

smallest square
containing at least 5

n/37 disks
slide by Mark de Berg
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Theorem. INDEPENDENT SET can be solved in 2°(V™) time in
planar graphs.
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1. Compute (2/3)-balanced separator S of size O(y/n).

2. For each independent set Ig C S (including empty set) do
(a) Recursively find max independent set 14 for A\ {neighbors of Ig}
(b) Recursively find max independent set Ip for B\ {neighbors of Ig}
(c) I(S):=1IsUlsaUlp

3. Return the largest of the sets I(S) found in Step 2.
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Subexponential algorithms on planar graphs

Theorem. INDEPENDENT SET can be solved in 2°(¥V™) time in
planar graphs.

Running time
T(n) < O(n) +2°0W™ . T(2n/3) — T(n) = 200/")
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Intersection graphs

arbitrary subset of R% ball (disk) axis-parallel box

N~

Given a set S of n objects in R?, their intersection graph has
vertex set S and edge set

E[S] :={ss’ | s,s' € S and sN s # 0}

Planar graphs C Disk graphs (object: disks in R?)
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Packing: discrete vs continuous

Continuous: Discrete:

Given n objects, do they fit | Given n objects, find
in some other object without | maximum subset of
overlap? non-overlapping objects

Same as max. independent
set in Intersection graph
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Exact algorithm for discrete packing

Theorem. Independent set in intersection graphs of disks can
be solved in n®(VF) time, where k = size of max indep. set.

Proof.

Solution I has k interior-disjoint disks.

There is a balanced separator square o intersecting O(V'k)
disks from I.

\

(Claim. Given S, we can compute a
family Y of poly(n) squares containing
all attainable square separators of all

| subsets of S. )
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Remove disks in S intersecting o

Remove neighbors of I,
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Exact algorithm for discrete packing |l

O O for each separator 0 € Y do

’ for each intersecting I, C S of size OW/k) do
Remove disks in S intersecting o

Remove neighbors of I,

Recurse on disks inside o

Recurse on disks outside o

return largest indep. set found

T(n,k) = poly(n) - nOWk o (n, %k)

T(n, k) = ncVh+cy/(36/37)k+cv/(36/37)2k+... _  O(Vk)
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s nPW*) g00d?

General graphs: Independent set is NP-hard, has O(n*k?) algo

Exponential-Time Hypothesis (ETH). There is v > 0 such
that there is no 27" algorithm for 3-SAT on n varaibles.

ETH = P+ NP

Theorem. There is no f(k)n°*) algorithm for Independent
Set for any computable f, unless ETH fails.

Theorem. There is no f(k)n°(V%) algorithm for Independent
Set in planar graphs for any computable f, unless ETH fails.

Y

Theorem. There is no f(k)n°(V%) algorithm for Independent
Set in disk graphs for any computable f, unless ETH fails.
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Geometric set cover: discrete vs continuous

Set cover: given m subsets of {1,...,n}, are there k among
them whose union is {1,...,n}

very hard, can't be approximated efficiently

Geometric set cover:

Continuous: Discrete:
Given P C R? can we cover | Given P C R? and m unit
P with k unit disks? disks D, can we cover P with

@ k disks from D?

similar to cont. k-center!




Exact algroithms for covering

(Theorem (Marx—Pilipczuk, 2015) Discrete geometric set

cover with disks can be solved in m@V®) poly(n) time, where
|k = size of min cover.

N

J




Exact algroithms for covering

(Theorem (Marx—Pilipczuk, 2015) Discrete geometric set |

cover with disks can be solved in m@V®) poly(n) time, where
|k = size of min cover. )

(

Proof based on guessing separator in solution’s Voronoi diagram.

‘Theorem (Marx—Pilipczuk, 2015). There is no

F(k)(m + n)°V®) algorithm for covering points with disks for
any computable f, unless ETH fails.




Shifting grids
Approximation schemes
Hochbaum—Maass 1985
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PTASes

'Definition. A polynomial time approximation scheme (PTAS) \
for a minimization problem is an algorithm, which given € > 0
and the input instance, outputs a feasible solution of value at
'most (1 +¢)OPT in poly_(n) time.

E.g. possible running time: O(nl/“:) or n0(2'°)

related complexity classes: PTAS versus APX-hardness
P is APX-hard = P has no PTAS unless P=NP

Example: Independent set is APX-hard on general graphs.
But! Independent set in planar graphs has a PTAS. (Baker '83)



Packing unit disks via shifting

‘Theorem. The discrete packing of unit disks has a PTAS:
given n unit disks, we can compute an independent set of size
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Packing unit disks via shifting

‘Theorem. The discrete packing of unit disks has a PTAS:

given n unit disks, we can compute an independent set of size
(1 —e)OPT in n®1/9) time.

Proof.
Grid of distance 2

CD) |y ( j) = each (open) disk intersects < 1
AT K (L~ horizontal and < 1 vertical grid line
N KON

A

PO

/™




Packing unit disks via shifting

‘Theorem. The discrete packing of unit disks has a PTAS:

given n unit disks, we can compute an independent set of size
(1 —e)OPT in n®1/9) time.

Proof.
b b+t bF2L Grid of distance 2
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> ) = each (open) disk intersects < 1
N = N horizontal and < 1 vertical grid line
PR
Let t = [2/¢].
a+1 = For a shift (a,b) (a,b €{0,...,t—1}),
~ select horizontal lines a,a+t, a+2t, ...
select vertical lines b, b+t,b+2t, . ..

a + 2t



Packing unit disks via shifting

‘Theorem. The discrete packing of unit disks has a PTAS:

given n unit disks, we can compute an independent set of size
(1 —€)OPT in n°U/¢) time.

Proof.
b b+t bF2L Grid of distance 2
. C.
> ) = each (open) disk intersects < 1
N = N horizontal and < 1 vertical grid line
PR
Let t = [2/¢].
a+1 = For a shift (a,b) (a,b€{0,...,t—1}),
~ select horizontal lines a,a+t, a+2t, ...
select vertical lines b, b+t,b+2t, . ..
a -+ 2t

Remove disks intersecting selected lines



Shifting startegy: solving cells

b b+t b+2¢
.
) )
C ;
+1 S I
a
A
NI 2

a + 2t
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nOWk) — nOW/e) time.
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Shifting startegy: solving cells

b b+t b+ 2t
Large cells have area O(1/¢?)
a = max indep. set has size
F k= 0(1/%)
L = max indep. set found in
a
nOWk) — nO(/e) time.
a+ 2t
Claim. The union of large cell solutions has size at least
(1 — e)OPT for some shift (a,b).

Proof. Of the t = [2/¢] shifts for horizontals, there is some

a €{0,...,t — 1} intersecting < SOPT solution disks.
Similarly there is b s.t. verticals intersect < sOPT.

= (a, b) works. O O
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o n°W/%) is essentially tight in R? (Marx 2007)
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Discrete packing outlook

e Extends to unit balls in higher dimensions: n©1/¢*")

o n°W/%) is essentially tight in R? (Marx 2007)

e Local search: slower PTAS for “pseudodisks” (last lecture?)

But! major open problem:
Is there a PTAS for Independent set of axis-parallel rectangles?

or for axis parallel segments?

Best known: nO((eglogn/e)") (Chuzhoy—Ene 2016)
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Continous covering: canonizing

Theorem. There is a PTAS for the coninuous covering of
points with unit disks with running time n©(1/¢),

Proof. A unit disk is canonical if it has 2 input points on its
boundary, or its topmost point is an input point.

There 1s a cover of size k < there is a canonical cover of size k.

2 disks per point pair p,p’ € P,
one disk for each p € P ¢ / \ /\
2(%) +n < n* canonical disks | ‘



Shifting for set cover with unit disks

b b+t b+ 2t
%) | . Grid of side length 2, set t = [6/¢]
¢ gl % Y Cell disks: canonical disks inside
| ZQ ' and those intersecting the boundary
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a-+t a

a + 2t



Shifting for set cover with unit disks

b b+t b+ 2t
%) | . Grid of side length 2, set t = [6/¢]
¢ @) Y Cell disks: canonical disks inside
|l QQ ' and those intersecting the boundary
ot K 2 il Whole cell can be covered by
T : Il O(1/e?) (non-canoncical) disks.
Y=
= Min cover in a cell solved in
Y (HZ)O(\/1/€2) _ nO(l/e)
a

In C, solution |S(C)|<|OPT(C)|. Return U:=, S(C)



Shifting for set cover with unit disks

b b+t b+ 2t
) | = Grid of side length 2, set t = [6/¢]

Cell disks: canonical disks inside
and those intersecting the boundary
S L2 )] Whole cell can be covered by

T . O(1/&?) (non-canoncical) disks.

= Min cover in a cell solved in
(HZ)O(\/l/a‘Q) _ nO(l/e)

a + 2t

In C, solution |S(C)|<|OPT(C)|. Return U:=, S(C)

For some shift a blue intersects < |OPT|/t disks.

= J(a, b) intersecting 2|OPT|/t < e|OPT|/3 disks.

Each disk of OPT counted in < 4 cells.

U| <) |OPT(C)| < |OPT|+ 3¢|OPT|/3 = (1+¢)|OPT)
C []



