Range Space: Pair (X, \mathcal{R}) , where X is a set and \mathcal{R} (so $\frac{1}{2}$) Range Space: Pair (X,\mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so R is a family of subsets of X).

Range Space: Pair (X, \mathcal{R}) , where X is a set and R $($ so $)$
 Examples:

(R, I), where I is the set of all closed intervals

(R², D), where D is the set of all closed disks

(R², T), where T is the set of all tria Range Space: Pair (X,\mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so $\mathcal R$ is a family of subsets of X).

Examples:

 $(\mathbb{R}, \mathcal{I})$, where $\mathcal I$ is the set of all closed intervals

 $(\mathbb{R}^2, \mathcal{D})$, where $\mathcal D$ is the set of all closed disks

 $(\mathbb{R}^2, \mathcal{T})$, where $\mathcal T$ is the set of all triangles

 $(\mathbb{R}^2, \mathcal{AR})$, where \mathcal{AR} is the set of all axis-aligned rectangles

 $(\mathbb{R}^2, \mathcal{GR})$, where \mathcal{GR} is the set of all general (i.e. arbitrarily oriented) rectangles

 $(\mathbb{R}^2, \mathcal{H})$, where $\mathcal H$ is the set of all closed halfplanes

 $(\mathbb{R}^2, \mathcal{C})$, where $\mathcal C$ is the set of all closed convex sets in the plane

Examples:

Let T be a tree with vertex set V

Examples:

Let T be a tree with vertex set V

Examples:

Let T be a tree with vertex set V

Examples:

Let T be a tree with vertex set V

Examples:

. . .

Range Space: Pair (X, \mathcal{R}) , where X is a set and R $($ so $)$
 Examples:
 $(\mathbb{R}^d, \mathcal{H}_d)$, where \mathcal{H}_d is the set of all closed halfspaces
 $(\mathbb{R}^d, \mathcal{B}_d)$, where \mathcal{B}_d is the set of all closed balls $(\mathbb{R}^d, \mathcal{H}_d)$, where \mathcal{H}_d is the set of all closed halfspaces in \mathbb{R}^d $(\mathbb{R}^{d},\mathcal{B}_{d})$, where \mathcal{B}_{d} is the set of all closed balls in \mathbb{R}^{d} $(\mathbb{R}^d, \mathcal{S}_d)$, where \mathcal{S}_d is the set of all closed simplices in \mathbb{R}^d

Range Space: Pair (X, \mathcal{R}) , where X is a set and R $($ so $)$
 $A \subset X$: $\mathcal{R}_{|A} = \{ r \cap A | R \in \mathcal{R} \}$
 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by (Range Space: Pair (X,\mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so $\mathcal R$ is a family of subsets of X).

 $A \subset X$ $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}\$

 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by (X, \mathcal{R}) on A

Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$.

(so \mathcal{R} is a fa
 $A \subset X$: $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by (X, \mathcal{R}) or
 $A \subset X$ is shattered b Range Space: Pair (X,\mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so $\mathcal R$ is a family of subsets of X).

 $A \subset X$ $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}\$

 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by (X, \mathcal{R}) on A

 $A\subset X$ is shattered by $\mathcal R$ iff $\mathcal R_{|A}=2^A$

VC-Dimension

Range Space: Pair (X, \mathcal{R}) , where X is a set and R ∞
 $A \subset X$: $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by $(\mathcal{A} \subset X)$ is shattered by R iff $\mathcal{R}_{|A} = 2^A$
 Range Space: Pair (X,\mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so $\mathcal R$ is a family of subsets of X).

 $A \subset X$ $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}\$

 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by (X, \mathcal{R}) on A

 $A\subset X$ is shattered by $\mathcal R$ iff $\mathcal R_{|A}=2^A$

The *VC-dimension* of (X, \mathcal{R}) is the cardinality of the largest $A \subset X$ that is shattered by \mathcal{R}

VC-Dimension

Range Space: Pair (X, \mathcal{R}) , where X is a set and R ∞
 $A \subset X$: $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by $(\mathcal{A} \subset X)$ is shattered by R iff $\mathcal{R}_{|A} = 2^A$
 Range Space: Pair (X,\mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so $\mathcal R$ is a family of subsets of X).

 $A \subset X$ $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}\$

 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by (X, \mathcal{R}) on A

 $A\subset X$ is shattered by $\mathcal R$ iff $\mathcal R_{|A}=2^A$

The *VC-dimension* of (X, \mathcal{R}) is the cardinality of the largest $A \subset X$ that is shattered by \mathcal{R}

"VC" . . . Vapnik-Chervonenkis

- $A \subset X$ $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}\$
- $A\subset X$ is shattered by $\mathcal R$ iff $\mathcal R_{|A}=2^A$

VC-Dimension, Examples
 $A \subset X$: $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
 $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset$
 $(\mathbb{R}, \mathcal{I})$, where \mathcal{I} is th VC-dimension of (X,\mathcal{R}) is the cardinality of the largest $A\subset X$ that is shattered by $\mathcal R$

 $(\mathbb{R}, \mathcal{I})$, where $\mathcal I$ is the set of all closed intervals

- $A \subset X$ $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}\$
- $A\subset X$ is shattered by $\mathcal R$ iff $\mathcal R_{|A}=2^A$

VC-dimension of (X,\mathcal{R}) is the cardinality of the largest $A\subset X$ that is shattered by $\mathcal R$

Let T be a tree with vertex set V

VC-Dimension, Examples
 $A \subset X$: $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
 $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset$

Let T be a tree with vertex set V (V, S) , where S comprises all sets that are vertex sets of subtrees (connected subgraphs) of T

- $A \subset X$ $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}\$
- $A\subset X$ is shattered by $\mathcal R$ iff $\mathcal R_{|A}=2^A$

VC-Dimension, Examples
 $A \subset X$: $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
 $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset (\mathbb{R}^2, \mathcal{D})$, where $\mathcal D$ is the s VC-dimension of (X,\mathcal{R}) is the cardinality of the largest $A\subset X$ that is shattered by $\mathcal R$

 $(\mathbb{R}^2, \mathcal{D})$, where $\mathcal D$ is the set of all closed disks

- $A \subset X$ $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}\$
- $A\subset X$ is shattered by $\mathcal R$ iff $\mathcal R_{|A}=2^A$

VC-Dimension, Examples
 $A \subset X$: $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
 $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset$
 $(\mathbb{R}^2, \mathcal{H})$, where \mathcal{H} is VC-dimension of (X,\mathcal{R}) is the cardinality of the largest $A\subset X$ that is shattered by $\mathcal R$

 $(\mathbb{R}^2, \mathcal{H})$, where $\mathcal H$ is the set of all closed halfplanes

- $A \subset X$ $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}\$
- $A\subset X$ is shattered by $\mathcal R$ iff $\mathcal R_{|A}=2^A$

VC-Dimension, Examples
 $A \subset X$: $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
 $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset (\mathbb{R}^2, C)$, where C is the set of a VC-dimension of (X,\mathcal{R}) is the cardinality of the largest $A\subset X$ that is shattered by $\mathcal R$

 $(\mathbb{R}^2, \mathcal{C})$, where $\mathcal C$ is the set of all closed convex sets in the plane

- $A \subset X$ $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}\$
- $A\subset X$ is shattered by $\mathcal R$ iff $\mathcal R_{|A}=2^A$

VC-dimension of (X,\mathcal{R}) is the cardinality of the largest $A\subset X$ that is shattered by $\mathcal R$

 $VC-Dimension, Examples$
 $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
 $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$
 $VC-dimension of (X, \mathcal{R})$ is the cardinality of the largest $A \subset (\mathbb{R}^d, \mathcal{H}_d)$, where \mathcal{H}_d is the set of all closed half $(\mathbb{R}^d, \mathcal{H}_d)$, where \mathcal{H}_d is the set of all closed halfspaces in \mathbb{R}^d

- $A \subset X$ $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}\$
- $A\subset X$ is shattered by $\mathcal R$ iff $\mathcal R_{|A}=2^A$

VC-dimension of (X,\mathcal{R}) is the cardinality of the largest $A\subset X$ that is shattered by $\mathcal R$

 $(\mathbb{R}^d, \mathcal{H}_d)$, where \mathcal{H}_d is the set of all closed halfspaces in \mathbb{R}^d

VC-Dimension, Examples
 $A \subset X$: $\mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
 $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset (\mathbb{R}^d, \mathcal{H}_d)$, where \mathcal{H}_d is Radons Theorem Any set A of $d+2$ points in \mathbb{R}^d can be partitioned into two non-empty sets A' and A'' whose convex hulls intersect.

Sauer's Lemma For every range space (X, \mathcal{R}) of VC-d
have $|\mathcal{R}| \leq \Phi_d(n) = \left(\frac{n}{\leq d}\right) = \sum_{0 \leq i \leq d} \binom{n}{i}$. **Sauer's Lemma** For every range space (X, \mathcal{R}) of VC-dimension d and with $|X| = n$ we have $|\mathcal{R}| \leq \Phi_d(n) = \binom{n}{\leq d}$ $\leq d$ $\int = \sum_{0 \leq i \leq d} {n \choose i}$ i $\Big)$

Sauer's Lemma For every range space (X, \mathcal{R}) of VC-d
have $|\mathcal{R}| \leq \Phi_d(n) = \left(\frac{n}{\leq d}\right) = \sum_{0 \leq i \leq d} \binom{n}{i}$.
Immediate consequence of the following:
Lemma For every finite range space (X, \mathcal{R}) the numbe
least $|\mathcal{R$ **Sauer's Lemma** For every range space (X, \mathcal{R}) of VC-dimension d and with $|X| = n$ we have $|\mathcal{R}| \leq \Phi_d(n) = \binom{n}{\leq d}$ $\leq d$ $\int = \sum_{0 \leq i \leq d} {n \choose i}$ i $\Big)$

Immediate consequence of the following:

Lemma For every finite range space (X, \mathcal{R}) the number s of sets shattered by \mathcal{R} is at least $|\mathcal{R}|$.

Sauer's Lemma For every range space (X, \mathcal{R}) of VC-d
have $|\mathcal{R}| \leq \Phi_d(n) = \left(\frac{n}{\leq d}\right) = \sum_{0 \leq i \leq d} \binom{n}{i}$.
Immediate consequence of the following:
Lemma For every finite range space (X, \mathcal{R}) the numbe
least $|\mathcal{R$ **Sauer's Lemma** For every range space (X, \mathcal{R}) of VC-dimension d and with $|X| = n$ we have $|\mathcal{R}| \leq \Phi_d(n) = \binom{n}{\leq d}$ $\leq d$ $\int = \sum_{0 \leq i \leq d} {n \choose i}$ i $\Big)$

Immediate consequence of the following:

Lemma For every finite range space (X, \mathcal{R}) the number s of sets shattered by \mathcal{R} is at \textsf{least} $|\mathcal{R}|$.

Since VC-dimension d means $s \leq {n \choose < d}$ $\leq d$) and hence

> $|\mathcal{R}| \leq s \leq$ $\binom{n}{n}$ $\leq d$ \setminus .

Sauer's Lemma For every range space (X, \mathcal{R}) of VC-d
have $|\mathcal{R}| \leq \Phi_d(n) = \left(\frac{n}{\leq d}\right) = \sum_{0 \leq i \leq d} \binom{n}{i}$.
Immediate consequence of the following:
Lemma For every finite range space (X, \mathcal{R}) the numbe
least $|\$ **Sauer's Lemma** For every range space (X, \mathcal{R}) of VC-dimension d and with $|X| = n$ we have $|\mathcal{R}| \leq \Phi_d(n) = \binom{n}{\leq d}$ $\leq d$ $\int = \sum_{0 \leq i \leq d} {n \choose i}$ i $\Big)$

Immediate consequence of the following:

Lemma For every finite range space (X, \mathcal{R}) the number s of sets shattered by \mathcal{R} is at \textsf{least} $|\mathcal{R}|$.

Proof by induction on $|R|$

True for $|\mathcal{R}| = 1$ as the empty set is shattered.

For $|\mathcal{R}| > 1$ choose some x that is in some but not all ranges in \mathcal{R} and split \mathcal{R} into \mathcal{R}^+ (the ranges that contain x) and \mathcal{R}^- (the ranges that do not contain x)

Shattering Function and Shattering Dimension
 $S = (X, \mathcal{R})$ range space. Its shatter function
 $\pi_S(m) = \max_{B \in {X \choose m}} |\mathcal{R}_{|B}|$

The shattering dimension of S is the smallest d such that $\pi_s(m) = O(m^d)$
 $-$
 $-$
 $-$
 $-$
 $-$

 $S = (X, \mathcal{R})$ range space. Its shatter function

 $\pi_S(m) = \max_{\alpha}$ $B\in\binom{X}{m}$ $\big| \mathcal{R}_{|B} \big|$ $\overline{}$

The shattering dimension of S is the smallest d such that $\pi_s(m)=O(m^d)$.

 $S = (X, \mathcal{R})$ range space. Its shatter function

 $\pi_S(m) = \max_{\alpha}$ $B\in\binom{X}{m}$ $\big| \mathcal{R}_{|B} \big|$ $\overline{}$

The shattering dimension of S is the smallest d such that $\pi_s(m)=O(m^d)$.

Shattering Function and Shattering Dimension
 $S = (X, \mathcal{R})$ range space. Its shatter function
 $\pi_S(m) = \max_{B \in {X \choose m}} |\mathcal{R}_{|B}|$

The shattering dimension of S is the smallest d such that $\pi_s(m) = O(m^d)$

Lemma For any range sp **Lemma** For any range space $S = (X, \mathcal{R})$ its shattering-dimension is at most as large as its VC-dimension.

 $S = (X, \mathcal{R})$ range space. Its shatter function

 $\pi_S(m) = \max_{\alpha}$ $B\in\binom{X}{m}$ $\big| \mathcal{R}_{|B} \big|$ $\overline{}$

The shattering dimension of S is the smallest d such that $\pi_s(m)=O(m^d)$.

Shattering Function and Shattering Dimension
 $S = (X, \mathcal{R})$ range space. Its shatter function
 $\pi_S(m) = \max_{B \in \binom{X}{m}} |\mathcal{R}_{|B}|$

The shattering dimension of S is the smallest d such that $\pi_s(m) = O(m^d)$
 Lemma For any rang **Lemma** For any range space $S = (X, \mathcal{R})$ its shattering-dimension is at most as large as its VC-dimension.

Observation The shattering dimension of a family of geometric shapes (e.g. disks) is bounded by the number of points necessary to determine the shape.

Dual Range Space and Dual Shatter Function
 $S = (X, \mathcal{R})$ range space

For $p \in X$ define $R_p = \{r \in \mathcal{R} | p \in r\}$.

Dual range space for S is defined as
 $S^* = (\mathcal{R}, \{R_p | p \in X\})$
 $S^* = S$

 $S = (X, \mathcal{R})$ range space

For $p \in X$ define $R_p = \{r \in \mathcal{R} | p \in r\}$.

Dual range space for S is defined as

 $S^* = (\mathcal{R}, \{R_p | p \in X\})$

Dual Range Space and Dual Shatter Function
 $S = (X, \mathcal{R})$ range space

For $p \in X$ define $R_p = \{r \in \mathcal{R} | p \in r\}$.

Dual range space for S is defined as
 $S^* = (\mathcal{R}, \{R_p | p \in X\})$

Dual shatter function $\pi_S^*(m) = \pi_{S^*}(m)$.

 $S = (X, \mathcal{R})$ range space

For $p \in X$ define $R_p = \{r \in \mathcal{R} | p \in r\}$.

Dual range space for S is defined as

 $S^* = (\mathcal{R}, \{R_p | p \in X\})$

Dual shatter function π_S^* $S^*(m) = \pi_{S^*}(m).$

Dual shatter dimension of S is the shatter dimension of S^* .

 $S = (X, \mathcal{R})$ range space

For $p \in X$ define $R_p = \{r \in \mathcal{R} | p \in r\}$.

Dual range space for S is defined as

 $S^* = (\mathcal{R}, \{R_p | p \in X\})$

Dual shatter function π_S^* $S^*(m) = \pi_{S^*}(m).$

Dual shatter dimension of S is the shatter dimension of S^* .

– 28 – Dual Range Space and Dual Shatter Function Lemma If range space S has VC-dimension d then its dual space S^* has VC-dimension at most 2^d .

Composing Shapes

Lemma If range space $S = (X, \mathcal{R})$ has VC-dimension d
 $\overline{S} = (X, \overline{\mathcal{R}})$ also has VC-dimension d, where $\overline{\mathcal{R}} = {\overline{\{r\}}}|r \in \mathcal{R}$
 $\overline{S} = 29$ **Lemma** If range space $S = (X, \mathcal{R})$ has VC-dimension d then its complementary space $\overline{S} = (X, \overline{\mathcal{R}})$ also has VC-dimension d, where $\overline{\mathcal{R}} = \{\overline{r}|r \in \mathcal{R}\}$.

Lemma If range space $S = (X, \mathcal{R})$ has VC-dimension d then its complementary space $\overline{S} = (X, \overline{\mathcal{R}})$ also has VC-dimension d, where $\overline{\mathcal{R}} = \{\overline{r}|r \in \mathcal{R}\}$.

Composing Shapes

Lemma If range space $S = (X, \mathcal{R})$ has VC-dimension d
 $\overline{S} = (X, \overline{\mathcal{R}})$ also has VC-dimension d, where $\overline{\mathcal{R}} = {\overline{\tau}} | r \in \mathcal{R}$

Lemma Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range space
 $d' >$ **Lemma** Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range spaces of VC-dimension $d > 1$ and $d' > 1$, respectively. Then the space $(X,\widehat{\mathcal{R}})$ with $\widehat{\mathcal{R}} = \{r \cup r'| r \in \mathcal{R}, \; r' \in \mathcal{R}'\}$ has VC-dimension $O((d+d')\log(d+d')$.

Lemma If range space $S = (X, \mathcal{R})$ has VC-dimension d then its complementary space $\overline{S} = (X,\overline{\mathcal{R}})$ also has VC-dimension d, where $\overline{\mathcal{R}} = \{\overline{r}|r \in \mathcal{R}\}$.

Lemma Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range spaces of VC-dimension $d > 1$ and $d' > 1$, respectively. Then the space $(X,\widehat{\mathcal{R}})$ with $\widehat{\mathcal{R}} = \{r \cup r'| r \in \mathcal{R}, \; r' \in \mathcal{R}'\}$ has VC-dimension $O((d+d')\log(d+d')$.

Lemma If range space $S = (X, \mathcal{R})$ has VC-dimension d $\overline{S} = (X, \overline{\mathcal{R}})$ also has VC-dimension d , where $\overline{\mathcal{R}} = {\overline{r}} | r \in \mathcal{R}$
 Lemma Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range space $d' > 1$, respecti **Lemma** Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range spaces of VC-dimension $d > 1$ and $d' > 1$, respectively. Then the space $(X,\widetilde{\mathcal{R}})$ with $\widetilde{\mathcal{R}} = \{r \cap r' | r \in \mathcal{R}, r' \in \mathcal{R}'\}$ has VC-dimension $O((d+d')\log(d+d')$.

Lemma If range space $S = (X, \mathcal{R})$ has VC-dimension d then its complementary space $\overline{S} = (X, \overline{\mathcal{R}})$ also has VC-dimension d, where $\overline{\mathcal{R}} = \{\overline{r}|r \in \mathcal{R}\}$.

Lemma Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range spaces of VC-dimension $d > 1$ and $d' > 1$, respectively. Then the space $(X,\widehat{\mathcal{R}})$ with $\widehat{\mathcal{R}} = \{r \cup r'| r \in \mathcal{R}, \; r' \in \mathcal{R}'\}$ has VC-dimension $O((d+d')\log(d+d')$.

Composing Shapes

Lemma If range space $S = (X, \mathcal{R})$ has VC-dimension d
 $\overline{S} = (X, \overline{\mathcal{R}})$ also has VC-dimension d, where $\overline{\mathcal{R}} = {\overline{\tau}} |r \in \mathcal{R}$

Lemma Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range space
 $d' >$ **Lemma** Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range spaces of VC-dimension $d > 1$ and $d' > 1$, respectively. Then the space $(X,\widetilde{\mathcal{R}})$ with $\widetilde{\mathcal{R}} = \{r \cap r' | r \in \mathcal{R}, r' \in \mathcal{R}'\}$ has VC-dimension $O((d+d')\log(d+d')$.

Consequence Any finite sequence of combining range spaces of finite VC-dimension results in a range space of finite VC-dimension.

 ε -Samples
 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon \le$

A subset $C \subseteq B$ is an ε -sample for B iff for every r
 $\left| \frac{|B \cap r|}{|B|} - \frac{|C \cap r|}{|C|} \right|$
 $\frac{|B \cap r|}{|C|}$ $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon \leq 1$.

A subset $C \subseteq B$ is an ε -sample for B iff for every range $r \in \mathcal{R}$ we have

$$
\left| \frac{|B \cap r|}{|B|} - \frac{|C \cap r|}{|C|} \right| \le \varepsilon
$$

A subset $C \subseteq B$ is an ε -sample for B iff for every range $r \in \mathcal{R}$ we have

 ε -Samples
 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon \le$

A subset $C \subseteq B$ is an ε -sample for B iff for every r
 $\left|\frac{|B \cap r|}{|B|} - \frac{|C \cap r|}{|C|}\right|$
 ε -Sample Theorem (Vapnik, Chervonenkis) There

is ε -Sample Theorem (Vapnik, Chervonenkis) There is a constant $c > 0$ so that if (X, \mathcal{R}) is a range space of VC-dimension at most d and if B is a finite subset of X , then for every $0 < \varepsilon, \delta < 1$ a randomly chosen subset B of s elements, where s is at least the minimum of $|B|$ and of

$$
\frac{c}{\varepsilon^2}\left(d\log \frac{d}{\varepsilon} + \log \frac{1}{\delta}\right)
$$

fails to be an ε -sample for B with probability at most δ .

 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon$
A subset $N \subseteq B$ is an ε -net for B iff every range
point of N , i.e. $r \cap N \neq \emptyset$. A subset $N \subseteq B$ is an ε -net for B iff every range $r \in \mathcal{R}$ with $|r \cap B| \geq \varepsilon |B|$ contains a point of N, i.e. $r \cap N \neq \emptyset$.

A subset $N \subseteq B$ is an ε -net for B iff every range $r \in \mathcal{R}$ with $|r \cap B| \geq \varepsilon |B|$ contains a point of N, i.e. $r \cap N \neq \emptyset$.

 $\mathcal{E}-\mathsf{Nets}$
 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon$

A subset $N \subseteq B$ is an ε -net for B iff every range

point of N , i.e. $r \cap N \neq \emptyset$.
 ε -**Net Theorem** (Haussler, Welzl) Let (X, \mathcal{R}) be
 ε -Net Theorem (Haussler, Welzl) Let (X,\mathcal{R}) be a range space of VC-dimension at most d and let B be a finite subset of X, and let $0 < \varepsilon, \delta < 1$. A set N is obtained by m random independent draws from B with

$$
m \ge \max\left\{\frac{4}{\varepsilon}\log\frac{2}{\delta}, \frac{8d}{\varepsilon}\log\frac{8d}{\varepsilon}\right\}
$$

fails to be an ε -net for B with probability at most δ .

Application of ε -Nets

Given a set S of n points in \mathbb{R}^3 and some $0 < \varepsilon < 1$ find a

most and ε fraction of the points of S. Given a set S of n points in \mathbb{R}^3 and some $0<\varepsilon < 1$ find a ball that fails to contain at most and ε fraction of the points of S .

A subset $N \subseteq B$ is an ε -net for B iff every range $r \in \mathcal{R}$ with $|r \cap B| \geq \varepsilon |B|$ contains a point of N, i.e. $r \cap N \neq \emptyset$.

Weak ε -Nets
 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon \le 1$

A subset $N \subseteq B$ is an ε -**net** for B iff every range $r \in$

point of N , i.e. $r \cap N \ne \emptyset$.
 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ fini $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon \leq 1$. A subset $N \subseteq X$ is a weak ε -net for B iff every range $r \in \mathcal{R}$ with $|r \cap B| \geq \varepsilon |B|$ contains a point of N, i.e. $r \cap N \neq \emptyset$.

Weak ε -Nets for Convex Sets in the Plane (\mathbb{R}^2 , C), where C is the set of all closed convex sets in the plane
There are no constant size s-nets for this space,
but there is a weak ε -net of size $O(1/\varepsilon^$ $\mathcal{C}^2, \mathcal{C})$, where $\mathcal C$ is the set of all closed convex sets in the plane

There are no constant size ε -nets for this space,

but there is a weak ε -net of size $O(1/\varepsilon^2)$.

