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Range Spaces

Range Space: Pair (X,R), where X is a set and R ⊂ 2X .
(so R is a family of subsets of X).
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Range Spaces

Range Space: Pair (X,R), where X is a set and R ⊂ 2X .
(so R is a family of subsets of X).

Examples:

(R, I), where I is the set of all closed intervals

(R2,D), where D is the set of all closed disks

(R2, T ), where T is the set of all triangles

(R2,AR), where AR is the set of all axis-aligned rectangles

(R2,GR), where GR is the set of all general (i.e. arbitrarily oriented) rectangles

(R2,H), where H is the set of all closed halfplanes

(R2, C), where C is the set of all closed convex sets in the plane
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Examples:

Let T be a tree with vertex set V

(V,S), where S comprises all sets that are vertex sets of subtrees (connected
subgraphs) of T
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Range Spaces

Range Space: Pair (X,R), where X is a set and R ⊂ 2X .
(so R is a family of subsets of X).

Examples:

Let T be a tree with vertex set V

(V,S), where S comprises all sets that are vertex sets of subtrees (connected
subgraphs) of T

not in S
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Range Spaces

Range Space: Pair (X,R), where X is a set and R ⊂ 2X .
(so R is a family of subsets of X).

Examples:

(Rd,Hd), where Hd is the set of all closed halfspaces in Rd

(Rd,Bd), where Bd is the set of all closed balls in Rd

(Rd,Sd), where Sd is the set of all closed simplices in Rd

...
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Range Spaces

Range Space: Pair (X,R), where X is a set and R ⊂ 2X .
(so R is a family of subsets of X).

A ⊂ X: R|A = {r ∩A|R ∈ R}

(A,R|A) is the range space induced (projected) by (X,R) on A
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Range Spaces, Shattering

Range Space: Pair (X,R), where X is a set and R ⊂ 2X .
(so R is a family of subsets of X).

A ⊂ X: R|A = {r ∩A|R ∈ R}

(A,R|A) is the range space induced (projected) by (X,R) on A

A ⊂ X is shattered by R iff R|A = 2A
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VC-Dimension

Range Space: Pair (X,R), where X is a set and R ⊂ 2X .
(so R is a family of subsets of X).

A ⊂ X: R|A = {r ∩A|R ∈ R}

(A,R|A) is the range space induced (projected) by (X,R) on A

A ⊂ X is shattered by R iff R|A = 2A

The VC-dimension of (X,R) is the cardinality of the largest A ⊂ X that is shattered
by R
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VC-Dimension

Range Space: Pair (X,R), where X is a set and R ⊂ 2X .
(so R is a family of subsets of X).

A ⊂ X: R|A = {r ∩A|R ∈ R}

(A,R|A) is the range space induced (projected) by (X,R) on A

A ⊂ X is shattered by R iff R|A = 2A

The VC-dimension of (X,R) is the cardinality of the largest A ⊂ X that is shattered
by R

“VC” . . . Vapnik-Chervonenkis
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VC-Dimension, Examples

A ⊂ X: R|A = {r ∩A|R ∈ R}

A ⊂ X is shattered by R iff R|A = 2A

VC-dimension of (X,R) is the cardinality of the largest A ⊂ X that is shattered by R

(R, I), where I is the set of all closed intervals
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VC-Dimension, Examples

A ⊂ X: R|A = {r ∩A|R ∈ R}

A ⊂ X is shattered by R iff R|A = 2A

VC-dimension of (X,R) is the cardinality of the largest A ⊂ X that is shattered by R

Let T be a tree with vertex set V

(V,S), where S comprises all sets that are vertex sets of subtrees (connected
subgraphs) of T



– 14 –

VC-Dimension, Examples

A ⊂ X: R|A = {r ∩A|R ∈ R}

A ⊂ X is shattered by R iff R|A = 2A

VC-dimension of (X,R) is the cardinality of the largest A ⊂ X that is shattered by R

(R2,D), where D is the set of all closed disks
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A ⊂ X is shattered by R iff R|A = 2A

VC-dimension of (X,R) is the cardinality of the largest A ⊂ X that is shattered by R
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VC-Dimension, Examples

A ⊂ X: R|A = {r ∩A|R ∈ R}

A ⊂ X is shattered by R iff R|A = 2A

VC-dimension of (X,R) is the cardinality of the largest A ⊂ X that is shattered by R

(Rd,Hd), where Hd is the set of all closed halfspaces in Rd
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VC-Dimension, Examples

A ⊂ X: R|A = {r ∩A|R ∈ R}

A ⊂ X is shattered by R iff R|A = 2A

VC-dimension of (X,R) is the cardinality of the largest A ⊂ X that is shattered by R

(Rd,Hd), where Hd is the set of all closed halfspaces in Rd

Radons Theorem Any set A of d+ 2 points in Rd can be partitioned into two
non-empty sets A′ and A′′ whose convex hulls intersect.
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Sauer’s Lemma

Sauer’s Lemma For every range space (X,R) of VC-dimension d and with |X| = n we
have |R| ≤ Φd(n) =

(
n
≤d
)

=
∑

0≤i≤d
(
n
i

)
.
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Sauer’s Lemma For every range space (X,R) of VC-dimension d and with |X| = n we
have |R| ≤ Φd(n) =

(
n
≤d
)

=
∑
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(
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i

)
.

Immediate consequence of the following:

Lemma For every finite range space (X,R) the number s of sets shattered by R is at
least |R|.
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Sauer’s Lemma

Sauer’s Lemma For every range space (X,R) of VC-dimension d and with |X| = n we
have |R| ≤ Φd(n) =

(
n
≤d
)

=
∑

0≤i≤d
(
n
i

)
.

Immediate consequence of the following:

Lemma For every finite range space (X,R) the number s of sets shattered by R is at
least |R|.

Since VC-dimension d means s ≤
(

n
≤d
)

and hence

|R| ≤ s ≤
(
n

≤ d

)
.
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Sauer’s Lemma

Sauer’s Lemma For every range space (X,R) of VC-dimension d and with |X| = n we
have |R| ≤ Φd(n) =

(
n
≤d
)

=
∑

0≤i≤d
(
n
i

)
.

Immediate consequence of the following:

Lemma For every finite range space (X,R) the number s of sets shattered by R is at
least |R|.
Proof by induction on |R|
True for |R| = 1 as the empty set is shattered.

For |R| > 1 choose some x that is in some but not all ranges in R and split R into R+

(the ranges that contain x) and R− (the ranges that do not contain x)
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Shattering Function and Shattering Dimension

S = (X,R) range space. Its shatter function

πS(m) = max
B∈(X

m)

∣∣R|B∣∣
The shattering dimension of S is the smallest d such that πs(m) = O(md).
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Shattering Function and Shattering Dimension

S = (X,R) range space. Its shatter function

πS(m) = max
B∈(X

m)

∣∣R|B∣∣
The shattering dimension of S is the smallest d such that πs(m) = O(md).

Lemma For any range space S = (X,R) its shattering-dimension is at most as large as
its VC-dimension.



– 25 –

Shattering Function and Shattering Dimension

S = (X,R) range space. Its shatter function

πS(m) = max
B∈(X

m)

∣∣R|B∣∣
The shattering dimension of S is the smallest d such that πs(m) = O(md).

Lemma For any range space S = (X,R) its shattering-dimension is at most as large as
its VC-dimension.

Observation The shattering dimension of a family of geometric shapes (e.g. disks) is
bounded by the number of points necessary to determine the shape.
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Dual Range Space and Dual Shatter Function

S = (X,R) range space

For p ∈ X define Rp = {r ∈ R|p ∈ r}.

Dual range space for S is defined as

S∗ = (R, {Rp|p ∈ X})
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Dual Range Space and Dual Shatter Function

S = (X,R) range space

For p ∈ X define Rp = {r ∈ R|p ∈ r}.

Dual range space for S is defined as

S∗ = (R, {Rp|p ∈ X})

Dual shatter function π∗S(m) = πS∗(m).

Dual shatter dimension of S is the shatter dimension of S∗.
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Dual Range Space and Dual Shatter Function

S = (X,R) range space

For p ∈ X define Rp = {r ∈ R|p ∈ r}.

Dual range space for S is defined as

S∗ = (R, {Rp|p ∈ X})

Dual shatter function π∗S(m) = πS∗(m).

Dual shatter dimension of S is the shatter dimension of S∗.

Lemma If range space S has VC-dimension d then its dual space S∗ has VC-dimension
at most 2d.



– 29 –

Composing Shapes

Lemma If range space S = (X,R) has VC-dimension d then its complementary space
S = (X,R) also has VC-dimension d, where R = {r|r ∈ R}.
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Composing Shapes

Lemma If range space S = (X,R) has VC-dimension d then its complementary space
S = (X,R) also has VC-dimension d, where R = {r|r ∈ R}.

Lemma Let S = (X,R) and S′ = (X,R′) be range spaces of VC-dimension d > 1 and
d′ > 1, respectively.
Then the space (X, R̂) with R̂ = {r ∪ r′|r ∈ R, r′ ∈ R′} has VC-dimension
O((d+ d′) log(d+ d′).
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Composing Shapes

Lemma If range space S = (X,R) has VC-dimension d then its complementary space
S = (X,R) also has VC-dimension d, where R = {r|r ∈ R}.

Lemma Let S = (X,R) and S′ = (X,R′) be range spaces of VC-dimension d > 1 and
d′ > 1, respectively.
Then the space (X, R̂) with R̂ = {r ∪ r′|r ∈ R, r′ ∈ R′} has VC-dimension
O((d+ d′) log(d+ d′).

Lemma Let S = (X,R) and S′ = (X,R′) be range spaces of VC-dimension d > 1 and
d′ > 1, respectively.
Then the space (X, R̃) with R̃ = {r ∩ r′|r ∈ R, r′ ∈ R′} has VC-dimension
O((d+ d′) log(d+ d′).
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Composing Shapes

Lemma If range space S = (X,R) has VC-dimension d then its complementary space
S = (X,R) also has VC-dimension d, where R = {r|r ∈ R}.

Lemma Let S = (X,R) and S′ = (X,R′) be range spaces of VC-dimension d > 1 and
d′ > 1, respectively.
Then the space (X, R̂) with R̂ = {r ∪ r′|r ∈ R, r′ ∈ R′} has VC-dimension
O((d+ d′) log(d+ d′).

Lemma Let S = (X,R) and S′ = (X,R′) be range spaces of VC-dimension d > 1 and
d′ > 1, respectively.
Then the space (X, R̃) with R̃ = {r ∩ r′|r ∈ R, r′ ∈ R′} has VC-dimension
O((d+ d′) log(d+ d′).

Consequence Any finite sequence of combining range spaces of finite VC-dimension
results in a range space of finite VC-dimension.
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ε-Samples

S = (X,R) is a range space; B ⊂ X finite; 0 < ε ≤ 1.

A subset C ⊆ B is an ε-sample for B iff for every range r ∈ R we have∣∣∣∣ |B ∩ r||B|
− |C ∩ r|
|C|

∣∣∣∣ ≤ ε
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ε-Samples

S = (X,R) is a range space; B ⊂ X finite; 0 < ε ≤ 1.

A subset C ⊆ B is an ε-sample for B iff for every range r ∈ R we have∣∣∣∣ |B ∩ r||B|
− |C ∩ r|
|C|

∣∣∣∣ ≤ ε
ε-Sample Theorem (Vapnik, Chervonenkis) There is a constant c > 0 so that if (X,R)
is a range space of VC-dimension at most d and if B is a finite subset of X, then for
every 0 < ε, δ < 1 a randomly chosen subset B of s elements, where s is at least the
minimum of |B| and of

c

ε2

(
d log

d

ε
+ log

1

δ

)
fails to be an ε-sample for B with probability at most δ.
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ε-Nets

S = (X,R) is a range space; B ⊂ X finite; 0 < ε ≤ 1.

A subset N ⊆ B is an ε-net for B iff every range r ∈ R with |r ∩B| ≥ ε|B| contains a
point of N , i.e. r ∩N 6= ∅.
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ε-Nets

S = (X,R) is a range space; B ⊂ X finite; 0 < ε ≤ 1.

A subset N ⊆ B is an ε-net for B iff every range r ∈ R with |r ∩B| ≥ ε|B| contains a
point of N , i.e. r ∩N 6= ∅.

ε-Net Theorem (Haussler, Welzl) Let (X,R) be a range space of VC-dimension at most
d and let B be a finite subset of X, and let 0 < ε, δ < 1. A set N is obtained by m
random independent draws from B with

m ≥ max

{
4

ε
log

2

δ
,

8d

ε
log

8d

ε

}
fails to be an ε-net for B with probability at most δ.
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Application of ε-Nets

Given a set S of n points in R3 and some 0 < ε < 1 find a ball that fails to contain at
most and ε fraction of the points of S.
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Weak ε-Nets

S = (X,R) is a range space; B ⊂ X finite; 0 < ε ≤ 1.

A subset N ⊆ B is an ε-net for B iff every range r ∈ R with |r ∩B| ≥ ε|B| contains a
point of N , i.e. r ∩N 6= ∅.

S = (X,R) is a range space; B ⊂ X finite; 0 < ε ≤ 1.

A subset N ⊆ X is a weak ε-net for B iff every range r ∈ R with |r ∩B| ≥ ε|B|
contains a point of N , i.e. r ∩N 6= ∅.
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Weak ε-Nets for Convex Sets in the Plane

(R2, C), where C is the set of all closed convex sets in the plane

There are no constant size ε-nets for this space,

but there is a weak ε-net of size O(1/ε2).
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