Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so \mathcal{R} is a family of subsets of X).

Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so \mathcal{R} is a family of subsets of X).

Examples:

 (\mathbb{R},\mathcal{I}) , where \mathcal{I} is the set of all closed intervals

 $(\mathbb{R}^2, \mathcal{D})$, where \mathcal{D} is the set of all closed disks

 $(\mathbb{R}^2,\mathcal{T})$, where \mathcal{T} is the set of all triangles

 $(\mathbb{R}^2, \mathcal{AR})$, where \mathcal{AR} is the set of all axis-aligned rectangles

 $(\mathbb{R}^2, \mathcal{GR})$, where \mathcal{GR} is the set of all general (i.e. arbitrarily oriented) rectangles

 $(\mathbb{R}^2, \mathcal{H})$, where \mathcal{H} is the set of all closed halfplanes

 $(\mathbb{R}^2, \mathcal{C})$, where \mathcal{C} is the set of all closed convex sets in the plane

Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so \mathcal{R} is a family of subsets of X).

Examples:

Let T be a tree with vertex set V

Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so \mathcal{R} is a family of subsets of X).

Examples:

Let T be a tree with vertex set V

Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so \mathcal{R} is a family of subsets of X).

Examples:

Let T be a tree with vertex set V

Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so \mathcal{R} is a family of subsets of X).

Examples:

Let T be a tree with vertex set V

Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so \mathcal{R} is a family of subsets of X).

Examples:

 $(\mathbb{R}^d, \mathcal{H}_d)$, where \mathcal{H}_d is the set of all closed halfspaces in \mathbb{R}^d $(\mathbb{R}^d, \mathcal{B}_d)$, where \mathcal{B}_d is the set of all closed balls in \mathbb{R}^d $(\mathbb{R}^d, \mathcal{S}_d)$, where \mathcal{S}_d is the set of all closed simplices in \mathbb{R}^d

Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so \mathcal{R} is a family of subsets of X).

 $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$

 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by (X, \mathcal{R}) on A

Range Spaces, Shattering

Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so \mathcal{R} is a family of subsets of X).

 $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$

 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by (X, \mathcal{R}) on A

 $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-Dimension

Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so \mathcal{R} is a family of subsets of X).

 $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$

 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by (X, \mathcal{R}) on A

 $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

The *VC-dimension* of (X, \mathcal{R}) is the cardinality of the largest $A \subset X$ that is shattered by \mathcal{R}

VC-Dimension

Range Space: Pair (X, \mathcal{R}) , where X is a set and $\mathcal{R} \subset 2^X$. (so \mathcal{R} is a family of subsets of X).

 $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$

 $(A, \mathcal{R}_{|A})$ is the range space induced (projected) by (X, \mathcal{R}) on A

 $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

The *VC-dimension* of (X, \mathcal{R}) is the cardinality of the largest $A \subset X$ that is shattered by \mathcal{R}

"VC" ... Vapnik-Chervonenkis

- $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
- $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset X$ that is shattered by \mathcal{R}

 $(\mathbb{R}, \mathcal{I})$, where \mathcal{I} is the set of all closed intervals

- $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
- $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset X$ that is shattered by \mathcal{R}

Let T be a tree with vertex set V

- $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
- $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset X$ that is shattered by \mathcal{R}

 $(\mathbb{R}^2, \mathcal{D})$, where \mathcal{D} is the set of all closed disks

- $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
- $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset X$ that is shattered by \mathcal{R}

 $(\mathbb{R}^2, \mathcal{H})$, where \mathcal{H} is the set of all closed halfplanes

- $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
- $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset X$ that is shattered by \mathcal{R}

 $(\mathbb{R}^2, \mathcal{C})$, where \mathcal{C} is the set of all closed convex sets in the plane

- $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
- $A \subset X$ is shattered by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset X$ that is shattered by \mathcal{R}

 $(\mathbb{R}^d, \mathcal{H}_d)$, where \mathcal{H}_d is the set of all closed halfspaces in \mathbb{R}^d

- $A \subset X: \qquad \mathcal{R}_{|A} = \{r \cap A | R \in \mathcal{R}\}$
- $A \subset X$ is shattened by \mathcal{R} iff $\mathcal{R}_{|A} = 2^A$

VC-dimension of (X, \mathcal{R}) is the cardinality of the largest $A \subset X$ that is shattered by \mathcal{R}

 $(\mathbb{R}^d, \mathcal{H}_d)$, where \mathcal{H}_d is the set of all closed halfspaces in \mathbb{R}^d

Radons Theorem Any set A of d + 2 points in \mathbb{R}^d can be partitioned into two non-empty sets A' and A'' whose convex hulls intersect.

Sauer's Lemma For every range space (X, \mathcal{R}) of VC-dimension d and with |X| = n we have $|\mathcal{R}| \leq \Phi_d(n) = \binom{n}{\leq d} = \sum_{0 \leq i \leq d} \binom{n}{i}$.

Sauer's Lemma For every range space (X, \mathcal{R}) of VC-dimension d and with |X| = n we have $|\mathcal{R}| \leq \Phi_d(n) = \binom{n}{\leq d} = \sum_{0 \leq i \leq d} \binom{n}{i}$.

Immediate consequence of the following:

Lemma For every finite range space (X, \mathcal{R}) the number *s* of sets shattered by \mathcal{R} is at least $|\mathcal{R}|$.

Sauer's Lemma For every range space (X, \mathcal{R}) of VC-dimension d and with |X| = n we have $|\mathcal{R}| \leq \Phi_d(n) = \binom{n}{\leq d} = \sum_{0 \leq i \leq d} \binom{n}{i}$.

Immediate consequence of the following:

Lemma For every finite range space (X, \mathcal{R}) the number *s* of sets shattered by \mathcal{R} is at least $|\mathcal{R}|$.

Since VC-dimension d means $s \leq \binom{n}{\leq d}$ and hence

$$|\mathcal{R}| \le s \le inom{n}{\le d}$$
 .

Sauer's Lemma For every range space (X, \mathcal{R}) of VC-dimension d and with |X| = n we have $|\mathcal{R}| \leq \Phi_d(n) = \binom{n}{\leq d} = \sum_{0 \leq i \leq d} \binom{n}{i}$.

Immediate consequence of the following:

Lemma For every finite range space (X, \mathcal{R}) the number *s* of sets shattered by \mathcal{R} is at least $|\mathcal{R}|$.

Proof by induction on $|\mathcal{R}|$

True for $|\mathcal{R}| = 1$ as the empty set is shattered.

For $|\mathcal{R}| > 1$ choose some x that is in some but not all ranges in \mathcal{R} and split \mathcal{R} into \mathcal{R}^+ (the ranges that contain x) and \mathcal{R}^- (the ranges that do not contain x)

Shattering Function and Shattering Dimension

 $S = (X, \mathcal{R})$ range space. Its shatter function

$$\pi_S(m) = \max_{B \in \binom{X}{m}} \left| \mathcal{R}_{|B} \right|$$

The shattering dimension of S is the smallest d such that $\pi_s(m) = O(m^d)$.

Shattering Function and Shattering Dimension

 $S = (X, \mathcal{R})$ range space. Its shatter function

$$\pi_S(m) = \max_{B \in \binom{X}{m}} \left| \mathcal{R}_{|B} \right|$$

The shattering dimension of S is the smallest d such that $\pi_s(m) = O(m^d)$.

Lemma For any range space $S = (X, \mathcal{R})$ its shattering-dimension is at most as large as its VC-dimension.

Shattering Function and Shattering Dimension

 $S = (X, \mathcal{R})$ range space. Its shatter function

$$\pi_S(m) = \max_{B \in \binom{X}{m}} \left| \mathcal{R}_{|B} \right|$$

The shattering dimension of S is the smallest d such that $\pi_s(m) = O(m^d)$.

Lemma For any range space $S = (X, \mathcal{R})$ its shattering-dimension is at most as large as its VC-dimension.

Observation The shattering dimension of a family of geometric shapes (e.g. disks) is bounded by the number of points necessary to determine the shape.

Dual Range Space and Dual Shatter Function

 $S = (X, \mathcal{R})$ range space

For $p \in X$ define $R_p = \{r \in \mathcal{R} | p \in r\}$.

Dual range space for S is defined as

 $S^* = (\mathcal{R}, \{R_p | p \in X\})$

Dual Range Space and Dual Shatter Function

 $S = (X, \mathcal{R})$ range space

For $p \in X$ define $R_p = \{r \in \mathcal{R} | p \in r\}$.

Dual range space for S is defined as

 $S^* = (\mathcal{R}, \{R_p | p \in X\})$

Dual shatter function $\pi_S^*(m) = \pi_{S^*}(m)$.

Dual shatter dimension of S is the shatter dimension of S^* .

Dual Range Space and Dual Shatter Function

 $S = (X, \mathcal{R})$ range space

For $p \in X$ define $R_p = \{r \in \mathcal{R} | p \in r\}$.

Dual range space for S is defined as

 $S^* = (\mathcal{R}, \{R_p | p \in X\})$

Dual shatter function $\pi_S^*(m) = \pi_{S^*}(m)$.

Dual shatter dimension of S is the shatter dimension of S^* .

Lemma If range space S has VC-dimension d then its dual space S^* has VC-dimension at most 2^d .

Lemma If range space $S = (X, \mathcal{R})$ has VC-dimension d then its complementary space $\overline{S} = (X, \overline{\mathcal{R}})$ also has VC-dimension d, where $\overline{\mathcal{R}} = \{\overline{r} | r \in \mathcal{R}\}$.

Lemma If range space $S = (X, \mathcal{R})$ has VC-dimension d then its complementary space $\overline{S} = (X, \overline{\mathcal{R}})$ also has VC-dimension d, where $\overline{\mathcal{R}} = \{\overline{r} | r \in \mathcal{R}\}$.

Lemma Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range spaces of VC-dimension d > 1 and d' > 1, respectively. Then the space $(X, \widehat{\mathcal{R}})$ with $\widehat{\mathcal{R}} = \{r \cup r' | r \in \mathcal{R}, r' \in \mathcal{R}'\}$ has VC-dimension $O((d + d') \log(d + d'))$.

Lemma If range space $S = (X, \mathcal{R})$ has VC-dimension d then its complementary space $\overline{S} = (X, \overline{\mathcal{R}})$ also has VC-dimension d, where $\overline{\mathcal{R}} = \{\overline{r} | r \in \mathcal{R}\}$.

Lemma Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range spaces of VC-dimension d > 1 and d' > 1, respectively. Then the space $(X, \widehat{\mathcal{R}})$ with $\widehat{\mathcal{R}} = \{r \cup r' | r \in \mathcal{R}, r' \in \mathcal{R}'\}$ has VC-dimension $O((d + d') \log(d + d'))$.

Lemma Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range spaces of VC-dimension d > 1 and d' > 1, respectively. Then the space $(X, \widetilde{\mathcal{R}})$ with $\widetilde{\mathcal{R}} = \{r \cap r' | r \in \mathcal{R}, r' \in \mathcal{R}'\}$ has VC-dimension $O((d + d') \log(d + d'))$.

Lemma If range space $S = (X, \mathcal{R})$ has VC-dimension d then its complementary space $\overline{S} = (X, \overline{\mathcal{R}})$ also has VC-dimension d, where $\overline{\mathcal{R}} = \{\overline{r} | r \in \mathcal{R}\}$.

Lemma Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range spaces of VC-dimension d > 1 and d' > 1, respectively. Then the space $(X, \widehat{\mathcal{R}})$ with $\widehat{\mathcal{R}} = \{r \cup r' | r \in \mathcal{R}, r' \in \mathcal{R}'\}$ has VC-dimension $O((d + d') \log(d + d'))$.

Lemma Let $S = (X, \mathcal{R})$ and $S' = (X, \mathcal{R}')$ be range spaces of VC-dimension d > 1 and d' > 1, respectively. Then the space $(X, \widetilde{\mathcal{R}})$ with $\widetilde{\mathcal{R}} = \{r \cap r' | r \in \mathcal{R}, r' \in \mathcal{R}'\}$ has VC-dimension $O((d + d') \log(d + d'))$.

Consequence Any finite sequence of combining range spaces of finite VC-dimension results in a range space of finite VC-dimension.

ε -Samples

 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon \leq 1$.

A subset $C \subseteq B$ is an ε -sample for B iff for every range $r \in \mathcal{R}$ we have

$$\left|\frac{|B \cap r|}{|B|} - \frac{|C \cap r|}{|C|}\right| \le \varepsilon$$

ε -Samples

 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon \leq 1$.

A subset $C \subseteq B$ is an ε -sample for B iff for every range $r \in \mathcal{R}$ we have

 $\left|\frac{|B \cap r|}{|B|} - \frac{|C \cap r|}{|C|}\right| \le \varepsilon$

 ε -Sample Theorem (Vapnik, Chervonenkis) There is a constant c > 0 so that if (X, \mathcal{R}) is a range space of VC-dimension at most d and if B is a finite subset of X, then for every $0 < \varepsilon, \delta < 1$ a randomly chosen subset B of s elements, where s is at least the minimum of |B| and of

$$\frac{c}{\varepsilon^2} \left(d \log \frac{d}{\varepsilon} + \log \frac{1}{\delta} \right)$$

fails to be an ε -sample for B with probability at most δ .

ε -Nets

 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon \leq 1$.

A subset $N \subseteq B$ is an ε -net for B iff every range $r \in \mathcal{R}$ with $|r \cap B| \ge \varepsilon |B|$ contains a point of N, i.e. $r \cap N \neq \emptyset$.

ε -Nets

 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon \leq 1$.

A subset $N \subseteq B$ is an ε -**net** for B iff every range $r \in \mathcal{R}$ with $|r \cap B| \ge \varepsilon |B|$ contains a point of N, i.e. $r \cap N \neq \emptyset$.

 ε -Net Theorem (Haussler, Welzl) Let (X, \mathcal{R}) be a range space of VC-dimension at most d and let B be a finite subset of X, and let $0 < \varepsilon, \delta < 1$. A set N is obtained by m random independent draws from B with

$$m \ge \max\left\{\frac{4}{\varepsilon}\log\frac{2}{\delta}, \frac{8d}{\varepsilon}\log\frac{8d}{\varepsilon}\right\}$$

fails to be an ε -net for B with probability at most δ .

Application of ε -Nets

Given a set S of n points in \mathbb{R}^3 and some $0 < \varepsilon < 1$ find a ball that fails to contain at most and ε fraction of the points of S.

Weak ε -Nets

 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon \leq 1$.

A subset $N \subseteq B$ is an ε -net for B iff every range $r \in \mathcal{R}$ with $|r \cap B| \ge \varepsilon |B|$ contains a point of N, i.e. $r \cap N \neq \emptyset$.

 $S = (X, \mathcal{R})$ is a range space; $B \subset X$ finite; $0 < \varepsilon \leq 1$. A subset $N \subseteq X$ is a weak ε -net for B iff every range $r \in \mathcal{R}$ with $|r \cap B| \geq \varepsilon |B|$ contains a point of N, i.e. $r \cap N \neq \emptyset$.

Weak ε -Nets for Convex Sets in the Plane

 $(\mathbb{R}^2, \mathcal{C})$, where \mathcal{C} is the set of all closed convex sets in the plane

There are no constant size ε -nets for this space,

but there is a weak ε -net of size $O(1/\varepsilon^2)$.

