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Ellipsoid: picture of unit ball under invertible linear
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Theorem. Any compact convex object K C R has a unique
maximum volume ellipsoid £ C K.




The John ellipsoid

Ellipsoid: picture of unit ball under invertible linear
transformation

Theorem. Any compact convex object K C R? has a unique
maximum volume ellipsoid £ C K.

Theorem (John 1948). For any compact convex K C R?
with £ centered at the origin, £ C K C d€.




Minimum volume bounding box

Min. volume bounding box of P: smallest volume box (of
arbitrary rotation) containing P

‘Theorem. A bounding box B of P can be computed in
O(d*n) time s.t.

(1) Vol(Bopt (P)) < Vol(B) < 2%d!'Vol(B,,:(P))
and (77) there is a shift z € R? and ¢ > 0 that depends only on

d, s.t. x4+ cB C conv(P).
N J
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Minimum volume bounding box

Min. volume bounding box of P: smallest volume box (of
arbitrary rotation) containing P

‘Theorem. A bounding box B of P can be computed in
O(d*n) time s.t.

(1) Vol(Bopt (P)) < Vol(B) < 2%d!'Vol(B,,:(P))
and (77) there is a shift z € R? and ¢ > 0 that depends only on

d, s.t. x4+ cB C conv(P).
N J

Let s € P arbitrary and let ' € P most distant form s.
If ¢,t’ realize the diameter of P, then

diam(P) = |tt']| < |ts| + |st'| < 2|ss']

Wiog. ss’ parallel to x4 axis.
7 := perpendicular projection to x4 = 0.
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Use induction on dimension.
d =1 trivial.

Q= n(P)
B(Q):= bounding box of () (induction)
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Induction setup

Use induction on dimension.

Tqg =2
d =1 trivial. !
Q:= 7w (P) o .O
B(Q):= bounding box of () (induction) q g0 B
P 0
2, 2']:= shortest iv on x4 axis covering ° s
projection of P = Tq = Z
B:=B(Q) x [z, : Tq =
(@) x [z, 7] Q 509/
B(Q)

Need: Voly(conv(P)) > Voly(B)/(2%d!)



Shifting down, pyramid

Upper hull convT(P) as function:
Up : conv(Q) — R? is concave

Lower hull conv+(P) as function:
Up(q)

Lo : conv(Q) — R® is convex ‘| M

Lo(q)
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Shifting down, pyramid

Upper hull convT(P) as function:
Up : conv(Q) — R? is concave

Lower hull conv+(P) as function:
Lo : conv(Q) — R% is convex Up(a)
Up — Lo is concave
Lo(q)
= A= U 0,Up(q) — Lo(q)] is convex

d conv(Q)

At 7(s), height of A is at least |ss’|.
A contains pyramid with base conv((Q)) and pole length > |ss’|.



Bounding box approximation quality

Voly(B) > Volg(Bopt)
> Voly(conv(P)) = Voly(A)
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Bounding box approximation quality

Voly(B) > Volg(Bopt)
> Voly(conv(P)) = Voly(A)
> Vol(pyramid)
Volg_1(conv(Q))|ss’|
d

Vol (B(Q)/(zd—l(d _ 1)!))2|SS'\

>

IV

2d
. Voli_1(B(Q))|22"
_ 24!
_ VOld(B)
- 24!

Running time: T'(n,d) = O(nd) +T(n,d — 1)
= Runs in O(nd?).
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Directional width

(Definition. The directional width of P € R% w.r.t.
v € R4 \ {0} is

d(v, P) := — mi
wd(v, P) := max(v, p) — min(v, p)




Directional width

(Definition. The directional width of P € R% w.r.t.
v € R4 \ {0} is

d(v, P) := — mi
wd(v, P) := max(v, p) — min(v, p)

o Properties:
. e translation invariant

: e scales linearly
° i1V e wd(v, P) = wd(v, conv(P))

: e monotone: if () C P, then
wd(v, Q) < wd(v, P)
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width if for every unit vector v

wd(v,S) > (1 — e)wd(v, P)
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Coreset for directional width

Definition. The set S C P is an e-coreset for directional
width if for every unit vector v

wd(v,S) > (1 — e)wd(v, P)

e Captures the geometry of P, and (hopefully) is much
smaller than P.

o If S is e-coreset of S’ and S’ is ’-coreset of P, then S is
(€ + &’)-coreset of P

e If S is e-coreset of P and S’ is e-coreset of P’, then S U S’
is e-coreset of P U P’



Usage 1: min volume bounding box

(Lemma. let e >0, P C R and let S be a d-coreset of P for\
directional width (0 = ¢/(8d)). Then

Vol((1+30)B(S)) < (1 +¢)Vol(B(P)).

land (1 +30)B(5) contains P. ’

Proof.



Usage 1: min volume bounding box

(Lemma. let e >0, P C R and let S be a d-coreset of P for\

directional width (0 = ¢/(8d)). Then

Vol((1+30)B(S)) < (1 +¢)Vol(B(P)).

land (1 +30)B(5) contains P.

Proof.
Volume claim: (1 +36)? < (1 +¢)

Need: B := (14 30)B(S) contains P
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Projecting to a line
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(1 —6)|qq’| < |rr'| = 2|tr| as S is d-coreset.

20
itq| < |tr] + dlqq’| < (1 | = 5) itr| < (1 4+ 36)|tr| = |tp)

]



Usage 2: minimum enclosing ball

Lemma. If S is an £/4-coreset of P for directional width, then
(1 4+ €)B(S) contains P.

Proof.
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Lemma. If S is an £/4-coreset of P for directional width, then
(1 4+ €)B(S) contains P.

Proof.
Suppose p € P is outside (1 + ¢)B(S)

= |op’| > |ob] = (1 + ¢)|oal



Usage 2: minimum enclosing ball

Lemma. If S is an £/4-coreset of P for directional width, then
(1 4+ €)B(S) contains P.

Proof.
Suppose p € P is outside (1 + ¢)B(S)

= |op’| > |ob] = (1 + ¢)|oal

wd(v,5) < rriwd(v, P) < (1-5)wd(v, P) %



Computing a coreset for directional

width (Agarwal, Har-Peled,
Varadarajan 2004)



Coreset computation: partition into pillars

y
Theorem. Given € > 0 and P C R?, we can compute an

\

e-coreset S C P of size at most |S| = O(1/e%71) in O(n) time

(where d is a fixed constant).

J
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(Theorem. Given € > 0 and P C R%, we can compute an
e-coreset S C P of size at most |S| = O(1/e%71) in O(n) time
(where d is a fixed constant).
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B is bounding box s.t. ¢4B C conv(P) C B
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Let M = [2-], divide B into M x --- x M grid
Pillar of cell (i1,...,1q) is (41,.-.,%q—1)
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(Theorem. Given € > 0 and P C R%, we can compute an
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Coreset computation: partition into pillars

~

(Theorem. Given € > 0 and P C R%, we can compute an
e-coreset S C P of size at most |S| = O(1/e%71) in O(n) time
(where d is a fixed constant).

Proof.
B is bounding box s.t. ¢4B C conv(P) C B

J

(takes O(d*n))
Let M = [%} divide B into M x --- x M grid
Pillar of cell (i1,...,4q) is (41,...,%24-1)

For each of the M?~1 pillars, find max and min z4-coordiante

Ne— g
—

S
S| =2M91 =0O(1/¢%1), need: S is coreset




Coreset from pillars

Let () = union of cells containg a point of S.

P C conv(Q) = wd(v,conv(Q)) > wd(v, P) for all v

pillars
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Let () = union of cells containg a point of S.

P C conv(Q) = wd(v,conv(Q)) > wd(v, P) for all v
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Coreset from pillars

Let () = union of cells containg a point of S.
P C conv(Q) = wd(v,conv(Q)) > wd(v, P) for all v

wd(v, S) + 2wd(v, B/M) > wd(v, Q) > wd(v, P)

Let s € R ¢y > 0suchthat | [ I
s+ cqB C conv(P) of L g
o .| .2l . P o
Ble .P ofle .' .
wd(B) wd(cgB) | P [ [ .| o
d(B/M) = — °p ®
W ( / ) M CdM 0] o___|.__. Ic; ___Q
wd(P) wd(P) e
< < = —wd P
— cgM T 2/e 2" (0, P)
[]

pillars



Better coreset, other uses

(Theorem. Given € > 0 and P C R%, we can compute an
g/2-coreset S C P of size at most |S| = O(1/el4=1)/2) in
O(n +1/314=1/2) time (where d is a fixed constant).

Proof ideas:
e two stages: first the previous algo. for £/2 gives S, then this (slower)
algorithm for £/2 on S
make conv(P) fat via affine transformation into unit hypercube
find small enclosing ball B (radius v/d)
X := a c¢y/e-packing in 0B
Let S = nearest point to each x € X



Better coreset, other uses

(Theorem. Given € > 0 and P C R%, we can compute an
g/2-coreset S C P of size at most |S| = O(1/el4=1)/2) in
O(n +1/314=1/2) time (where d is a fixed constant).

Proof ideas:
e two stages: first the previous algo. for £/2 gives S, then this (slower)
algorithm for £/2 on S
make conv(P) fat via affine transformation into unit hypercube
find small enclosing ball B (radius v/d)
X := a c¢y/e-packing in 0B
Let S = nearest point to each x € X

Coresetes have been used for

e width, diameter

e clustering (k-means)
and in streaming, dynamic problems, online algorithms,
machine learnig, etc.



Planar graphs: r-division
(Frederickson 1986)



Balanced separator for a subset

‘Observation. Given planar graph G = (V, E) and a vertex set
W C V', G has separator of size O(y/n) s.t. each side has
(< 36/37|W| vertices from W.

Proof.
Start proof with smallest square that encloses > |W|/37 disks
from W.



r-divisions

~

‘Theorem There are constants ci,Co,c3 s.t. forany r € Z
and planar graph G, there is a boundary set X of size
< cin/4/r and a partition of V' \ X into n/r sets V1,...,V,,/,
satisfying

o |Vi| <cor

o NV))NV;=0ifi#j
e IN(V) N X] < g/




Computing an r-division
Proof sketch. Use planar separator theorem.
Recursively divide until sides have size < cor

X := union of separators throughout.
group size v group number v disjointness v’
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Proof sketch. Use planar separator theorem.
Recursively divide until sides have size < cor

X := union of separators throughout.
group size v group number v disjointness v’

2 /2
X| < eyn+2 —n+---+2"\/<—

10%%53/2 (n/r)

=evn ) (2V2/3)



Computing an r-division
Proof sketch. Use planar separator theorem.
Recursively divide until sides have size < cor

X := union of separators throughout.
group size v group number v disjointness v’

1X| < cevn —n+---+i —



Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size < cor
X := union of separators throughout.
group size v’ group number v'disjointness v’

Separator divides into size an and (1 — «)n for some

aelL,2]

X(n)<cyn+X(an)+X(1 —a)n)ifn>r, else X(n)=0
With substitution and indction, |X| = X(n) = cin/\/r



Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size < cor
X := union of separators throughout.
group size v’ group number v'disjointness v’

Separator divides into size an and (1 — «)n for some

aelL,2]

X(n)<cyn+X(an)+X(1 —a)n)ifn>r, else X(n)=0
With substitution and indction, |X| = X(n) = cin/\/r

Still need small boundaries for each group!

ldea: while N(V;) N X > c3+/7 , separate N (V;) with balance
wrt. N(V;) N X.
Gives O(n/+/7T) new boundary vertices and O(n/r) new groups



