Coresets

Sándor Kisfaludi-Bak

Computaional Geometry Summer semester 2020

• Minimum volume bounding box

- Minimum volume bounding box
- Coreset for directional witdh, usage

- Minimum volume bounding box
- Coreset for directional witdh, usage
- Computing a corset for directional width

- Minimum volume bounding box
- Coreset for directional witdh, usage
- Computing a corset for directional width
- *r*-division for planar graphs

The John ellipsoid

Ellipsoid: picture of unit ball under invertible linear transformation

Theorem. Any compact convex object $K \subset \mathbb{R}^d$ has a unique maximum volume ellipsoid $\mathcal{E} \subseteq K$.

The John ellipsoid

Ellipsoid: picture of unit ball under invertible linear transformation

Theorem. Any compact convex object $K \subset \mathbb{R}^d$ has a unique maximum volume ellipsoid $\mathcal{E} \subseteq K$.

Theorem (John 1948). For any compact convex $K \subset \mathbb{R}^d$ with \mathcal{E} centered at the origin, $\mathcal{E} \subseteq K \subseteq d\mathcal{E}$.

Minimum volume bounding box

Min. volume bounding box of P: smallest volume box (of arbitrary rotation) containing P

Theorem. A bounding box B of P can be computed in $O(d^2n)$ time s.t.

(i) $\operatorname{Vol}(B_{opt}(P)) \le \operatorname{Vol}(B) \le 2^d d! \operatorname{Vol}(B_{opt}(P))$

and (*ii*) there is a shift $x \in \mathbb{R}^d$ and c > 0 that depends only on d, s.t. $x + cB \subset \operatorname{conv}(P)$.

Minimum volume bounding box

Min. volume bounding box of P: smallest volume box (of arbitrary rotation) containing P

Theorem. A bounding box B of P can be computed in $O(d^2n)$ time s.t.

(i) $\operatorname{Vol}(B_{opt}(P)) \le \operatorname{Vol}(B) \le 2^d d! \operatorname{Vol}(B_{opt}(P))$

and (*ii*) there is a shift $x \in \mathbb{R}^d$ and c > 0 that depends only on d, s.t. $x + cB \subset \operatorname{conv}(P)$.

Let $s \in P$ arbitrary and let $s' \in P$ most distant form s. If t, t' realize the diameter of P, then

$$\operatorname{diam}(P) = |tt'| \le |ts| + |st'| \le 2|ss'|$$

Minimum volume bounding box

Min. volume bounding box of P: smallest volume box (of arbitrary rotation) containing P

Theorem. A bounding box B of P can be computed in $O(d^2n)$ time s.t.

(i) $\operatorname{Vol}(B_{opt}(P)) \leq \operatorname{Vol}(B) \leq 2^d d! \operatorname{Vol}(B_{opt}(P))$

and (*ii*) there is a shift $x \in \mathbb{R}^d$ and c > 0 that depends only on d, s.t. $x + cB \subset \operatorname{conv}(P)$.

Let $s \in P$ arbitrary and let $s' \in P$ most distant form s. If t, t' realize the diameter of P, then

$$\operatorname{diam}(P) = |tt'| \le |ts| + |st'| \le 2|ss'|$$

Wlog. ss' parallel to x_d axis. $\pi :=$ perpendicular projection to $x_d = 0$.

Induction setup

Use induction on dimension.

d = 1 trivial.

$$\begin{array}{ll} Q := \pi(P) \\ B(Q) := \text{bounding box of } Q \text{ (induction)} & \circ \\ P \end{array}$$

0

s' o

Ο

0

S

0

0

Induction setup

Use induction on dimension.

d = 1 trivial.

 $\begin{array}{l} Q\!:=\!\pi(P) \\ B(Q)\!:=\! \text{bounding box of } Q \text{ (induction)} \end{array}$

[z, z']:= shortest iv on x_d axis covering projection of P

 $B := B(Q) \times [z, z']$

Q

0

Induction setup

Use induction on dimension.

d = 1 trivial.

 $\begin{array}{l} Q\!:=\pi(P) \\ B(Q)\!:= \text{bounding box of } Q \text{ (induction)} \end{array}$

[z, z']:= shortest iv on x_d axis covering projection of P

 $B := B(Q) \times [z, z']$

Q

Need: $\operatorname{Vol}_d(\operatorname{conv}(P)) \ge \operatorname{Vol}_d(B)/(2^d d!)$

Shifting down, pyramid

Upper hull $\operatorname{conv}^{\uparrow}(P)$ as function: $Up : \operatorname{conv}(Q) \to \mathbb{R}^d$ is concave

Lower hull $\operatorname{conv}^{\downarrow}(P)$ as function: $Lo:\operatorname{conv}(Q)\to \mathbb{R}^d$ is convex

Shifting down, pyramid

Upper hull $\operatorname{conv}^{\uparrow}(P)$ as function: $Up : \operatorname{conv}(Q) \to \mathbb{R}^d$ is concave

Lower hull $\operatorname{conv}^{\downarrow}(P)$ as function: $Lo:\operatorname{conv}(Q)\to \mathbb{R}^d$ is convex

Up - Lo is concave

$$\Rightarrow A := \bigcup_{q \in \text{conv}(Q)} [0, Up(q) - Lo(q)] \text{ is convex}$$

Shifting down, pyramid

Upper hull $\operatorname{conv}^{\uparrow}(P)$ as function: $Up : \operatorname{conv}(Q) \to \mathbb{R}^d$ is concave

Lower hull $\operatorname{conv}^{\downarrow}(P)$ as function: $Lo:\operatorname{conv}(Q)\to \mathbb{R}^d$ is convex

Up - Lo is concave

$$\Rightarrow A := \bigcup_{q \in \text{conv}(Q)} [0, Up(q) - Lo(q)] \text{ is convex}$$

At $\pi(s)$, height of A is at least |ss'|. A contains *pyramid* with base $\operatorname{conv}(Q)$ and pole length $\geq |ss'|$.

Bounding box approximation quality

$$Vol_d(B) \ge Vol_d(B_{opt})$$

$$\ge Vol_d(conv(P)) = Vol_d(A)$$

$$\ge Vol(pyramid)$$

$$\ge \frac{Vol_{d-1}(conv(Q))|ss'|}{d}$$

$$\ge \frac{Vol_{d-1}\left(B(Q)/(2^{d-1}(d-1)!)\right)2|ss'|}{2d}$$

$$\ge \frac{Vol_{d-1}(B(Q))|zz'|}{2^d d!}$$

$$= \frac{Vol_d(B)}{2^d d!}$$

Bounding box approximation quality

$$Vol_d(B) \ge Vol_d(B_{opt})$$

$$\ge Vol_d(conv(P)) = Vol_d(A)$$

$$\ge Vol(pyramid)$$

$$\ge \frac{Vol_{d-1}(conv(Q))|ss'|}{d}$$

$$\ge \frac{Vol_{d-1}\left(B(Q)/(2^{d-1}(d-1)!)\right)2|ss'|}{2d}$$

$$\ge \frac{Vol_{d-1}(B(Q))|zz'|}{2^d d!}$$

$$= \frac{Vol_d(B)}{2^d d!}$$

Running time: T(n,d) = O(nd) + T(n,d-1) \Rightarrow Runs in $O(nd^2)$.

Coreset for directional width, usage

Directional width

Definition. The directional width of $P \subset \mathbb{R}^d$ w.r.t. $v \in \mathbb{R}^d \setminus \{0\}$ is

$$\operatorname{wd}(v, P) := \max_{p \in P} \langle v, p \rangle - \min_{p \in P} \langle v, p \rangle$$

Directional width

Definition. The directional width of $P \subset \mathbb{R}^d$ w.r.t. $v \in \mathbb{R}^d \setminus \{0\}$ is

$$\operatorname{wd}(v, P) := \max_{p \in P} \langle v, p \rangle - \min_{p \in P} \langle v, p \rangle$$

Definition. The set $S \subset P$ is an ε -coreset for directional width if for every unit vector v

$$\operatorname{wd}(v, S) \ge (1 - \varepsilon) \operatorname{wd}(v, P)$$

Definition. The set $S \subset P$ is an ε -coreset for directional width if for every unit vector v

$$\operatorname{wd}(v, S) \ge (1 - \varepsilon) \operatorname{wd}(v, P)$$

• Captures the geometry of *P*, and (hopefully) is much smaller than *P*.

Definition. The set $S \subset P$ is an ε -coreset for directional width if for every unit vector v

$$\operatorname{wd}(v, S) \ge (1 - \varepsilon) \operatorname{wd}(v, P)$$

- Captures the geometry of *P*, and (hopefully) is much smaller than *P*.
- If S is $\varepsilon\text{-coreset}$ of S' and S' is $\varepsilon'\text{-coreset}$ of P, then S is $(\varepsilon+\varepsilon')\text{-coreset}$ of P

Definition. The set $S \subset P$ is an ε -coreset for directional width if for every unit vector v

$$\operatorname{wd}(v, S) \ge (1 - \varepsilon) \operatorname{wd}(v, P)$$

- Captures the geometry of *P*, and (hopefully) is much smaller than *P*.
- If S is $\varepsilon\text{-coreset}$ of S' and S' is $\varepsilon'\text{-coreset}$ of P, then S is $(\varepsilon+\varepsilon')\text{-coreset}$ of P
- If S is $\varepsilon\text{-coreset}$ of P and S' is $\varepsilon\text{-coreset}$ of P', then $S\cup S'$ is $\varepsilon\text{-coreset}$ of $P\cup P'$

Usage 1: min volume bounding box

Lemma. Let $\varepsilon > 0$, $P \subset \mathbb{R}^d$, and let S be a δ -coreset of P for directional width ($\delta = \varepsilon/(8d)$). Then

 $\operatorname{Vol}((1+3\delta)\mathcal{B}(S)) \le (1+\varepsilon)\operatorname{Vol}(\mathcal{B}(P)).$

and $(1+3\delta)\mathcal{B}(S)$ contains P.

Proof.

Usage 1: min volume bounding box

Lemma. Let $\varepsilon > 0$, $P \subset \mathbb{R}^d$, and let S be a δ -coreset of P for directional width ($\delta = \varepsilon/(8d)$). Then $\operatorname{Vol}((1+3\delta)\mathcal{B}(S)) \leq (1+\varepsilon)\operatorname{Vol}(\mathcal{B}(P)).$

and $(1+3\delta)\mathcal{B}(S)$ contains P.

Proof.

Volume claim: $(1+3\delta)^d < (1+\varepsilon)$

Need: $B := (1 + 3\delta)\mathcal{B}(S)$ contains P

Projecting to a line

Projecting to a line

 $(1-\delta)|qq'| \leq |rr'| = 2|tr|$ as S is δ -coreset.

$$|tq| \le |tr| + \delta |qq'| \le \left(1 + \frac{2\delta}{1-\delta}\right) |tr| \le (1+3\delta)|tr| = |tp|$$

Usage 2: minimum enclosing ball

Lemma. If S is an $\varepsilon/4$ -coreset of P for directional width, then $(1+\varepsilon)\mathcal{B}(S)$ contains P.

Proof.

Usage 2: minimum enclosing ball

Lemma. If S is an $\varepsilon/4$ -coreset of P for directional width, then $(1+\varepsilon)\mathcal{B}(S)$ contains P.

Proof.

Suppose $p \in P$ is outside $(1 + \varepsilon)\mathcal{B}(S)$

$$\Rightarrow |op'| > |ob| = (1 + \varepsilon)|oa|$$

Usage 2: minimum enclosing ball

Lemma. If S is an $\varepsilon/4$ -coreset of P for directional width, then $(1+\varepsilon)\mathcal{B}(S)$ contains P.

Proof.

Suppose $p \in P$ is outside $(1 + \varepsilon)\mathcal{B}(S)$ $(1+\varepsilon)\mathcal{B}(S)$ $\Rightarrow |op'| > |ob| = (1 + \varepsilon)|oa|$ \boldsymbol{v} $\mathrm{wd}(v,P) - \mathrm{wd}(v,S) \ge \frac{\varepsilon}{2} |aa'| \ge \frac{\varepsilon}{2} \mathrm{wd}(v,S)$ $\mathcal{B}(S)$ $\operatorname{wd}(v, S) \leq \frac{1}{1+\varepsilon/2} \operatorname{wd}(v, P) < (1 - \frac{\varepsilon}{4}) \operatorname{wd}(v, P)$

Computing a coreset for directional width (Agarwal, Har-Peled, Varadarajan 2004)

Theorem. Given $\varepsilon > 0$ and $P \subset \mathbb{R}^d$, we can compute an ε -coreset $S \subseteq P$ of size at most $|S| = O(1/\varepsilon^{d-1})$ in O(n) time (where d is a fixed constant).

Theorem. Given $\varepsilon > 0$ and $P \subset \mathbb{R}^d$, we can compute an ε -coreset $S \subseteq P$ of size at most $|S| = O(1/\varepsilon^{d-1})$ in O(n) time (where d is a fixed constant).

Proof. B is bounding box s.t. $c_d B \subset \operatorname{conv}(P) \subset B$

(takes $O(d^2n)$)

Let $M = \lceil \frac{2}{\varepsilon c_d} \rceil$, divide B into $M \times \cdots \times M$ grid Pillar of cell (i_1, \ldots, i_d) is (i_1, \ldots, i_{d-1})

Theorem. Given $\varepsilon > 0$ and $P \subset \mathbb{R}^d$, we can compute an ε -coreset $S \subseteq P$ of size at most $|S| = O(1/\varepsilon^{d-1})$ in O(n) time (where d is a fixed constant).

Proof. B is bounding box s.t. $c_d B \subset \operatorname{conv}(P) \subset B$

(takes $O(d^2n)$)

Let $M = \lceil \frac{2}{\varepsilon c_d} \rceil$, divide B into $M \times \cdots \times M$ grid Pillar of cell (i_1, \ldots, i_d) is (i_1, \ldots, i_{d-1})

For each of the M^{d-1} pillars, find max and min x_d -coordiante

Theorem. Given $\varepsilon > 0$ and $P \subset \mathbb{R}^d$, we can compute an ε -coreset $S \subseteq P$ of size at most $|S| = O(1/\varepsilon^{d-1})$ in O(n) time (where d is a fixed constant).

Proof. B is bounding box s.t. $c_d B \subset \operatorname{conv}(P) \subset B$

(takes $O(d^2n)$)

Let $M = \lceil \frac{2}{\varepsilon c_d} \rceil$, divide B into $M \times \cdots \times M$ grid Pillar of cell (i_1, \ldots, i_d) is (i_1, \ldots, i_{d-1})

For each of the M^{d-1} pillars, find max and min x_d -coordiante

 $|S| = 2M^{d-1} = O(1/\varepsilon^{d-1})$, need: S is coreset

Coreset from pillars

Let Q = union of cells containg a point of S.

 $P \subset \operatorname{conv}(Q) \Rightarrow \operatorname{wd}(v, \operatorname{conv}(Q)) \ge \operatorname{wd}(v, P)$ for all v

Coreset from pillars

Let Q = union of cells containg a point of S.

 $P \subset \operatorname{conv}(Q) \Rightarrow \operatorname{wd}(v, \operatorname{conv}(Q)) \geq \operatorname{wd}(v, P) \text{ for all } v$

 $\mathrm{wd}(v,S) + 2\mathrm{wd}(v,B/M) \ge \mathrm{wd}(v,Q) \ge \mathrm{wd}(v,P)$

Coreset from pillars Let Q = union of cells containg a point of S. $P \subset \operatorname{conv}(Q) \Rightarrow \operatorname{wd}(v, \operatorname{conv}(Q)) \ge \operatorname{wd}(v, P)$ for all v $\operatorname{wd}(v, S) + 2\operatorname{wd}(v, B/M) \ge \operatorname{wd}(v, Q) \ge \operatorname{wd}(v, P)$ Let $s \in \mathbb{R}^d, c_d > 0$ such that $s + c_d B \subset \operatorname{conv}(P)$ $\operatorname{wd}(B/M) = \frac{\operatorname{wd}(B)}{M} = \frac{\operatorname{wd}(c_d B)}{c_d M}$ 0 $\leq \frac{\operatorname{wd}(P)}{c_{1}M} \leq \frac{\operatorname{wd}(P)}{2/\varepsilon} = \frac{\varepsilon}{2}\operatorname{wd}(v, P)$ pillars

Better coreset, other uses

Theorem. Given $\varepsilon > 0$ and $P \subset \mathbb{R}^d$, we can compute an $\varepsilon/2$ -coreset $S \subseteq P$ of size at most $|S| = O(1/\varepsilon^{(d-1)/2})$ in $O(n+1/\varepsilon^{3(d-1)/2})$ time (where d is a fixed constant).

Proof ideas:

- two stages: first the previous algo. for $\varepsilon/2$ gives S, then this (slower) algorithm for $\varepsilon/2$ on S
- make $\operatorname{conv}(P)$ fat via affine transformation into unit hypercube
- find small enclosing ball B (radius \sqrt{d})
- $X := a \ c \sqrt{\varepsilon}$ -packing in ∂B
- Let S = nearest point to each $x \in X$

Better coreset, other uses

Theorem. Given $\varepsilon > 0$ and $P \subset \mathbb{R}^d$, we can compute an $\varepsilon/2$ -coreset $S \subseteq P$ of size at most $|S| = O(1/\varepsilon^{(d-1)/2})$ in $O(n+1/\varepsilon^{3(d-1)/2})$ time (where d is a fixed constant).

Proof ideas:

- two stages: first the previous algo. for $\varepsilon/2$ gives S, then this (slower) algorithm for $\varepsilon/2$ on S
- make $\operatorname{conv}(P)$ fat via affine transformation into unit hypercube
- find small enclosing ball B (radius \sqrt{d})
- $X := a \ c \sqrt{\varepsilon}$ -packing in ∂B
- Let S = nearest point to each $x \in X$

Coresetes have been used for

- width, diameter
- clustering (k-means)

and in streaming, dynamic problems, online algorithms, machine learnig, etc.

Planar graphs: *r*-division (Frederickson 1986)

Balanced separator for a subset

Observation. Given planar graph G = (V, E) and a vertex set $W \subset V$, G has separator of size $O(\sqrt{n})$ s.t. each side has $\leq 36/37|W|$ vertices from W.

Proof.

Start proof with smallest square that encloses $\geq |W|/37$ disks from W.

r-divisions

Theorem There are constants c_1, c_2, c_3 s.t. for any $r \in \mathbb{Z}_+$ and planar graph G, there is a boundary set X of size $\leq c_1 n/\sqrt{r}$ and a partition of $V \setminus X$ into n/r sets $V_1, \ldots, V_{n/r}$ satisfying

• $|V_i| \le c_2 r$

•
$$N(V_i) \cap V_j = \emptyset$$
 if $i \neq j$

• $|N(V_i) \cap X| \le c_3\sqrt{r}$

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size $\leq c_2 r$ X := union of separators throughout. group size \checkmark group number \checkmark disjointness \checkmark

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size $\leq c_2 r$ X := union of separators throughout. group size \checkmark group number \checkmark disjointness \checkmark

$$\begin{aligned} X| &\leq c\sqrt{n} + 2\sqrt{\frac{2}{3}n} + \dots + 2^{i}\sqrt{\left(\frac{2}{3}\right)^{i}n} \\ &= c\sqrt{n} \sum_{i=0}^{\log_{3/2}(n/r)} (2\sqrt{2/3})^{i} \end{aligned}$$

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size $\leq c_2 r$ X := union of separators throughout. group size \checkmark group number \checkmark disjointness \checkmark

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size $\leq c_2 r$ X := union of separators throughout. group size \checkmark group number \checkmark disjointness \checkmark

Separator divides into size αn and $(1 - \alpha)n$ for some $\alpha \in [\frac{1}{3}, \frac{2}{3}]$.

$$X(n) \leq c\sqrt{n} + X(\alpha n) + X((1-\alpha)n)$$
 if $n > r$, else $X(n) = 0$

With substitution and indction, $|X| = X(n) = c_1 n / \sqrt{r}$

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size $\leq c_2 r$ X := union of separators throughout. group size \checkmark group number \checkmark disjointness \checkmark

Separator divides into size αn and $(1 - \alpha)n$ for some $\alpha \in [\frac{1}{3}, \frac{2}{3}]$.

$$X(n) \leq c\sqrt{n} + X(\alpha n) + X((1-\alpha)n)$$
 if $n > r$, else $X(n) = 0$

With substitution and indction, $|X| = X(n) = c_1 n / \sqrt{r}$

Still need small boundaries for each group!

Idea: while $N(V_i) \cap X > c_3\sqrt{r}$, separate $N(V_i)$ with balance wrt. $N(V_i) \cap X$. Gives $O(n/\sqrt{r})$ new boundary vertices and O(n/r) new groups