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The John ellipsoid

Ellipsoid : picture of unit ball under invertible linear
transformation

Theorem. Any compact convex object K ⊂ Rd has a unique
maximum volume ellipsoid E ⊆ K.



The John ellipsoid

Ellipsoid : picture of unit ball under invertible linear
transformation

Theorem. Any compact convex object K ⊂ Rd has a unique
maximum volume ellipsoid E ⊆ K.

Theorem (John 1948). For any compact convex K ⊂ Rd

with E centered at the origin, E ⊆ K ⊆ dE .



Minimum volume bounding box

Min. volume bounding box of P : smallest volume box (of
arbitrary rotation) containing P

Theorem. A bounding box B of P can be computed in
O(d2n) time s.t.

(i) Vol(Bopt(P )) ≤ Vol(B) ≤ 2dd!Vol(Bopt(P ))

and (ii) there is a shift x ∈ Rd and c > 0 that depends only on
d, s.t. x+ cB ⊂ conv(P ).



Minimum volume bounding box

Proof.

Let s ∈ P arbitrary and let s′ ∈ P most distant form s.
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Minimum volume bounding box

Proof.

Let s ∈ P arbitrary and let s′ ∈ P most distant form s.
If t, t′ realize the diameter of P , then

diam(P ) = |tt′| ≤ |ts|+ |st′| ≤ 2|ss′|
Wlog. ss′ parallel to xd axis.
π := perpendicular projection to xd = 0.

Min. volume bounding box of P : smallest volume box (of
arbitrary rotation) containing P

Theorem. A bounding box B of P can be computed in
O(d2n) time s.t.

(i) Vol(Bopt(P )) ≤ Vol(B) ≤ 2dd!Vol(Bopt(P ))

and (ii) there is a shift x ∈ Rd and c > 0 that depends only on
d, s.t. x+ cB ⊂ conv(P ).



Induction setup

Use induction on dimension.

d = 1 trivial.
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xd = 0
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Q

B(Q)

Q := π(P )
B(Q) := bounding box of Q (induction)



Induction setup

Use induction on dimension.

d = 1 trivial.

s

s′

xd = 0

P

Q

B(Q)

Q := π(P )
B(Q) := bounding box of Q (induction) B

[z, z′]:= shortest iv on xd axis covering
projection of P

B := B(Q)× [z, z′]

xd = z

xd = z′



Induction setup

Use induction on dimension.

d = 1 trivial.

s

s′

xd = 0

P

Q

B(Q)

Q := π(P )
B(Q) := bounding box of Q (induction) B

[z, z′]:= shortest iv on xd axis covering
projection of P

B := B(Q)× [z, z′]

xd = z

xd = z′

Need: Vold(conv(P )) ≥ Vold(B)/(2dd!)



Shifting down, pyramid

q

Lo(q)
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conv(Q)

Upper hull conv↑(P ) as function:
Up : conv(Q)→ Rd is concave

Lower hull conv↓(P ) as function:
Lo : conv(Q)→ Rd is convex



Shifting down, pyramid

q

Lo(q)

Up(q)

conv(P )

conv(Q)

A

Upper hull conv↑(P ) as function:
Up : conv(Q)→ Rd is concave

Lower hull conv↓(P ) as function:
Lo : conv(Q)→ Rd is convex

Up− Lo is concave

⇒ A :=
⋃

q∈conv(Q)

[0, Up(q)− Lo(q)] is convex



Shifting down, pyramid

q

Lo(q)

Up(q)

conv(P )

conv(Q)

A

Upper hull conv↑(P ) as function:
Up : conv(Q)→ Rd is concave

Lower hull conv↓(P ) as function:
Lo : conv(Q)→ Rd is convex

Up− Lo is concave

⇒ A :=
⋃

q∈conv(Q)

[0, Up(q)− Lo(q)] is convex

At π(s), height of A is at least |ss′|.
A contains pyramid with base conv(Q) and pole length ≥ |ss′|.

s

s′



Bounding box approximation quality

Vold(B) ≥ Vold(Bopt)

≥ Vold(conv(P )) = Vold(A)

≥ Vol(pyramid)

≥ Vold−1(conv(Q))|ss′|
d

≥
Vold−1

(
B(Q)/(2d−1(d− 1)!)

)
2|ss′|

2d

≥ Vold−1(B(Q))|zz′|
2dd!

=
Vold(B)

2dd!



Bounding box approximation quality

Vold(B) ≥ Vold(Bopt)

≥ Vold(conv(P )) = Vold(A)

≥ Vol(pyramid)

≥ Vold−1(conv(Q))|ss′|
d

≥
Vold−1

(
B(Q)/(2d−1(d− 1)!)

)
2|ss′|

2d

≥ Vold−1(B(Q))|zz′|
2dd!

=
Vold(B)

2dd!

Running time: T (n, d) = O(nd) + T (n, d− 1)
⇒ Runs in O(nd2). (i)



Coreset for directional width, usage



Directional width

v

Definition. The directional width of P ⊂ Rd w.r.t.
v ∈ Rd \ {0} is

wd(v, P ) := max
p∈P
〈v, p〉 −min

p∈P
〈v, p〉

wd(v, P )



Directional width

v

Definition. The directional width of P ⊂ Rd w.r.t.
v ∈ Rd \ {0} is

wd(v, P ) := max
p∈P
〈v, p〉 −min

p∈P
〈v, p〉

wd(v, P )

Properties:
• translation invariant
• scales linearly
• wd(v, P ) = wd(v, conv(P ))
• monotone: if Q ⊂ P , then

wd(v,Q) ≤ wd(v, P )



Coreset for directional width

Definition. The set S ⊂ P is an ε-coreset for directional
width if for every unit vector v

wd(v, S) ≥ (1− ε)wd(v, P )
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Coreset for directional width

Definition. The set S ⊂ P is an ε-coreset for directional
width if for every unit vector v

wd(v, S) ≥ (1− ε)wd(v, P )

• Captures the geometry of P , and (hopefully) is much
smaller than P .

• If S is ε-coreset of S′ and S′ is ε′-coreset of P , then S is
(ε+ ε′)-coreset of P

• If S is ε-coreset of P and S′ is ε-coreset of P ′, then S ∪ S′
is ε-coreset of P ∪ P ′



Usage 1: min volume bounding box

Proof.

Lemma. Let ε > 0, P ⊂ Rd, and let S be a δ-coreset of P for
directional width (δ = ε/(8d)). Then

Vol((1 + 3δ)B(S)) ≤ (1 + ε)Vol(B(P )).

and (1 + 3δ)B(S) contains P .



Usage 1: min volume bounding box

Proof.

Lemma. Let ε > 0, P ⊂ Rd, and let S be a δ-coreset of P for
directional width (δ = ε/(8d)). Then

Vol((1 + 3δ)B(S)) ≤ (1 + ε)Vol(B(P )).

and (1 + 3δ)B(S) contains P .

Volume claim: (1 + 3δ)d < (1 + ε)

Need: B := (1 + 3δ)B(S) contains P



Projecting to a line
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Projecting to a line

S

B(S)

B

v

wd(v, P )

p q r r′q′p′t

(1− δ)|qq′| ≤ |rr′| = 2|tr| as S is δ-coreset.

|tq| ≤ |tr|+ δ|qq′| ≤
(
1 +

2δ

1− δ

)
|tr| ≤ (1 + 3δ)|tr| = |tp|



Usage 2: minimum enclosing ball

Lemma. If S is an ε/4-coreset of P for directional width, then
(1 + ε)B(S) contains P .

Proof.
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Lemma. If S is an ε/4-coreset of P for directional width, then
(1 + ε)B(S) contains P .

Proof.

v

pSuppose p ∈ P is outside (1 + ε)B(S)

B(S)

(1+ε)B(S)

p′

o

a
b

⇒ |op′| > |ob| = (1 + ε)|oa|

a′



Usage 2: minimum enclosing ball

Lemma. If S is an ε/4-coreset of P for directional width, then
(1 + ε)B(S) contains P .

Proof.

v

pSuppose p ∈ P is outside (1 + ε)B(S)

B(S)

(1+ε)B(S)

p′

o

a
b

⇒ |op′| > |ob| = (1 + ε)|oa|

a′

wd(v, S) ≤ 1
1+ε/2wd(v, P ) < (1− ε

4 )wd(v, P )

wd(v,P )−wd(v,S) ≥ ε
2 |aa

′| ≥ ε
2wd(v,S)



Computing a coreset for directional

width (Agarwal, Har-Peled,

Varadarajan 2004)



Coreset computation: partition into pillars

Theorem. Given ε > 0 and P ⊂ Rd, we can compute an
ε-coreset S ⊆ P of size at most |S| = O(1/εd−1) in O(n) time
(where d is a fixed constant).



Coreset computation: partition into pillars

Proof.
B is bounding box s.t. cdB ⊂ conv(P ) ⊂ B

(takes O(d2n))

Let M = d 2
εcd
e, divide B into M × · · · ×M grid

Pillar of cell (i1, . . . , id) is (i1, . . . , id−1)
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(where d is a fixed constant).
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εcd
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S
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ε-coreset S ⊆ P of size at most |S| = O(1/εd−1) in O(n) time
(where d is a fixed constant).



Coreset computation: partition into pillars

Proof.
B is bounding box s.t. cdB ⊂ conv(P ) ⊂ B

(takes O(d2n))

Let M = d 2
εcd
e, divide B into M × · · · ×M grid

Pillar of cell (i1, . . . , id) is (i1, . . . , id−1)

For each of the Md−1 pillars, find max and min xd-coordiante

S

|S| = 2Md−1 = O(1/εd−1), need: S is coreset

Theorem. Given ε > 0 and P ⊂ Rd, we can compute an
ε-coreset S ⊆ P of size at most |S| = O(1/εd−1) in O(n) time
(where d is a fixed constant).



Coreset from pillars

Let Q = union of cells containg a point of S.

P ⊂ conv(Q)⇒ wd(v, conv(Q)) ≥ wd(v, P ) for all v

S

B

pillars

Q

P



Coreset from pillars

Let Q = union of cells containg a point of S.

P ⊂ conv(Q)⇒ wd(v, conv(Q)) ≥ wd(v, P ) for all v

wd(v, S) + 2wd(v,B/M) ≥ wd(v,Q) ≥ wd(v, P )

S

B

pillars

Q

P



Coreset from pillars

Let Q = union of cells containg a point of S.

P ⊂ conv(Q)⇒ wd(v, conv(Q)) ≥ wd(v, P ) for all v

wd(v, S) + 2wd(v,B/M) ≥ wd(v,Q) ≥ wd(v, P )

S

B

pillars

Q

P

wd(B/M) =
wd(B)

M
=

wd(cdB)

cdM

≤ wd(P )

cdM
≤ wd(P )

2/ε
=
ε

2
wd(v, P )

Let s ∈ Rd, cd > 0 such that
s+ cdB ⊂ conv(P )



Better coreset, other uses

Theorem. Given ε > 0 and P ⊂ Rd, we can compute an
ε/2-coreset S ⊆ P of size at most |S| = O(1/ε(d−1)/2) in
O(n+ 1/ε3(d−1)/2) time (where d is a fixed constant).

Proof ideas:
• two stages: first the previous algo. for ε/2 gives S, then this (slower)

algorithm for ε/2 on S
• make conv(P ) fat via affine transformation into unit hypercube
• find small enclosing ball B (radius

√
d)

• X := a c
√
ε-packing in ∂B

• Let S = nearest point to each x ∈ X



Better coreset, other uses

Theorem. Given ε > 0 and P ⊂ Rd, we can compute an
ε/2-coreset S ⊆ P of size at most |S| = O(1/ε(d−1)/2) in
O(n+ 1/ε3(d−1)/2) time (where d is a fixed constant).

Coresetes have been used for
• width, diameter
• clustering (k-means)

and in streaming, dynamic problems, online algorithms,
machine learnig, etc.

Proof ideas:
• two stages: first the previous algo. for ε/2 gives S, then this (slower)

algorithm for ε/2 on S
• make conv(P ) fat via affine transformation into unit hypercube
• find small enclosing ball B (radius

√
d)

• X := a c
√
ε-packing in ∂B

• Let S = nearest point to each x ∈ X



Planar graphs: r-divisionPlanar graphs: r-division

(Frederickson 1986)



Balanced separator for a subset

Observation. Given planar graph G = (V,E) and a vertex set
W ⊂ V , G has separator of size O(

√
n) s.t. each side has

≤ 36/37|W | vertices from W .

Proof.
Start proof with smallest square that encloses ≥ |W |/37 disks
from W .



r-divisions

Theorem There are constants c1, c2, c3 s.t. for any r ∈ Z+

and planar graph G, there is a boundary set X of size
≤ c1n/

√
r and a partition of V \X into n/r sets V1, . . . , Vn/r

satisfying
• |Vi| ≤ c2r
• N(Vi) ∩ Vj = ∅ if i 6= j
• |N(Vi) ∩X| ≤ c3

√
r

V1

Vn/r

X

Vi

N(Vi)



Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size ≤ c2r
X := union of separators throughout.

group size Xgroup number Xdisjointness X



Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size ≤ c2r
X := union of separators throughout.

group size Xgroup number Xdisjointness X

|X| ≤ c
√
n+ 2

√
2

3
n+ · · ·+ 2i

√(
2

3

)i

n

= c
√
n

log3/2(n/r)∑
i=0

(2
√

2/3)i



Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size ≤ c2r
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√
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= c
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Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size ≤ c2r
X := union of separators throughout.

group size Xgroup number Xdisjointness X

Separator divides into size αn and (1− α)n for some
α ∈ [ 13 ,

2
3 ].

X(n) ≤ c
√
n+X(αn) +X((1− α)n) if n > r, else X(n)=0

With substitution and indction, |X| = X(n) = c1n/
√
r



Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until sides have size ≤ c2r
X := union of separators throughout.

group size Xgroup number Xdisjointness X

Separator divides into size αn and (1− α)n for some
α ∈ [ 13 ,

2
3 ].

X(n) ≤ c
√
n+X(αn) +X((1− α)n) if n > r, else X(n)=0

With substitution and indction, |X| = X(n) = c1n/
√
r

Still need small boundaries for each group!

Idea: while N(Vi) ∩X > c3
√
r , separate N(Vi) with balance

wrt. N(Vi) ∩X.
Gives O(n/

√
r) new boundary vertices and O(n/r) new groups


