Local Search for Hitting Set and Set Cover

Sándor Kisfaludi-Bak

Computaional Geometry Summer semester 2020

• r-divisions in planar graphs

- r-divisions in planar graphs
- Hitting set and set cover via local search

- r-divisions in planar graphs
- Hitting set and set cover via local search
- The locality condition

- r-divisions in planar graphs
- Hitting set and set cover via local search
-
- The locality condition
• Locality condition for halfspaces

Balanced separator for a subset

Observation. Given planar graph $G = (V, E)$ and a vertex set $W\subset V$, G has separator of size $O(\sqrt{n})$ s.t. each side has √ $\leq 36/37|W|$ vertices from W.

Proof.

Start proof with smallest square that encloses $\geq |W|/37$ disks from W.

r-divisions

Theorem (Frederickson 1987) For any $r \in \mathbb{Z}_+$ and planar graph G, there are $O(n/r)$ vertex sets V_1, V_2, \ldots satisfying

- every edge is induced by some V_i
- $\bullet \ |V_i| \leq r$
- \bullet small boundaries: $\partial V_i = V_i \cap (\bigcup_{j \neq i} V_j)$, $|\partial V_i| = O(\delta)$ √ $\overline{r})$
- small total boundary set: $\sum_i |\partial V_i| = O(n/\sqrt{r})$

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

- $X :=$ union of separators throughout.
- V_i : final group+neighborhood

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

- $X :=$ union of separators throughout.
- V_i : final group+neighborhood

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

- $X :=$ union of separators throughout.
- V_i : final group+neighborhood

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

- $X :=$ union of separators throughout.
- V_i : final group+neighborhood

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

- $X :=$ union of separators throughout.
- V_i : final group+neighborhood

group size \sqrt{g} roup number \sqrt{g} edge covering \sqrt{g}

Still need $\partial W := W \cap X$ is small!

Idea: if $\partial W > c \sqrt{|W|}$, separate W with balance wrt. ∂W .

Hitting set via local search (Mustafa–Ray; Chan–Har-Peled 2008)

Hitting set for halfspaces

Hitting set

Given a set $P \subset \mathbb{R}^d$ of points and a set $\mathcal{D} \subset 2^{\mathbb{R}^d}$ of ranges, find minimum size $Q \subset P$ such that all ranges are "hit": for any $D \in \mathcal{D}$, $D \cap Q \neq \emptyset$.

Hitting set for halfspaces

Hitting set

Given a set $P \subset \mathbb{R}^d$ of points and a set $\mathcal{D} \subset 2^{\mathbb{R}^d}$ of ranges, find minimum size $Q \subset P$ such that all ranges are "hit": for any $D \in \mathcal{D}$, $D \cap Q \neq \emptyset$.

E.g.: hitting disks, hitting triangles, hitting halfspaces in \mathbb{R}^3

Hitting set for halfspaces

Hitting set

Given a set $P \subset \mathbb{R}^d$ of points and a set $\mathcal{D} \subset 2^{\mathbb{R}^d}$ of ranges, find minimum size $Q \subset P$ such that all ranges are "hit": for any $D \in \mathcal{D}$, $D \cap Q \neq \emptyset$.

APX-hard even for fat triangles

E.g.: hitting disks, hitting triangles, hitting halfspaces in \mathbb{R}^3

For each disk $D \in \mathcal{D}$, take ball B touching v and $B \cap H = D$ Inversion with center v maps each ball to halfspace. $H \searrow$ Point-disk containment is preserved

Local search for hitting set / set cover Dualized hitting set: find minimum set of halfspaces to hit all points = Geometric Set Cover!

Local search for hitting set / set cover Dualized hitting set: find minimum set of halfspaces to hit all points = Geometric Set Cover!

Local search:

Given a feasible hitting set Q , a valid local search step removes k elements of Q and adds $k-1$ other elements so that the result is still a feasible hitting set.

A feasible hitting set Q is k-locally optimal if there are no valid local search steps.

Local search for hitting set / set cover Dualized hitting set: find minimum set of halfspaces to hit all points = Geometric Set Cover!

Local search:

Given a feasible hitting set Q , a valid local search step removes k elements of Q and adds $k-1$ other elements so that the result is still a feasible hitting set.

A feasible hitting set Q is k-locally optimal if there are no valid local search steps.

 $n = |P|, m = |Q|$ Running time of k-local search is $O(n^{2k+1}m)$ (or better)

Local search for hitting set / set cover Dualized hitting set: find minimum set of halfspaces to hit all

points = Geometric Set Cover!

Local search:

Given a feasible hitting set Q , a valid local search step removes k elements of Q and adds $k-1$ other elements so that the result is still a feasible hitting set.

A feasible hitting set Q is k-locally optimal if there are no valid local search steps.

 $n = |P|, m = |Q|$ Running time of k-local search is $O(n^{2k+1}m)$ (or better)

Theorem (Mustafa–Ray 2010). There is a $c > 0$ such that the (c/ε^2) -locally optimal hitting set for halfspaces in \mathbb{R}^3 is a $(1 + \varepsilon)$ -approximation of the minimum hitting set.

The locality condition

Locality condition

Definition. A range space (P, D) has the locality condition if for any pair of disjoint sets $R, B \subset P$ there is a planar bipartite graph G bewteen R and B s.t. for any $D \in \mathcal{D}$ intersecting both R and B we have some $uv \in E(G)$ with $u \in D \cap R$ and $v \in D \cap R$.

Locality condition

Definition. A range space (P, D) has the locality condition if for any pair of disjoint sets $R, B \subset P$ there is a planar bipartite graph G bewteen R and B s.t. for any $D \in \mathcal{D}$ intersecting both R and B we have some $uv \in E(G)$ with $u \in D \cap R$ and $v \in D \cap R$.

Example: disks in the plane G: subgraph of Delaunay triangulation of $P' = R \cup B$

Locality condition

Definition. A range space (P, D) has the locality condition if for any pair of disjoint sets $R, B \subset P$ there is a planar bipartite graph G bewteen R and B s.t. for any $D \in \mathcal{D}$ intersecting both R and B we have some $uv \in E(G)$ with $u \in D \cap R$ and $v \in D \cap R$.

Example: disks in the plane

G: subgraph of Delaunay triangulation of $P' = R \cup B$

Claim. For any disk $D \subset \mathbb{R}^2$, $DT(P')|_{P' \cap D}$ is connected.

⇒ For $u \in D \cap R$ and $v \in D \cap B$, there is a conencting path in $DT(D\cap P')$, which contains red-blue edge

Theorem. (P, D) is range space satisfying locality condition, R is optimal hitting set, B is k-locally optimal, and $R \cap B = \emptyset$. Then there is planar $G = (R, B, E)$ s.t. for all $B' \subset B$ with $|B'| \leq k$, we have large neighborhood: $|N(B')| \geq |B'|$

Theorem. (P, D) is range space satisfying locality condition, R is optimal hitting set, B is k-locally optimal, and $R \cap B = \emptyset$. Then there is planar $G = (R, B, E)$ s.t. for all $B' \subset B$ with $|B'| \leq k$, we have large neighborhood: $|N(B')| \geq |B'|$

Proof. B and R are both hitting sets \Rightarrow every range has ≥ 1 pt from both If $B' \subset B$, then $(B \setminus B') \cup N(B')$ is hitting: if only B' hits D from B , then some $b \in B'$ has red neighbor hitting D , otherwise $B \setminus B'$ hits D .

Theorem. (P, D) is range space satisfying locality condition, R is optimal hitting set, B is k-locally optimal, and $R \cap B = \emptyset$. Then there is planar $G = (R, B, E)$ s.t. for all $B' \subset B$ with $|B'| \leq k$, we have large neighborhood: $|N(B')| \geq |B'|$

Proof. B and R are both hitting sets \Rightarrow every range has ≥ 1 pt from both If $B' \subset B$, then $(B \setminus B') \cup N(B')$ is hitting:

if only B' hits D from B , then some $b \in B'$ has red neighbor hitting D , otherwise $B \setminus B'$ hits D .

But for $|B'| \leq k$ there is no valid local search step.

Theorem. (P, D) is range space satisfying locality condition, R is optimal hitting set, B is k-locally optimal, and $R \cap B = \emptyset$. Then there is planar $G = (R, B, E)$ s.t. for all $B' \subset B$ with $|B'| \leq k$, we have large neighborhood: $|N(B')| \geq |B'|$

Proof. B and R are both hitting sets \Rightarrow every range has ≥ 1 pt from both

If $B' \subset B$, then $(B \setminus B') \cup N(B')$ is hitting:

if only B' hits D from B , then some $b \in B'$ has red neighbor hitting D ,

otherwise $B \setminus B'$ hits D .

But for $|B'| \leq k$ there is no valid local search step.

If $R \cap B = I \neq \emptyset$, then let $\mathcal{D}' =$ ranges not hit by I. Use the same on $(P \setminus I, \mathcal{D}')$. If B_0 is $(1 + \varepsilon)$ -approx on $(P \setminus I, \mathcal{D}') \to B_0 \cup I$ is $(1 + \varepsilon)$ -approx on (P, \mathcal{D})

Theorem. Let $G = (R, B, E)$ bipartite planar, s.t. for every $B' \subset B$ of size $|B'| \leq k$, $|N(B')| \geq |B'|$. for every $B'\subset B$ of size $|B'|\leq k,$ $|N(B')|\geq |B|$. Then $|B|\leq (1+c/\sqrt{k})|R|$ for some constant $c.$

Theorem. Let $G = (R, B, E)$ bipartite planar, s.t. for every $B' \subset B$ of size $|B'| \leq k$, $|N(B')| \geq |B'|$. for every $B'\subset B$ of size $|B'|\leq k,$ $|N(B')|\geq |B|$. Then $|B|\leq (1+c/\sqrt{k})|R|$ for some constant $c.$

Proof. $r := |R|, b := |B|,$ Use k-division of $G. \rightarrow V_1, V_2, \ldots$ V_i has boundary $V_i \cap (\bigcup_{j \neq i} V_j)$ and interior $V_i \setminus (\bigcup_{j \neq i} V_j).$ r_{i}^{∂} $i^{\partial}, b_i^{\partial}, r_i^{int}, b_i^{int}: \#$ red/blue in V_i in boundary and interior.

Theorem. Let $G = (R, B, E)$ bipartite planar, s.t. for every $B' \subset B$ of size $|B'| \leq k$, $|N(B')| \geq |B'|$. for every $B'\subset B$ of size $|B'|\leq k,$ $|N(B')|\geq |B|$. Then $|B|\leq (1+c/\sqrt{k})|R|$ for some constant $c.$

Proof. $r := |R|, b := |B|,$ Use k-division of $G. \rightarrow V_1, V_2, \ldots$ V_i has boundary $V_i \cap (\bigcup_{j \neq i} V_j)$ and interior $V_i \setminus (\bigcup_{j \neq i} V_j).$ r_{i}^{∂} $i^{\partial}, b_i^{\partial}, r_i^{int}, b_i^{int}: \#$ red/blue in V_i in boundary and interior. √

 \bullet $\sum_i (r_i^{\partial}$ $\frac{\partial}{\partial i} + b_i^{\partial}$ $\binom{b}{i} \leq \gamma(r+b)$ k (γ = const) (by k-division)

Theorem. Let $G = (R, B, E)$ bipartite planar, s.t. for every $B' \subset B$ of size $|B'| \leq k$, $|N(B')| \geq |B'|$. for every $B'\subset B$ of size $|B'|\leq k,$ $|N(B')|\geq |B|$. Then $|B|\leq (1+c/\sqrt{k})|R|$ for some constant $c.$

Proof.
$$
r := |R|, b := |B|
$$
,
\nUse *k*-division of $G. \rightarrow V_1, V_2,...$
\n V_i has boundary $V_i \cap (\bigcup_{j \neq i} V_j)$ and interior $V_i \setminus (\bigcup_{j \neq i} V_j)$.
\n $r_i^{\partial}, b_i^{\partial}, r_i^{int}, b_i^{int} : \# \text{ red/blue in } V_i$ in boundary and interior.
\n• $\sum_i (r_i^{\partial} + b_i^{\partial}) \le \gamma (r + b) / \sqrt{k}$ ($\gamma = \text{const}$) (by *k*-division)
\n• $b_i^{int} \le r_i^{int} + r_i^{\partial}$ ($b_i^{int} \le k$ so it has large neighborhood)
\n $b_i^{int} + b_i^{\partial} \le r_i^{int} + r_i^{\partial} + b_i^{\partial}$
\n $b \le \sum_i (b_i^{int} + b_i^{\partial}) \le \sum_i r_i^{int} + \sum_i (r_i^{\partial} + b_i^{\partial}) \le r + \gamma (r + b) / \sqrt{k}$

Locality condition wrap-up

$$
b \le r + \gamma (r + b) / \sqrt{k}
$$

If $k \geq 4\gamma^2$, then

$$
b \le r \frac{1 + \gamma/\sqrt{k}}{1 - \gamma/\sqrt{k}} \le \dots \le r(1 + c/\sqrt{k})
$$

Locality condition wrap-up

$$
b \le r + \gamma (r + b) / \sqrt{k}
$$

If $k \geq 4\gamma^2$, then

$$
b \le r \frac{1 + \gamma/\sqrt{k}}{1 - \gamma/\sqrt{k}} \le \dots \le r(1 + c/\sqrt{k})
$$

Theorem. Locality condition implies PTAS for hitting set with running time $n^{O(1/\varepsilon^2)}$.

Theorem. Hitting disks with points in \mathbb{R}^2 has a PTAS with running time $n^{O(\tilde{1}/\varepsilon^2)}$.

Locality condition for half-spaces

Radon's theorem

Theorem (Radon, 1921) Any set of $d+2$ points in \mathbb{R}^d can be partitioned into two subsets whose convex hulls intersect.

Radon's theorem

Theorem (Radon, 1921) Any set of $d+2$ points in \mathbb{R}^d can be partitioned into two subsets whose convex hulls intersect.

Proof. Let
$$
P = \{p_1, ..., p_{d+2}\}.
$$

There exists $\lambda_1, ..., \lambda_{d+2}$ not all 0 s.t.

$$
\sum_{i=1}^{d+2} \lambda_i p_i = 0 \text{ and } \sum_{i=1}^{d+2} \lambda_i = 0.
$$

Let I: indices i where $\lambda_i > 0$. (denote remaining indices by J) Then $\sum_{i\in I}\lambda_i=-\sum_{j\in J}\lambda_j=:\mu$, thus

$$
p' := \sum_{i \in I} \frac{\lambda_i}{\mu} p_i = \sum_{j \in J} \frac{-\lambda_j}{\mu} p_j \in \text{conv}(P|I) \cap \text{conv}(P|J)
$$

Locality for half-spaces: graph and embedding Recall: R and B disjoint hitting sets for a set D of half-spaces. Need bipartite planar graph G on $R \cup B$, s.t. for any $D \in \mathcal{D}$ containing both red and blue, there is an edge induced.

Locality for half-spaces: graph and embedding Recall: R and B disjoint hitting sets for a set D of half-spaces. Need bipartite planar graph G on $R \cup B$, s.t. for any $D \in \mathcal{D}$ containing both red and blue, there is an edge induced.

Guess $o \in P$ from hitting set, remove $D \in \mathcal{D}$ that contains o . \Rightarrow wlog. \emph{o} outside $\bigcup_{D \in \mathcal{D}} D$

Locality for half-spaces: graph and embedding Recall: R and B disjoint hitting sets for a set D of half-spaces. Need bipartite planar graph G on $R \cup B$, s.t. for any $D \in \mathcal{D}$ containing both red and blue, there is an edge induced.

Guess $o \in P$ from hitting set, remove $D \in \mathcal{D}$ that contains o. \Rightarrow wlog. \emph{o} outside $\bigcup_{D \in \mathcal{D}} D$

Two stages:

- Add all red-blue edges of $C := \partial \text{conv}(R \cup B)$ to G , triangulate faces of C
- For $p \in (R \cup B) \setminus C$, let p' be point where $\text{ray}(o, p)$ exits C Define edges of p via p' in a triangle of C . \Rightarrow results in planar graph on C

If there is a corner c s.t. there is no halfspace $h\subset \mathbb{R}^3$ containing only b,c among $B_T\cup \{c_1,c_2,c_3,o\}$, then connect b' $\begin{array}{ccc}\n c_1 \overbrace{\hspace{1.5cm}} \\
\text{If there is a corner } c \\
\text{containing only } b, c \\
\text{to other two corners}\n \end{array}$

If there is a corner c s.t. there is no halfspace $h\subset \mathbb{R}^3$ containing only b,c among $B_T\cup \{c_1,c_2,c_3,o\}$, then connect b' $\begin{array}{ccc}\n c_1 \overbrace{\hspace{1.5cm}} \\
\text{If there is a corner } c \\
\text{containing only } b, c \\
\text{to other two corners}\n \end{array}$

Claim. For all but one $b \in B_T$ there is such a corner.

Corner connections via Radon's thm

Claim. For all but one $b \in B_T$ there is a corner c s.t. there is no halfspace containing just b,c among $B_T\cup\{o,c_1,c_2,c_3\}.$

Proof. by contradiction: assume $b_1, b_2 \in B_T$ have no good corner. There are halfspaces containing exactly $b_ic_j\ (i=1,2;j=1,2,3)$ among $F:=\{b_1,b_2,c_1,c_2,c_3\}$

Corner connections via Radon's thm

Claim. For all but one $b \in B_T$ there is a corner c s.t. there is no halfspace containing just b,c among $B_T\cup\{o,c_1,c_2,c_3\}.$

Proof. by contradiction: assume $b_1, b_2 \in B_T$ have no good corner. There are halfspaces containing exactly $b_ic_j\ (i=1,2;j=1,2,3)$ among $F:=\{b_1,b_2,c_1,c_2,c_3\}$

 F in convex position. Radon thm gives 2:3 partition of F .

There is plane separating b_1, b_2 from corners

 \Rightarrow wlog. conv $(b_1, c_1) \cap \text{conv}(b_2, c_2, c_3) \neq \emptyset$.

Corner connections via Radon's thm

Claim. For all but one $b \in B_T$ there is a corner c s.t. there is no halfspace containing just b,c among $B_T\cup\{o,c_1,c_2,c_3\}.$

Proof. by contradiction: assume $b_1, b_2 \in B_T$ have no good corner. There are halfspaces containing exactly $b_ic_j\ (i=1,2;j=1,2,3)$ among $F:=\{b_1,b_2,c_1,c_2,c_3\}$

 F in convex position. Radon thm gives 2:3 partition of F .

There is plane separating b_1, b_2 from corners

 \Rightarrow wlog. conv $(b_1, c_1) \cap \text{conv}(b_2, c_2, c_3) \neq \emptyset$.

 \Rightarrow there is no halfspace containg exactly b_1, c_1

Lemma. Halfspaces have the locality property, and it is witnessed by G .

G is planar bipartite. $\sqrt{}$ Need: any halfspace with $red+blue$ induces some edge.

Lemma. Halfspaces have the locality property, and it is witnessed by G .

G is planar bipartite. $\sqrt{}$ Need: any halfspace with $red+blue$ induces some edge.

• If $D \in \mathcal{D}$ contains red and blue from C , then there is bichromatic triangle \checkmark

Lemma. Halfspaces have the locality property, and it is witnessed by G .

G is planar bipartite. \checkmark Need: any halfspace with $red+blue$ induces some edge.

- If $D \in \mathcal{D}$ contains red and blue from C , then there is bichromatic triangle \checkmark
- Let $D' \subset D$ be halfspace parallel to ∂D , smallest that contains both red and blue. D' has 1 blue b on its boundary. $o \notin D \Rightarrow o \notin D'$ \Rightarrow D' has ≥ 1 corner c of the traingle of b' .

Lemma. Halfspaces have the locality property, and it is witnessed by G .

 G is planar bipartite. G is planar bipartite. \checkmark
Need: any halfspace with red+blue induces some edge.

- If $D \in \mathcal{D}$ contains red and blue from C , then there is bichromatic triangle $\sqrt{}$
- Let $D' \subset D$ be halfspace parallel to ∂D , smallest that contains both red and blue. D' has 1 blue b on its boundary. $o \notin D \Rightarrow o \notin D'$ \Rightarrow D' has ≥ 1 corner c of the traingle of b' . If D' contains c, c' , then at least one connects to b . If D' contains just c, then $bc \in E(G)$ by def of G.

Halfspace wrap-up

Theorem. (Mustafa–Ray 2010) Hitting halfspaces with points in \mathbb{R}^3 has a PTAS with running time $n^{O(1/\varepsilon^2)}$.

Halfspace wrap-up

Theorem. (Mustafa–Ray 2010) Hitting halfspaces with points in \mathbb{R}^3 has a PTAS with running time $n^{O(1/\varepsilon^2)}$.

- APX-hard in $\mathbb{R}^{\geq 4}$
- Locality condition can be proved for several obejct types in \mathbb{R}^2 , for hitting/covering/packing Most general: hitting/covering/packing non-piercing objects
- $\bullet\,$ Analysis is tight: $k=o(1/\varepsilon^2)\,$ local search doesn't work
- $\bullet\,$ general lower bounds of $n^{\Omega(1/\varepsilon)}$

Halfspace wrap-up

Theorem. (Mustafa–Ray 2010) Hitting halfspaces with points in \mathbb{R}^3 has a PTAS with running time $n^{O(1/\varepsilon^2)}$.

- APX-hard in $\mathbb{R}^{\geq 4}$
- Locality condition can be proved for several obejct types in \mathbb{R}^2 , for hitting/covering/packing Most general: hitting/covering/packing non-piercing objects
- $\bullet\,$ Analysis is tight: $k=o(1/\varepsilon^2)\,$ local search doesn't work
- $\bullet\,$ general lower bounds of $n^{\Omega(1/\varepsilon)}$

Exact has matching lower bound.

Theorem. Hitting set of size k for halfspaces with points in \mathbb{R}^3 can be computed in time $n^{O(\sqrt{k})}.$ ∪ı
∖

In $\mathbb{R}^{\geq 4}$, there is $n^{\Omega(k)}$ lower bound.