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Balanced separator for a subset

Observation. Given planar graph G = (V,E) and a vertex set
W ⊂ V , G has separator of size O(

√
n) s.t. each side has

≤ 36/37|W | vertices from W .

Proof.
Start proof with smallest square that encloses ≥ |W |/37 disks
from W .



r-divisions

Vi

Theorem (Frederickson 1987) For any r ∈ Z+ and planar
graph G, there are O(n/r) vertex sets V1, V2, . . . satisfying
• every edge is induced by some Vi
• |Vi| ≤ r
• small boundaries: ∂Vi = Vi ∩ (

⋃
j 6=i Vj), |∂Vi| = O(

√
r)

• small total boundary set:
∑

i |∂Vi| = O(n/
√
r)



Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until size ≤ r
X := union of separators throughout.
Vi: final group+neighborhood

group size Xgroup number Xedge covering X
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Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until size ≤ r
X := union of separators throughout.
Vi: final group+neighborhood

group size Xgroup number Xedge covering X

Still need ∂W :=W ∩X is small!

Idea: if ∂W > c
√
|W |, separate W with balance wrt. ∂W .

|W | > r



Hitting set via local search

(Mustafa–Ray; Chan–Har-Peled 2008)



Hitting set for halfspaces

Hitting set

Given a set P ⊂ Rd of points and a set D ⊂ 2R
d

of ranges,
find minimum size Q ⊂ P such that all ranges are “hit”: for
any D ∈ D, D ∩Q 6= ∅.



Hitting set for halfspaces

Hitting set

Given a set P ⊂ Rd of points and a set D ⊂ 2R
d

of ranges,
find minimum size Q ⊂ P such that all ranges are “hit”: for
any D ∈ D, D ∩Q 6= ∅.

E.g.: hitting disks, hitting triangles, hitting halfspaces in R3



Hitting set for halfspaces

Hitting set

Given a set P ⊂ Rd of points and a set D ⊂ 2R
d

of ranges,
find minimum size Q ⊂ P such that all ranges are “hit”: for
any D ∈ D, D ∩Q 6= ∅.

E.g.: hitting disks, hitting triangles, hitting halfspaces in R3

APX-hard even for fat triangles

v

For each disk D ∈ D, take ball B
touching v and B ∩H = D
Inversion with center v maps each
ball to halfspace.
Point-disk containment is preservedH
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Local search for hitting set / set cover

Dualized hitting set: find minimum set of halfspaces to hit all
points = Geometric Set Cover!

Local search:
Given a feasible hitting set Q, a valid local search step removes
k elements of Q and adds k − 1 other elements so that the
result is still a feasible hitting set.

A feasible hitting set Q is k-locally optimal if there are no valid
local search steps.

n = |P |, m = |Q|
Running time of k-local search is O(n2k+1m) (or better)

Theorem (Mustafa–Ray 2010).There is a c > 0 such that
the (c/ε2)-locally optimal hitting set for halfspaces in R3 is a
(1 + ε)-approximation of the minimum hitting set.
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Definition. A range space (P,D) has the locality condition if
for any pair of disjoint sets R,B ⊂ P there is a planar bipartite
graph G bewteen R and B s.t. for any D ∈ D intersecting
both R and B we have some uv ∈ E(G) with u ∈ D ∩R and
v ∈ D ∩R.
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Definition. A range space (P,D) has the locality condition if
for any pair of disjoint sets R,B ⊂ P there is a planar bipartite
graph G bewteen R and B s.t. for any D ∈ D intersecting
both R and B we have some uv ∈ E(G) with u ∈ D ∩R and
v ∈ D ∩R.

Example: disks in the plane
G: subgraph of Delaunay triangulation of P ′ = R ∪B

G

B

R ⇒

For u ∈ D ∩R and v ∈ D ∩B,
there is a conencting path in
DT(D ∩ P ′), which contains
red-blue edge

Claim. For any disk D ⊂ R2,
DT (P ′)|P ′∩D is connected.



Locality implies larger neighborhoods

Theorem. (P,D) is range space satisfying locality condition,
R is optimal hitting set, B is k-locally optimal, and R∩B = ∅.
Then there is planar G = (R,B,E) s.t. for all B′ ⊂ B with
|B′| ≤ k, we have large neighborhood: |N(B′)| ≥ |B′|
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Theorem. (P,D) is range space satisfying locality condition,
R is optimal hitting set, B is k-locally optimal, and R∩B = ∅.
Then there is planar G = (R,B,E) s.t. for all B′ ⊂ B with
|B′| ≤ k, we have large neighborhood: |N(B′)| ≥ |B′|

Proof. B and R are both hitting sets
⇒ every range has ≥ 1 pt from both

If B′ ⊂ B, then (B \B′) ∪N(B′) is hitting:

if only B′ hits D from B, then some b ∈ B′ has red
neighbor hitting D,
otherwise B \B′ hits D.

But for |B′| ≤ k there is no valid local search step.

If R ∩B = I 6= ∅, then let D′ = ranges not hit by I.
Use the same on (P \ I,D′). If B0 is (1 + ε)-approx on
(P \ I,D′)→ B0 ∪ I is (1 + ε)-approx on (P,D)



B has large neighborhoods only if relatively small

Theorem. Let G = (R,B,E) bipartite planar, s.t.
for every B′ ⊂ B of size |B′| ≤ k, |N(B′)| ≥ |B′|.
Then |B| ≤ (1 + c/

√
k)|R| for some constant c.
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Theorem. Let G = (R,B,E) bipartite planar, s.t.
for every B′ ⊂ B of size |B′| ≤ k, |N(B′)| ≥ |B′|.
Then |B| ≤ (1 + c/
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k)|R| for some constant c.

Proof. r := |R|, b := |B|,
Use k-division of G. → V1, V2, . . .
Vi has boundary Vi ∩ (

⋃
j 6=i Vj) and interior Vi \ (

⋃
j 6=i Vj).

r∂i , b
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i , r

int
i , binti : # red/blue in Vi in boundary and interior.

•
∑

i(r
∂
i + b∂i ) ≤ γ(r + b)/

√
k (γ = const) (by k-division)

• binti ≤ rinti + r∂i (binti ≤ k so it has large neighborhood)

binti + b∂i ≤ rinti + r∂i + b∂i

b ≤
∑
i

(binti +b∂i ) ≤
∑
i

rinti +
∑
i

(r∂i +b
∂
i ) ≤ r+γ(r+b)/

√
k



b ≤ r + γ(r + b)/
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b ≤ r + γ(r + b)/
√
k

If k ≥ 4γ2, then

b ≤ r1 + γ/
√
k

1− γ/
√
k
≤ · · · ≤ r(1 + c/

√
k)

Locality condition wrap-up

Theorem. Locality condition implies PTAS for hitting set with
running time nO(1/ε2).

Theorem. Hitting disks with points in R2 has a PTAS with
running time nO(1/ε2).



Locality condition for half-spaces
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Theorem (Radon, 1921) Any set of d+ 2 points in Rd can
be partitioned into two subsets whose convex hulls intersect.



Radon’s theorem

Theorem (Radon, 1921) Any set of d+ 2 points in Rd can
be partitioned into two subsets whose convex hulls intersect.

Proof. Let P = {p1, . . . , pd+2}.
There exsists λ1, . . . , λd+2 not all 0 s.t.

d+2∑
i=1

λipi = 0 and
d+2∑
i=1

λi = 0.

Let I: indices i where λi > 0. (denote remaining indices by J)
Then

∑
i∈I λi = −

∑
j∈J λj =: µ, thus

p′ :=
∑
i∈I

λi
µ
pi =

∑
j∈J

−λj
µ

pj ∈ conv(P |I) ∩ conv(P |J)



Locality for half-spaces: graph and embedding

Recall: R and B disjoint hitting sets for a set D of half-spaces.
Need bipartite planar graph G on R ∪B, s.t. for any D ∈ D
containing both red and blue, there is an edge induced.
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Locality for half-spaces: graph and embedding

Recall: R and B disjoint hitting sets for a set D of half-spaces.
Need bipartite planar graph G on R ∪B, s.t. for any D ∈ D
containing both red and blue, there is an edge induced.

Guess o ∈ P from hitting set, remove D ∈ D that contains o.
⇒ wlog. o outside

⋃
D∈DD

Two stages:

• Add all red-blue edges of C := ∂conv(R ∪B) to G,
triangulate faces of C

• For p ∈ (R∪B) \C, let p′ be point where ray(o, p) exits C
Define edges of p via p′ in a triangle of C.
⇒ results in planar graph on C
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Defining G in a monochromatic triangle

T
BT := blue pts mapped to T

≤ 1 pt in BT connected to c1, c2, c3;
rest connected to two corners

How to select neighboring
corners for each b ∈ BT ?

If there is a corner c s.t. there is no halfspace h ⊂ R3

containing only b, c among BT ∪ {c1, c2, c3, o}, then connect b′

to other two corners

c1 c2

c3

Claim. For all but one b ∈ BT there is such a corner.
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assume b1, b2 ∈ BT have no good corner.
There are halfspaces containing exactly
bicj (i = 1, 2; j = 1, 2, 3) among F := {b1, b2, c1, c2, c3}

Claim. For all but one b ∈ BT there is a corner c s.t. there is
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Corner connections via Radon’s thm

Proof. by contradiction:
assume b1, b2 ∈ BT have no good corner.
There are halfspaces containing exactly
bicj (i = 1, 2; j = 1, 2, 3) among F := {b1, b2, c1, c2, c3}

Claim. For all but one b ∈ BT there is a corner c s.t. there is
no halfspace containing just b, c among BT ∪ {o, c1, c2, c3}.

There is plane separating b1, b2 from corners

⇒ wlog. conv(b1, c1) ∩ conv(b2, c2, c3) 6= ∅.

⇒ there is no halfspace containg exactly b1, c1

F in convex position. Radon thm gives 2:3 partition of F .
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G construction correctness

G is planar bipartite.
Need: any halfspace with red+blue induces some edge.

X

• If D ∈ D contains red and blue from C, then there is
bichromatic triangle X

• Let D′ ⊂ D be halfspace parallel to ∂D, smallest that
contains both red and blue.
D′ has 1 blue b on its boundary.
o 6∈ D ⇒ o 6∈ D′
⇒ D′ has ≥ 1 corner c of the traingle of b′.

If D′ contains c, c′, then at least one connects to b.
If D′ contains just c, then bc ∈ E(G) by def of G.

Lemma. Halfspaces have the locality property, and it is
witnessed by G.
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Halfspace wrap-up

Theorem. (Mustafa–Ray 2010) Hitting halfspaces with

points in R3 has a PTAS with running time nO(1/ε2).

• APX-hard in R≥4

• Locality condition can be proved for several obejct types in
R2, for hitting/covering/packing
Most general: hitting/covering/packing non-piercing
objects

• Analysis is tight: k = o(1/ε2) local search doesn’t work
• general lower bounds of nΩ(1/ε)

Exact has matching lower bound.

Theorem. Hitting set of size k for halfspaces with points in

R3 can be computed in time nO(
√
k).

In R≥4, there is nΩ(k) lower bound.


