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Balanced separator for a subset

‘Observation. Given planar graph G = (V, E) and a vertex set
W C V', G has separator of size O(y/n) s.t. each side has
(< 36/37|W| vertices from W.

Proof.
Start proof with smallest square that encloses > |W|/37 disks
from W.



r-divisions

‘Theorem (Frederickson 1987) For any r € Z, and planar
graph G, there are O(n/r) vertex sets Vi, Vs, ... satisfying
e cvery edge Is induced by some V;

o [Vi[]<r

e small boundaries: OV, =V, N (U#i Vi), [0Vi| = O(y/r)
e small total boundary set: ZZ 0V = O(n/+/7)




Computing an r-division
Proof sketch. Use planar separator theorem.

Recursively divide until size < r
X := union of separators throughout.
V;: final group-+neighborhood
group size v group number v edge covering v/
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Computing an r-division
Proof sketch. Use planar separator theorem.

Recursively divide until size < r
X := union of separators throughout.
V;: final group-+neighborhood
group size v group number v edge covering v/

W >r

Still need OW = W N X is smalll

ldea: if OW > c+/|W|, separate W with balance wrt. OW.




Hitting set via local search

(Mustafa—Ray; Chan—Har-Peled 2008)



Hitting set for halfspaces

Hitting set

. . d
Given a set P C R? of points and a set D C 2% of ranges,
find minimum size () C P such that all ranges are “hit": for

any DD, DNQ +# 0.
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Hitting set for halfspaces

Hitting set

. . d
Given a set P C R? of points and a set D C 2% of ranges,
find minimum size () C P such that all ranges are “hit": for

any DD, DNQ +# 0.

APX-hard even for fat triangles

f

E.g.: hitting disks, hitting triangles, hitting halfspaces in R?

o N

For each disk D € D, take ball B

touching v and BN H =D

(@] nversion with center v maps each
‘@, ball to halfspace.
o H

Point-disk containment is preserved
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Dualized hitting set: find minimum set of halfspaces to hit all
points = Geometric Set Cover!
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Local search for hitting set / set cover

Dualized hitting set: find minimum set of halfspaces to hit all
points = Geometric Set Cover!

Local search:

Given a feasible hitting set (), a valid local search step removes
k elements of () and adds k — 1 other elements so that the
result is still a feasible hitting set.

A feasible hitting set () is k-locally optimal if there are no valid
local search steps.

n=|P|, m=|Q
Running time of k-local search is O(n?*t1m) (or better)

\

‘Theorem (Mustafa—Ray 2010).There is a ¢ > 0 such that
the (c/e?)-locally optimal hitting set for halfspaces in R? is a
(1 + £)-approximation of the minimum hitting set.
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'Definition. A range space (P, D) has the locality condition if )
for any pair of disjoint sets R, B C P there is a planar bipartite
graph G bewteen R and B s.t. for any D € D intersecting
both R and B we have some uv € E(G) with u € DN R and

veDNR. )
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Locality condition

'Definition. A range space (P, D) has the locality condition if )
for any pair of disjoint sets R, B C P there is a planar bipartite
graph G bewteen R and B s.t. for any D € D intersecting
both R and B we have some uv € E(G) with u € DN R and
v e DNR. )

Example: disks in the plane
(G: subgraph of Delaunay triangulation of P/ = RU B

Claim. For any disk D C R?,
DT(P")|pnp is connected.

)
Foru ¢ DN Randve DNB,

there is a conencting path in
DT(D N P’), which contains
red-blue edge




Locality implies larger neighborhoods

‘Theorem. (P, D) is range space satisfying locality condition,
R is optimal hitting set, B is k-locally optimal, and RN B = 0.
Then there is planar G = (R, B, E) s.t. for all B C B with
B’| < k, we have large neighborhood: |N(B’)| > |B’|

|
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Proof. B and R are both hitting sets
= every range has > 1 pt from both
If B C B, then (B \ B’)U N(B') is hitting:
if only B’ hits D from B, then some b € B’ has red
neighbor hitting D,
otherwise B\ B’ hits D.
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‘Theorem. (P, D) is range space satisfying locality condition,
R is optimal hitting set, B is k-locally optimal, and RN B = 0.
Then there is planar G = (R, B, F) s.t. for all B’ C B with
B’| < k, we have large neighborhood: |N(B’)| > |B’|

L /
Proof. B and R are both hitting sets
= every range has > 1 pt from both
If B C B, then (B \ B’)U N(B') is hitting:
if only B’ hits D from B, then some b € B’ has red
neighbor hitting D,
otherwise B\ B’ hits D.
But for |B’| < k there is no valid local search step.

If RN B =1 +#1(, then let D’ = ranges not hit by I.
Use the same on (P \ I,D"). If By is (1 + €)-approx on
(P\I,D") — BoUIis (1 + ¢)-approx on (P, D)



B has large neighborhoods only if relatively small

‘Theorem. Let G — (R, B, F)) bipartite planar, s.t.
for every B’ C B of size |B'| <k, |[N(B')| > |B’'|.
 Then |B| < (14 ¢/Vk)|R| for some constant c.




B has large neighborhoods only if relatively small

‘Theorem. Let G — (R, B, F)) bipartite planar, s.t.
for every B’ C B of size |B'| <k, |[N(B')| > |B’'|.
 Then |B| < (14 ¢/Vk)|R| for some constant c.

Proof. r := |R|, b:=|B|,

Use k-division of G. — V7, V5, ...

Vi has boundary V; N (UJ,; V;) and interior V; \ (U, V;).
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B has large neighborhoods only if relatively small
‘Theorem. Let G — (R, B, F)) bipartite planar, s.t.

for every B’ C B of size |B'| <k, |[N(B')| > |B’'|.

 Then |B| < (14 ¢/Vk)|R| for some constant c.

Proof. r := |R|, b:=|B|,
Use k-division of G. — V7, V5, ...
Vi has boundary V; N (U,; V;) and interior V; \ (U,_; Vj)-
rd, b9 rint pint . 4 red /blue in V; in boundary and interior.
o > .(r? +b?) < ~y(r+b)/vVk (v = const) (by k-division)
o bint < pint 4 0 (pint <k so it has large neighborhood)
it 4 b9 < rint 40 4 p?

b < Z bznt+b5 < Z znt+z _|_b8 < T_I_,y(r_l_b)/\/%




Locality condition wrap-up
b<r+~(r+b)/Vk

If k > 442, then

1+7/\f
1—7/[ B

<r(1+c/Vk)




Locality condition wrap-up

b<r+~r+b)/Vk
If k > 442, then

1+7/\f

l—w/f_ r(1+¢/VE)

Theorem. Locality condition implies PTAS for hitting set with
running time nO1/e%).

Theorem. Hitting disks with points in R? has a PTAS with
running time n@ /€7,




Locality condition for half-spaces



Radon’'s theorem

Theorem (Radon, 1921) Any set of d + 2 points in R¢ can
be partitioned into two subsets whose convex hulls intersect.




Radon’'s theorem

Theorem (Radon, 1921) Any set of d + 2 points in R¢ can
be partitioned into two subsets whose convex hulls intersect.

Proof. Let P = {p1,...,p412}.
There exsists A1,...,Ag12 not all 0 s.t.

d+2 d+2

Z)\ipi = 0 and Z)\Z = 0.
1=1 1=1

Let I: indices ¢ where \; > 0. (denote remaining indices by .J)
Then Ziel A = — ZjEJ Aj =: 1, thus

by —\;
p = Z —p; = Z —2p; € conv(P|r) Nconv(P| )

il H jeJ H []



Locality for half-spaces: graph and embedding

Recall: R and B disjoint hitting sets for a set D of half-spaces.
Need bipartite planar graph G on RU B, s.t. for any D € D
containing both red and blue, there is an edge induced.
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Locality for half-spaces: graph and embedding

Recall: R and B disjoint hitting sets for a set D of half-spaces.
Need bipartite planar graph G on RU B, s.t. for any D € D
containing both red and blue, there is an edge induced.

Guess o € P from hitting set, remove D € D that contains o.
= wlog. o outside | J.p D

Two stages:

e Add all red-blue edges of C' := dconv(R U B) to G,
triangulate faces of C

e Forpe (RUB)\C, let p’ be point where ray(o, p) exits C
Define edges of p via p’ in a triangle of C.
= results in planar graph on C
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T" is a triangle of C'.
If T" has 1 red and 2 blue corners (1 blue 2 red symmetric)
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T" is a triangle of C'.
If T" has 1 red and 2 blue corners (1 blue 2 red symmetric)

Connect each p’ to all
differently colored corners




Defining G In a monochromatic triangle

[

L )
T Y
|
|
| @
m BN 0l
® o
o o
0 |

|



Defining G In a monochromatic triangle

Q B7 := blue pts mapped to T
T ':' s,
< 1 pt in By connected to ¢y, ¢o, c3;

" rest connected to two corners
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How to select neighboring
corners for each b € Bt 7

C2

If there is a corner c s.t. there is no halfspace h C R?
containing only b,c among Br U{cq, ¢, c3,0}, then connect b’
to other two corners



Defining G In a monochromatic triangle

c3  Bp := blue pts mapped to T

<1 ptin Br connected to cy, c2, c3;
\,, rest connected to two corners

How to select neighboring
corners for each b € Bt 7

C2

If there is a corner c s.t. there is no halfspace h C R?
containing only b,c among Br U{cq, ¢, 3,0}, then connect b’
to other two corners

[Claim. For all but one b € Bt there is such a corner.




Corner connections via Radon’'s thm

Claim. For all but one b € B7 there is a corner ¢ s.t. there is
no halfspace containing just b,c among B U {o,c1,co,c3}.

Proof. by contradiction:

assume b1, by € B have no good corner.

There are halfspaces containing exactly

biCj (Z — 1, 2,] — 1, 2,3) among F = {bl, bQ,Cl,CQ,Cg}
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Corner connections via Radon’'s thm

Claim. For all but one b € B7 there is a corner ¢ s.t. there is
no halfspace containing just b,c among B U {o,c1,co,c3}.

Proof. by contradiction:

assume b1, by € B have no good corner.

There are halfspaces containing exactly

biCj (Z — 1, 2,] — 1, 2,3) among F = {bl, bQ,Cl,CQ,Cg}

F' in convex position. Radon thm gives 2:3 partition of F'.

There is plane separating by, by from corners

= wlog. conv(by, c1) Nconv(bsy, co,c3) # 0.

= there is no halfspace containg exactly b1, ¢y %




(7 construction correctness

Lemma. Halfspaces have the locality property, and it is
witnessed by G.

G is planar bipartite. Vv
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o D=0¢&D
— D' has > 1 corner ¢ of the traingle of v’



(7 construction correctness

Lemma. Halfspaces have the locality property, and it is
witnessed by G.

G is planar bipartite. Vv
Need: any halfspace with red+blue induces some edge.

e If D &€ D contains red and blue from C, then there is
bichromatic triangle v

o Let D' C D be halfspace parallel to 0D, smallest that
contains both red and blue.
D’ has 1 blue b on its boundary:.
o D=0¢&D
— D' has > 1 corner ¢ of the traingle of v’

If D’ contains ¢, ¢/, then at least one connects to b.
If D’ contains just ¢, then bc € E(G) by def of G.
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objects

e Analysis is tight: k = 0(1/¢?) local search doesn't work

e general lower bounds of n(1/¢)



Halfspace wrap-up

O(1/€2)

Theorem. (Mustafa—Ray 2010) Hitting halfspaces with
points in R? has a PTAS with running time n :

e APX-hard in R=4

e Locality condition can be proved for several obejct types in
R?, for hitting/covering/packing
Most general: hitting/covering/packing non-piercing
objects

e Analysis is tight: k = 0(1/¢?) local search doesn't work

e general lower bounds of n(1/¢)

Exact has matching lower bound.
[Theorem. Hitting set of size k for halfspaces with points in }

R3 can be computed in time n®(Vk).

In R=4 there is n®**) lower bound.



