Local Search for Hitting Set and Set Cover

Sándor Kisfaludi-Bak

Computaional Geometry Summer semester 2020

• r-divisions in planar graphs

- r-divisions in planar graphs
- Hitting set and set cover via local search

- r-divisions in planar graphs
- Hitting set and set cover via local search
- The locality condition

- r-divisions in planar graphs
- Hitting set and set cover via local search
- The locality condition
- Locality condition for halfspaces

Balanced separator for a subset

Observation. Given planar graph G = (V, E) and a vertex set $W \subset V$, G has separator of size $O(\sqrt{n})$ s.t. each side has $\leq 36/37|W|$ vertices from W.

Proof.

Start proof with smallest square that encloses $\geq |W|/37$ disks from W.

r-divisions

Theorem (Frederickson 1987) For any $r \in \mathbb{Z}_+$ and planar graph G, there are O(n/r) vertex sets V_1, V_2, \ldots satisfying

- every edge is induced by some V_i
- $|V_i| \le r$
- small boundaries: $\partial V_i = V_i \cap (\bigcup_{j \neq i} V_j)$, $|\partial V_i| = O(\sqrt{r})$
- small total boundary set: $\sum_i |\partial V_i| = O(n/\sqrt{r})$

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

- X := union of separators throughout.
- *V_i*: final group+neighborhood

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

- X := union of separators throughout.
- *V_i*: final group+neighborhood

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

- X := union of separators throughout.
- *V_i*: final group+neighborhood

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

- X := union of separators throughout.
- *V_i*: final group+neighborhood

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

- X := union of separators throughout.
- V_i : final group+neighborhood

group size \checkmark group number \checkmark edge covering \checkmark

Still need $\partial W := W \cap X$ is small!

Idea: if $\partial W > c\sqrt{|W|}$, separate W with balance wrt. ∂W .

Hitting set via local search (Mustafa–Ray; Chan–Har-Peled 2008)

Hitting set for halfspaces

Hitting set

Given a set $P \subset \mathbb{R}^d$ of points and a set $\mathcal{D} \subset 2^{\mathbb{R}^d}$ of ranges, find minimum size $Q \subset P$ such that all ranges are "hit": for any $D \in \mathcal{D}$, $D \cap Q \neq \emptyset$.

Hitting set for halfspaces

Hitting set

Given a set $P \subset \mathbb{R}^d$ of points and a set $\mathcal{D} \subset 2^{\mathbb{R}^d}$ of ranges, find minimum size $Q \subset P$ such that all ranges are "hit": for any $D \in \mathcal{D}$, $D \cap Q \neq \emptyset$.

E.g.: hitting disks, hitting triangles, hitting halfspaces in \mathbb{R}^3

Hitting set for halfspaces

Hitting set

Given a set $P \subset \mathbb{R}^d$ of points and a set $\mathcal{D} \subset 2^{\mathbb{R}^d}$ of ranges, find minimum size $Q \subset P$ such that all ranges are "hit": for any $D \in \mathcal{D}$, $D \cap Q \neq \emptyset$.

APX-hard even for fat triangles

E.g.: hitting disks, hitting triangles, hitting halfspaces in \mathbb{R}^3

For each disk $D \in \mathcal{D}$, take ball Btouching v and $B \cap H = D$ Inversion with center v maps each ball to halfspace. Point-disk containment is preserved

Local search:

Given a feasible hitting set Q, a valid local search step removes k elements of Q and adds k-1 other elements so that the result is still a feasible hitting set.

A feasible hitting set Q is k-locally optimal if there are no valid local search steps.

Local search:

Given a feasible hitting set Q, a valid local search step removes k elements of Q and adds k-1 other elements so that the result is still a feasible hitting set.

A feasible hitting set Q is k-locally optimal if there are no valid local search steps.

n = |P|, m = |Q|Running time of k-local search is $O(n^{2k+1}m)$ (or better)

Local search:

Given a feasible hitting set Q, a valid local search step removes k elements of Q and adds k-1 other elements so that the result is still a feasible hitting set.

A feasible hitting set Q is k-locally optimal if there are no valid local search steps.

n = |P|, m = |Q|Running time of k-local search is $O(n^{2k+1}m)$ (or better)

Theorem (Mustafa–Ray 2010). There is a c > 0 such that the (c/ε^2) -locally optimal hitting set for halfspaces in \mathbb{R}^3 is a $(1 + \varepsilon)$ -approximation of the minimum hitting set.

The locality condition

Locality condition

Definition. A range space (P, \mathcal{D}) has the locality condition if for any pair of disjoint sets $R, B \subset P$ there is a planar bipartite graph G bewteen R and B s.t. for any $D \in \mathcal{D}$ intersecting both R and B we have some $uv \in E(G)$ with $u \in D \cap R$ and $v \in D \cap R$.

Locality condition

Definition. A range space (P, \mathcal{D}) has the locality condition if for any pair of disjoint sets $R, B \subset P$ there is a planar bipartite graph G bewteen R and B s.t. for any $D \in \mathcal{D}$ intersecting both R and B we have some $uv \in E(G)$ with $u \in D \cap R$ and $v \in D \cap R$.

Example: disks in the plane G: subgraph of Delaunay triangulation of $P' = R \cup B$

Locality condition

Definition. A range space (P, \mathcal{D}) has the locality condition if for any pair of disjoint sets $R, B \subset P$ there is a planar bipartite graph G bewteen R and B s.t. for any $D \in \mathcal{D}$ intersecting both R and B we have some $uv \in E(G)$ with $u \in D \cap R$ and $v \in D \cap R$.

Example: disks in the plane *G*: subgraph of Delaunay triangulation of $P' = R \cup B$

Claim. For any disk $D \subset \mathbb{R}^2$, $DT(P')|_{P'\cap D}$ is connected.

For $u \in D \cap R$ and $v \in D \cap B$, there is a conencting path in $DT(D \cap P')$, which contains red-blue edge

Theorem. (P, \mathcal{D}) is range space satisfying locality condition, R is optimal hitting set, B is k-locally optimal, and $R \cap B = \emptyset$. Then there is planar G = (R, B, E) s.t. for all $B' \subset B$ with $|B'| \leq k$, we have large neighborhood: $|N(B')| \geq |B'|$

Theorem. (P, \mathcal{D}) is range space satisfying locality condition, R is optimal hitting set, B is k-locally optimal, and $R \cap B = \emptyset$. Then there is planar G = (R, B, E) s.t. for all $B' \subset B$ with $|B'| \leq k$, we have large neighborhood: $|N(B')| \geq |B'|$

Proof. B and R are both hitting sets \Rightarrow every range has ≥ 1 pt from both If $B' \subset B$, then $(B \setminus B') \cup N(B')$ is hitting: if only B' hits D from B, then some $b \in B'$ has red neighbor hitting D, otherwise $B \setminus B'$ hits D.

Theorem. (P, \mathcal{D}) is range space satisfying locality condition, R is optimal hitting set, B is k-locally optimal, and $R \cap B = \emptyset$. Then there is planar G = (R, B, E) s.t. for all $B' \subset B$ with $|B'| \leq k$, we have large neighborhood: $|N(B')| \geq |B'|$

Proof. B and R are both hitting sets \Rightarrow every range has ≥ 1 pt from both If $B' \subset B$, then $(B \setminus B') \cup N(B')$ is hitting:

if only B' hits D from B, then some $b \in B'$ has red neighbor hitting D, otherwise $B \setminus B'$ hits D.

But for $|B'| \leq k$ there is no valid local search step.

Theorem. (P, \mathcal{D}) is range space satisfying locality condition, R is optimal hitting set, B is k-locally optimal, and $R \cap B = \emptyset$. Then there is planar G = (R, B, E) s.t. for all $B' \subset B$ with $|B'| \leq k$, we have large neighborhood: $|N(B')| \geq |B'|$

Proof. B and R are both hitting sets \Rightarrow every range has ≥ 1 pt from both If $B' \subset B$, then $(B \setminus B') \cup N(B')$ is hitting:

if only B' hits D from B, then some $b\in B'$ has red neighbor hitting D,

otherwise $B \setminus B'$ hits D.

But for $|B'| \leq k$ there is no valid local search step.

If $R \cap B = I \neq \emptyset$, then let $\mathcal{D}' =$ ranges not hit by I. Use the same on $(P \setminus I, \mathcal{D}')$. If B_0 is $(1 + \varepsilon)$ -approx on $(P \setminus I, \mathcal{D}') \rightarrow B_0 \cup I$ is $(1 + \varepsilon)$ -approx on (P, \mathcal{D})

Theorem. Let G = (R, B, E) bipartite planar, s.t. for every $B' \subset B$ of size $|B'| \leq k$, $|N(B')| \geq |B'|$. Then $|B| \leq (1 + c/\sqrt{k})|R|$ for some constant c.

Theorem. Let G = (R, B, E) bipartite planar, s.t. for every $B' \subset B$ of size $|B'| \leq k$, $|N(B')| \geq |B'|$. Then $|B| \leq (1 + c/\sqrt{k})|R|$ for some constant c.

Proof. r := |R|, b := |B|,Use k-division of $G. \to V_1, V_2, \ldots$ V_i has boundary $V_i \cap (\bigcup_{j \neq i} V_j)$ and interior $V_i \setminus (\bigcup_{j \neq i} V_j).$ $r_i^{\partial}, b_i^{\partial}, r_i^{int}, b_i^{int} : \# \text{ red/blue in } V_i \text{ in boundary and interior.}$

Theorem. Let G = (R, B, E) bipartite planar, s.t. for every $B' \subset B$ of size $|B'| \leq k$, $|N(B')| \geq |B'|$. Then $|B| \leq (1 + c/\sqrt{k})|R|$ for some constant c.

Proof. r := |R|, b := |B|,Use k-division of $G. \to V_1, V_2, \ldots$ V_i has boundary $V_i \cap (\bigcup_{j \neq i} V_j)$ and interior $V_i \setminus (\bigcup_{j \neq i} V_j).$ $r_i^{\partial}, b_i^{\partial}, r_i^{int}, b_i^{int} : \# \text{ red/blue in } V_i \text{ in boundary and interior.}$

• $\sum_{i} (r_i^{\partial} + b_i^{\partial}) \le \gamma (r+b) / \sqrt{k}$ ($\gamma = \text{const}$) (by k-division)

Theorem. Let G = (R, B, E) bipartite planar, s.t. for every $B' \subset B$ of size $|B'| \leq k$, $|N(B')| \geq |B'|$. Then $|B| \leq (1 + c/\sqrt{k})|R|$ for some constant c.

Proof.
$$r := |R|, b := |B|,$$

Use k-division of $G. \to V_1, V_2, ...$
 V_i has boundary $V_i \cap (\bigcup_{j \neq i} V_j)$ and interior $V_i \setminus (\bigcup_{j \neq i} V_j).$
 $r_i^{\partial}, b_i^{\partial}, r_i^{int}, b_i^{int} : \# \text{ red/blue in } V_i \text{ in boundary and interior.}$
• $\sum_i (r_i^{\partial} + b_i^{\partial}) \le \gamma(r+b)/\sqrt{k}$ ($\gamma = \text{const}$) (by k-division)
• $b_i^{int} \le r_i^{int} + r_i^{\partial}$ ($b_i^{int} \le k$ so it has large neighborhood)
 $b_i^{int} + b_i^{\partial} \le r_i^{int} + r_i^{\partial} + b_i^{\partial}$
 $b \le \sum_i (b_i^{int} + b_i^{\partial}) \le \sum_i r_i^{int} + \sum_i (r_i^{\partial} + b_i^{\partial}) \le r + \gamma(r+b)/\sqrt{k}$

Locality condition wrap-up

$$b \le r + \gamma(r+b)/\sqrt{k}$$

If $k \geq 4\gamma^2$, then

$$b \le r \frac{1 + \gamma/\sqrt{k}}{1 - \gamma/\sqrt{k}} \le \dots \le r(1 + c/\sqrt{k})$$

Locality condition wrap-up

$$b \le r + \gamma(r+b)/\sqrt{k}$$

If $k \geq 4\gamma^2$, then

$$b \le r \frac{1 + \gamma/\sqrt{k}}{1 - \gamma/\sqrt{k}} \le \dots \le r(1 + c/\sqrt{k})$$

Theorem. Locality condition implies PTAS for hitting set with running time $n^{O(1/\varepsilon^2)}$.

Theorem. Hitting disks with points in \mathbb{R}^2 has a PTAS with running time $n^{O(1/\varepsilon^2)}$.

Locality condition for half-spaces

Radon's theorem

Theorem (Radon, 1921) Any set of d + 2 points in \mathbb{R}^d can be partitioned into two subsets whose convex hulls intersect.

Radon's theorem

Theorem (Radon, 1921) Any set of d + 2 points in \mathbb{R}^d can be partitioned into two subsets whose convex hulls intersect.

Proof. Let
$$P = \{p_1, \ldots, p_{d+2}\}$$
.
There exsists $\lambda_1, \ldots, \lambda_{d+2}$ not all 0 s.t.

$$\sum_{i=1}^{d+2} \lambda_i p_i = 0 \text{ and } \sum_{i=1}^{d+2} \lambda_i = 0.$$

Let I: indices i where $\lambda_i > 0$. (denote remaining indices by J) Then $\sum_{i \in I} \lambda_i = -\sum_{j \in J} \lambda_j =: \mu$, thus

$$p' := \sum_{i \in I} \frac{\lambda_i}{\mu} p_i = \sum_{j \in J} \frac{-\lambda_j}{\mu} p_j \in \operatorname{conv}(P|_I) \cap \operatorname{conv}(P|_J)$$

Locality for half-spaces: graph and embedding Recall: R and B disjoint hitting sets for a set \mathcal{D} of half-spaces. Need bipartite planar graph G on $R \cup B$, s.t. for any $D \in \mathcal{D}$ containing both red and blue, there is an edge induced. Locality for half-spaces: graph and embedding Recall: R and B disjoint hitting sets for a set \mathcal{D} of half-spaces. Need bipartite planar graph G on $R \cup B$, s.t. for any $D \in \mathcal{D}$ containing both red and blue, there is an edge induced.

Guess $o \in P$ from hitting set, remove $D \in \mathcal{D}$ that contains o. \Rightarrow wlog. o outside $\bigcup_{D \in \mathcal{D}} D$ Locality for half-spaces: graph and embedding Recall: R and B disjoint hitting sets for a set \mathcal{D} of half-spaces. Need bipartite planar graph G on $R \cup B$, s.t. for any $D \in \mathcal{D}$ containing both red and blue, there is an edge induced.

Guess $o \in P$ from hitting set, remove $D \in \mathcal{D}$ that contains o. \Rightarrow wlog. o outside $\bigcup_{D \in \mathcal{D}} D$

Two stages:

- Add all red-blue edges of $C := \partial \operatorname{conv}(R \cup B)$ to G, triangulate faces of C
- For p ∈ (R ∪ B) \ C, let p' be point where ray(o, p) exits C
 Define edges of p via p' in a triangle of C.
 ⇒ results in planar graph on C

If there is a corner c s.t. there is no halfspace $h \subset \mathbb{R}^3$ containing only b, c among $B_T \cup \{c_1, c_2, c_3, o\}$, then connect b'to other two corners

If there is a corner c s.t. there is no halfspace $h \subset \mathbb{R}^3$ containing only b, c among $B_T \cup \{c_1, c_2, c_3, o\}$, then connect b'to other two corners

Claim. For all but one $b \in B_T$ there is such a corner.

Corner connections via Radon's thm

Claim. For all but one $b \in B_T$ there is a corner c s.t. there is no halfspace containing just b, c among $B_T \cup \{o, c_1, c_2, c_3\}$.

Proof. by contradiction: assume $b_1, b_2 \in B_T$ have no good corner. There are halfspaces containing exactly $b_i c_j \ (i = 1, 2; j = 1, 2, 3)$ among $F := \{b_1, b_2, c_1, c_2, c_3\}$

Corner connections via Radon's thm

Claim. For all but one $b \in B_T$ there is a corner c s.t. there is no halfspace containing just b, c among $B_T \cup \{o, c_1, c_2, c_3\}$.

Proof. by contradiction: assume $b_1, b_2 \in B_T$ have no good corner. There are halfspaces containing exactly $b_i c_j \ (i = 1, 2; j = 1, 2, 3)$ among $F := \{b_1, b_2, c_1, c_2, c_3\}$

F in convex position. Radon thm gives 2:3 partition of F.

There is plane separating b_1, b_2 from corners

 \Rightarrow wlog. conv $(b_1, c_1) \cap$ conv $(b_2, c_2, c_3) \neq \emptyset$.

Corner connections via Radon's thm

Claim. For all but one $b \in B_T$ there is a corner c s.t. there is no halfspace containing just b, c among $B_T \cup \{o, c_1, c_2, c_3\}$.

Proof. by contradiction: assume $b_1, b_2 \in B_T$ have no good corner. There are halfspaces containing exactly $b_i c_j \ (i = 1, 2; j = 1, 2, 3)$ among $F := \{b_1, b_2, c_1, c_2, c_3\}$

F in convex position. Radon thm gives 2:3 partition of F.

There is plane separating b_1, b_2 from corners

 \Rightarrow wlog. conv $(b_1, c_1) \cap$ conv $(b_2, c_2, c_3) \neq \emptyset$.

 \Rightarrow there is no halfspace containg exactly b_1, c_1

Lemma. Halfspaces have the locality property, and it is witnessed by G.

G is planar bipartite. \checkmark Need: any halfspace with red+blue induces some edge.

Lemma. Halfspaces have the locality property, and it is witnessed by G.

G is planar bipartite. \checkmark Need: any halfspace with red+blue induces some edge.

• If $D \in \mathcal{D}$ contains red and blue from C, then there is bichromatic triangle \checkmark

Lemma. Halfspaces have the locality property, and it is witnessed by G.

G is planar bipartite. \checkmark Need: any halfspace with red+blue induces some edge.

- If $D \in \mathcal{D}$ contains red and blue from C, then there is bichromatic triangle \checkmark
- Let D' ⊂ D be halfspace parallel to ∂D, smallest that contains both red and blue.
 D' has 1 blue b on its boundary.
 o ∉ D ⇒ o ∉ D'
 ⇒ D' has ≥ 1 corner c of the traingle of b'.

Lemma. Halfspaces have the locality property, and it is witnessed by G.

G is planar bipartite. \checkmark Need: any halfspace with red+blue induces some edge.

- If $D \in \mathcal{D}$ contains red and blue from C, then there is bichromatic triangle \checkmark
- Let D' ⊂ D be halfspace parallel to ∂D, smallest that contains both red and blue. D' has 1 blue b on its boundary. o ∉ D ⇒ o ∉ D' ⇒ D' has ≥ 1 corner c of the traingle of b'. If D' contains c, c', then at least one connects to b. If D' contains just c, then bc ∈ E(G) by def of G.

Halfspace wrap-up

Theorem. (Mustafa–Ray 2010) Hitting halfspaces with points in \mathbb{R}^3 has a PTAS with running time $n^{O(1/\varepsilon^2)}$.

Halfspace wrap-up

Theorem. (Mustafa–Ray 2010) Hitting halfspaces with points in \mathbb{R}^3 has a PTAS with running time $n^{O(1/\varepsilon^2)}$.

- APX-hard in $\mathbb{R}^{\geq 4}$
- Locality condition can be proved for several obejct types in \mathbb{R}^2 , for hitting/covering/packing Most general: hitting/covering/packing non-piercing objects
- Analysis is tight: $k = o(1/\varepsilon^2)$ local search doesn't work
- general lower bounds of $n^{\Omega(1/\varepsilon)}$

Halfspace wrap-up

Theorem. (Mustafa–Ray 2010) Hitting halfspaces with points in \mathbb{R}^3 has a PTAS with running time $n^{O(1/\varepsilon^2)}$.

- APX-hard in $\mathbb{R}^{\geq 4}$
- Locality condition can be proved for several obejct types in $\mathbb{R}^2,$ for hitting/covering/packing Most general: hitting/covering/packing non-piercing objects
- Analysis is tight: $k = o(1/\varepsilon^2)$ local search doesn't work
- general lower bounds of $n^{\Omega(1/\varepsilon)}$

Exact has matching lower bound.

Theorem. Hitting set of size k for halfspaces with points in \mathbb{R}^3 can be computed in time $n^{O(\sqrt{k})}$.

In $\mathbb{R}^{\geq 4}$, there is $n^{\Omega(k)}$ lower bound.