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Configuration Spaces

ground set S with n Elements
finite set C of configurations
two functions tr , st : C → 2S with tr(c) ∩ st(c) = ∅ for all c ∈ C
elements in tr(c) are the triggers of c (or “definers” of c) τ(c) = |tr(c)|
elements in st(c) are the stoppers of c (or “killers” of c) σ(c) = |st(c)|

Assume for each c ∈ C we have τ(c) ≤ d, with d a small constant.
We call C uniform iff for all c ∈ C we have τ(c) = d.
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Configuration Spaces

ground set S with n Elements
finite set C of configurations
two functions tr , st : C → 2S with tr(c) ∩ st(c) = ∅ for all c ∈ C
elements in tr(c) are the triggers of c (or “definers” of c) τ(c) = |tr(c)|
elements in st(c) are the stoppers of c (or “killers” of c) σ(c) = |st(c)|

Assume for each c ∈ C we have τ(c) ≤ d, with d a small constant.
We call C uniform iff for all c ∈ C we have τ(c) = d.

c is active for R ⊆ S iff tr(c) ⊆ R and st(c) ∩R = ∅
F0(R) is the set of configurations that are active for R
f0(R) = |F0(R)| and
f0(r) = Ex[f0(R)] when R is chosen uniformly at random from

(
S
r

)
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Configuration Spaces

ground set S with n Elements
finite set C of configurations
two functions tr , st : C → 2S with tr(c) ∩ st(c) = ∅ for all c ∈ C
elements in tr(c) are the triggers of c (or “definers” of c) τ(c) = |tr(c)|
elements in st(c) are the stoppers of c (or “killers” of c) σ(c) = |st(c)|

Assume for each c ∈ C we have τ(c) ≤ d, with d a small constant.
We call C uniform iff for all c ∈ C we have τ(c) = d.

c is active for R ⊆ S iff tr(c) ⊆ R and st(c) ∩R = ∅
F0(R) is the set of configurations that are active for R
f0(R) = |F0(R)| and
f0(r) = Ex[f0(R)] when R is chosen uniformly at random from

(
S
r

)
Typical problem: C is given implicitly; determine F0(S)
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Example 1: intervals

S . . .n points on the real line
configurations are all bounded intervals defined by pairs of points in S and all
unbounded intervals defined by a point in S

a b cde f
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Example 1: intervals

S . . .n points on the real line
configurations are all bounded intervals defined by pairs of points in S and all
unbounded intervals defined by a point in S

a b cde f

tr(c1) = {e, f} st(c1) = {b, d} c1
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Example 1: intervals

S . . .n points on the real line
configurations are all bounded intervals defined by pairs of points in S and all
unbounded intervals defined by a point in S

a b cde f

tr(c1) = {e, f} st(c1) = {b, d} c1

tr(c2) = {b} st(c2) = {c, f}
c2
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Example 1: intervals

S . . .n points on the real line
configurations are all bounded intervals defined by pairs of points in S and all
unbounded intervals defined by a point in S

a b cde f

tr(c1) = {e, f} st(c1) = {b, d} c1

tr(c2) = {b} st(c2) = {c, f}
c2

tr(c2) = {b} st(c1) = {c, f}

tr(c3) = {a} st(c3) = ∅
c3
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Example 1: intervals

S . . .n points on the real line
configurations are all bounded intervals defined by pairs of points in S and all
unbounded intervals defined by a point in S

a b cde f

tr(c1) = {e, f} st(c1) = {b, d} c1

tr(c2) = {b} st(c2) = {c, f}
c2

tr(c2) = {b} st(c1) = {c, f}

tr(c3) = {a} st(c3) = ∅
c3

tr(c4) = {b, c} st(c4) = ∅ c4
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Example 1: intervals

S . . .n points on the real line
configurations are all bounded intervals defined by pairs of points in S and all
unbounded intervals defined by a point in S

a b cde f

tr(c2) = {b} st(c1) = {c, f}

For R ⊂ S consecutive points in R (plus leading and trailing unbounded
interval) define the set F0(R) of active configurations in R

F0(R) yields the sorted order of R

F0(S) yields the sorted order of S
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Example 1: intervals

S . . .n points on the real line
configurations are all bounded intervals defined by pairs of points in S and all
unbounded intervals defined by a point in S

a b cde f

tr(c2) = {b} st(c1) = {c, f}

For R ⊂ S consecutive points in R (plus leading and trailing unbounded
interval) define the set F0(R) of active configurations in R

F0(R) yields the sorted order of R

F0(S) yields the sorted order of S

f0(R) = |R|+ 1 expected value f0(r) = r + 1

d = 2
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Example 2: halfplanes

S . . .n points in the real plane in non-degenerate position
configurations are all closed halfplanes bounded by lines that are defined by pairs of
points in S

tr(c2) = {b} st(c1) = {c, f}

1 2

3
4

5

6

7

8

9
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Example 2: halfplanes

S . . .n points in the real plane in non-degenerate position
configurations are all closed halfplanes bounded by lines that are defined by pairs of
points in S

tr(c2) = {b} st(c1) = {c, f}

1 2

3
4

5

6

7

8

9

c1
tr(c1) = {4, 5}
st(c1) = {3, 6, 7, 9}
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Example 2: halfplanes

S . . .n points in the real plane in non-degenerate position
configurations are all closed halfplanes bounded by lines that are defined by pairs of
points in S

tr(c2) = {b} st(c1) = {c, f}

1 2

3
4

5

6

7

8

9

c2tr(c2) = {4, 5}
st(c2) = {1, 2, 8}
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Example 2: halfplanes

S . . .n points in the real plane in non-degenerate position
configurations are all closed halfplanes bounded by lines that are defined by pairs of
points in S

tr(c2) = {b} st(c1) = {c, f}

1 2

3
4

5

6

7

8

9

c3

tr(c3) = {6, 8}
st(c3) = ∅
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Example 2: halfplanes

S . . .n points in the real plane in non-degenerate position
configurations are all closed halfplanes bounded by lines that are defined by pairs of
points in S

tr(c2) = {b} st(c1) = {c, f}

1 2

3
4

5

6

7

8

9

For R ⊂ S consecutive points around the
convex hull of R define the set F0(R) of
active configurations in R

F0(R) yields the convex hull of R

F0(S) yields the convex hull of S

f0(R) ≤ |R|
expected value f0(r) ≤ r

d = 2
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Example 2’: halfspaces

S . . .n points in 3-space in non-degenerate position
configurations are all closed halfspaces bounded by planes that are defined by triples
of points in S

tr(c2) = {b} st(c1) = {c, f}

For R ⊂ S triples of points that span facets of the convex hull of R define the set
F0(R) of active configurations in R

F0(R) yields the convex hull of R

F0(S) yields the convex hull of S

f0(R) ≤ 2 · |R| − 4
expected value f0(r) ≤ O(r)

d = 3
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Example 3: trapezoidations of segment arrangements

tr(c2) = {b} st(c1) = {c, f}

n segments
K intersection points



– 18 –

Example 3: trapezoidations of segment arrangements

tr(c2) = {b} st(c1) = {c, f}

n segments
K intersection points

at most 3(n+K) + 1 trapezoids
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Example 3: trapezoidations of segment arrangements

S . . .n segments in the plane in non-degenerate position with K intersection points
configurations are all trapezoids that appear in a trapezoidation of some subset of S

∆ some trapezoid in trapezoidation for some U ⊂ S.
tr(∆) are all segments in U that intersect the boundary of ∆
st(∆) are all segments in S that intersect the interior of ∆

tr(c2) = {b} st(c1) = {c, f}
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Example 3: trapezoidations of segment arrangements

S . . .n segments in the plane in non-degenerate position with K intersection points
configurations are all trapezoids that appear in a trapezoidation of some subset of S

∆ some trapezoid in trapezoidation for some U ⊂ S.
tr(∆) are all segments in U that intersect the boundary of ∆
st(∆) are all segments in S that intersect the interior of ∆

tr(c2) = {b} st(c1) = {c, f}

c
1

2
3

4

tr(c) = {1, 2, 3, 4}
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Example 3: trapezoidations of segment arrangements

S . . .n segments in the plane in non-degenerate position with K intersection points
configurations are all trapezoids that appear in a trapezoidation of some subset of S

∆ some trapezoid in trapezoidation for some U ⊂ S.
tr(∆) are all segments in U that intersect the boundary of ∆
st(∆) are all segments in S that intersect the interior of ∆

tr(c2) = {b} st(c1) = {c, f}

c
1

2
3

4

tr(c) = {1, 2, 3, 4}

st(c)
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Example 3: trapezoidations of segment arrangements

S . . .n segments in the plane in non-degenerate position with K intersection points
configurations are all trapezoids that appear in a trapezoidation of some subset of S

∆ some trapezoid in trapezoidation for some U ⊂ S.
tr(∆) are all segments in U that intersect the boundary of ∆
st(∆) are all segments in S that intersect the interior of ∆

tr(c2) = {b} st(c1) = {c, f}

For R ⊂ S the trapezoids in the trapezoidation of R define the set F0(R) of active
configurations in R

F0(R) yields the trapezoidation of R

F0(S) yields trapezoidation of S

f0(R) ≤ 3 · (|R|+KR) + 1 and the expected value f0(r) ≤ O(r + r(r−1)
n(n−1)K)

d = 4
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Configuration Spaces

ground set S with n Elements
finite set C of configurations
two functions tr , st : C → 2S with tr(c) ∩ st(c) = ∅ for all c ∈ C
elements in tr(c) are the triggers of c (or “definers” of c) τ(c) = |tr(c)|
elements in st(c) are the stoppers of c (or “killers” of c) σ(c) = |st(c)|

Assume for each c ∈ C we have τ(c) ≤ d, with d a small constant.
We call C uniform iff for all c ∈ C we have τ(c) = d.

c is active for R ⊆ S iff tr(c) ⊆ R and st(c) ∩R = ∅
F0(R) is the set of configurations that are active for R
f0(R) = |F0(R)| and
f0(r) = Ex[f0(R)] when R is chosen uniformly at random from

(
S
r

)
Typical problem: C is given implicitly; determine F0(S)

Randomized Incremental Construction (RIC)
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Configuration Spaces: Randomized Incremental Construction

Put S in random order s1, . . . , sn.
Let Sr = {s1, . . . , sr}.

for r from 1 to n do
compute F0(Sr) from F0(Sr−1)
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Configuration Spaces: Randomized Incremental Construction

Put S in random order s1, . . . , sn.
Let Sr = {s1, . . . , sr}.

for r from 1 to n do
compute F0(Sr) from F0(Sr−1)

Typical additional bookkeeping:
associate each s /∈ Sr with some c ∈ F0(Sr) with s ∈ st(c)

associate each c ∈ F0(Sr) with non-empty st(c) with one element in that set
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RIC: strange quicksort
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RIC: 2d convex hulls
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RIC: 3d convex hulls
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RIC: trapezoidations of segments
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RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix” Sr.
i small integer

Xi =
∑

c ∈ C s.t. c becomes active
during random enumeration of S

(τ(c) + σ(c))i .

Ai = Ex[Xi] typically measures the expected running time of an RIC algorithm.



– 31 –

RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix” Sr.
i small integer; define Ai = Ex[Xi] with

Xi =
∑

c ∈ C s.t. c becomes active
during random enumeration of S

(τ(c) + σ(c))i .

A1 = Ex[X1] typically measures the expected running time of an RIC algorithm.

RIC Theorem:
Ai = O

(
dini

∑
0≤r≤n

f0(r)/ri+1
)
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RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix” Sr.
i small integer; define Ai = Ex[Xi] with

Xi =
∑

c ∈ C s.t. c becomes active
during random enumeration of S

(τ(c) + σ(c))i .

A1 = Ex[X1] typically measures the expected running time of an RIC algorithm.

RIC Theorem:
Ai = O

(
dini

∑
0≤r≤n

f0(r)/ri+1
)

strange quicksort: f0(r) = r + 1 =⇒ A1 = O(n log n)
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RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix” Sr.
i small integer; define Ai = Ex[Xi] with

Xi =
∑

c ∈ C s.t. c becomes active
during random enumeration of S

(τ(c) + σ(c))i .

A1 = Ex[X1] typically measures the expected running time of an RIC algorithm.

RIC Theorem:
Ai = O

(
dini

∑
0≤r≤n

f0(r)/ri+1
)

convex hull in the plane or in 3-space: : f0(r) = O(r) =⇒ A1 = O(n log n)
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RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix” Sr.
i small integer; define Ai = Ex[Xi] with

Xi =
∑

c ∈ C s.t. c becomes active
during random enumeration of S

(τ(c) + σ(c))i .

A1 = Ex[X1] typically measures the expected running time of an RIC algorithm.

RIC Theorem:
Ai = O

(
dini

∑
0≤r≤n

f0(r)/ri+1
)

trapezoidations of segments: f0(r) = O(r + r2

n2K) =⇒ A1 = O(K + n log n)
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RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix” Sr.
i small integer; define Ai = Ex[Xi] with

Xi =
∑

c ∈ C s.t. c becomes active
during random enumeration of S

(τ(c) + σ(c))i .

A1 = Ex[X1] typically measures the expected running time of an RIC algorithm.

RIC Theorem:
Ai = O

(
dini

∑
0≤r≤n

f0(r)/ri+1
)

RIC Lemma:
Ai ≤ di+1ni

∑
0≤r≤n

f0(r)/ri+1

with equality if the configuration space is uniform.
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Ingredients for proof of RIC Lemma

configuration c: b = τ(c) and k = σ(c)
pr(c) = Pr(c is active in random subset of size r)
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Ingredients for proof of RIC Lemma

configuration c: b = τ(c) and k = σ(c)
pr(c) = Pr(c is active in random subset of size r)

pr(c) =
(n−b−k

r−b )
(n
r)
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Ingredients for proof of RIC Lemma

configuration c: b = τ(c) and k = σ(c)
pr(c) = Pr(c is active in random subset of size r)

pr(c) =
(n−b−k

r−b )
(n
r)

=
(r
b)

(n
b)

(n−r
k )

(n−b
k )

. . . . . . think of R fixed but tr(c) and st(c) are chosen randomly
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Ingredients for proof of RIC Lemma

configuration c: b = τ(c) and k = σ(c)
pr(c) = Pr(c is active in random subset of size r)

pr(c) =
(n−b−k

r−b )
(n
r)

=
(r
b)

(n
b)

(n−r
k )

(n−b
k )

. . . . . . think of R fixed but tr(c) and st(c) are chosen randomly

Pr(c is active at stage r)=Pr(c becomes active)· (
r
b)(

n−r
k )

( n
b+k)

f0(r) =
∑

c∈C pr(c)

linearity of expectations allows proof to proceed by proving an equality for each
configuration c
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Ingredients for proof of RIC Lemma

configuration c: b = τ(c) and k = σ(c)
pr(c) = Pr(c is active in random subset of size r)

pr(c) =
(n−b−k

r−b )
(n
r)

=
(r
b)

(n
b)

(n−r
k )

(n−b
k )

. . . . . . think of R fixed but tr(c) and st(c) are chosen randomly

Pr(c is active at stage r)=Pr(c becomes active)· (
r
b)(

n−r
k )

( n
b+k)

f0(r) =
∑

c∈C pr(c)

linearity of expectations allows proof to proceed by proving an equality for each
configuration c(
A
B

)(
B
C

)
=
(
A
C

)(
A−C
A−B

)
=
(
A
C

)(
A−C
B−C

) ∑
r

(
r−A−1
B−A−1

)(
N−r
C

)
=
(

N−A
B+C−A

)
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Sampling Theorem

For integer i ≥ 0 and R ⊆ S define

Bi(R) =
∑

c active for R

σ(c)i

and let Bi(r) be the expectation of Bi(R) with R chosen uniformly at random from
(
S
r

)
.
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Sampling Theorem

For integer i ≥ 0 and R ⊆ S define

Bi(R) =
∑

c active for R

σ(c)i

and let Bi(r) be the expectation of Bi(R) with R chosen uniformly at random from
(
S
r

)
.

Theorem:

Bi(r) = O

((
n− r
r

)i

f0(r)

)
where f0(r) =

1

r + 1

∑
0≤j≤r

f0(j)
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Sampling Theorem

For integer i ≥ 0 and R ⊆ S define

Bi(R) =
∑

c active for R

σ(c)i

and let Bi(r) be the expectation of Bi(R) with R chosen uniformly at random from
(
S
r

)
.

Theorem:

Bi(r) = O

((
n− r
r

)i

f0(r)

)
where f0(r) =

1

r + 1

∑
0≤j≤r

f0(j)

Lemma:

Bi(r) ≤
(d+ 1)i+1

(r + 1)i+1
(n− r)i

∑
0≤j≤r

f0(j)
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Ingredients for the proof of the sampling Lemma

Same ingredients as for the RIC Lemma

it all reduces to showing that(
r + i+ 1

b+ i+ 1

)(
n− r − i
k − i

)
≤
∑

0≤j≤r

(
j

b

)(
n− j
k

)
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Ingredients for the proof of the sampling Lemma

Same ingredients as for the RIC Lemma

it all reduces to showing that(
r + i+ 1

b+ i+ 1

)(
n− r − i
k − i

)
≤
∑

0≤j≤r

(
j

b

)(
n− j
k

)

you argue this inequality by considering all binary strings of length n+ 1 with exactly
b+ k + 1 digits ’1’ of which exactly b+ i+ 1 are in the first r + i+ 1 positions
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Sampling concentration Lemma

Lemma: Assuming that the number of configurations is O(nd) the following holds:
If R is a random subset of S of size r then with probability at most 1/2 for each c that is
active for R the number of stoppers σ(c) is O(n

r log r).
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Sampling concentration Lemma

Lemma: Assuming that the number of configurations is O(nd) the following holds:
If R is a random subset of S of size r then with probability at most 1/2 for each c that is
active for R the number of stoppers σ(c) is O(n

r log r).

Proof sketch: consider configuration c with τ(c) = d and σ(c) = k.

The probability that c is active for R is roughly( r
n

)d (
1− r

n

)k
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Sampling concentration Lemma

Lemma: Assuming that the number of configurations is O(nd) the following holds:
If R is a random subset of S of size r then with probability at least 1/2 for each c that is
active for R the number of stoppers σ(c) is O(n

r log r).

Proof sketch: consider configuration c with τ(c) = d and σ(c) = k.

The probability that c is active for R is roughly( r
n

)d (
1− r

n

)k
which is ≤

(
r
n

)d
e−

rk
n

By having k > αn
r log r for sufficiently large α this is O(1/nd) and for O(nd)

configurations this sums to less than 1/2.
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Cuttings for lines

Cutting Lemma:
Let S be a set of n lines in the plane in non-degenerate position and let r be some
number less than n.
In O(nr) expected time you can find a partition of the plane into O(r2) trapezoids so
that each trapezoid is intersected by at most n/r of the lines in S.
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Triangle range searching in the plane

Preprocess a set S of n points in the plane so that for any query triangle T you can
quickly determine the points of S that are contained in T .
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