Configuration Spaces

ground set S with n Elements

finite set C' of configurations

two functions tr, st : C — 2° with tr(c)Nst(c) =0 forall c € C

elements in tr(c) are the triggers of ¢ (or “definers” of ¢) 7(c) = |tr(c)|
elements in st(c) are the stoppers of ¢ (or “killers” of ¢) o(c) = |st(c)

Assume for each ¢ € C' we have 7(¢) < d, with d a small constant.
We call C' uniform iff for all ¢ € C we have 7(c) = d.
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Configuration Spaces

ground set S with n Elements

finite set C' of configurations

two functions tr, st : C — 2° with tr(c)Nst(c) =0 forall c € C

elements in tr(c) are the triggers of ¢ (or “definers” of ¢) 7(c) = |tr(c)|
elements in st(c) are the stoppers of ¢ (or “killers” of ¢) o(c) = |st(c)

Assume for each ¢ € C' we have 7(¢) < d, with d a small constant.
We call C' uniform iff for all ¢ € C we have 7(c) = d.

c is active for R C S iff tr(c) C R and st(c)N R =10

Fy(R) is the set of configurations that are active for R

fo(R) = [Fo(R)| and

fo(r) = Ex|fo(R)] when R is chosen uniformly at random from (f)
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Configuration Spaces

ground set S with n Elements

finite set C' of configurations

two functions tr, st : C — 2° with tr(c)Nst(c) =0 forall c € C

elements in tr(c) are the triggers of ¢ (or “definers” of ¢) 7(c) = |tr(c)|
elements in st(c) are the stoppers of ¢ (or “killers” of ¢) o(c) = |st(c)

Assume for each ¢ € C' we have 7(¢) < d, with d a small constant.
We call C' uniform iff for all ¢ € C we have 7(c) = d.

c is active for R C S iff tr(c) C R and st(c)N R =10

Fy(R) is the set of configurations that are active for R
fo(R) = [Fo(R)| and
fo(r) = Ex|fo(R)] when R is chosen uniformly at random from (f)

Typical problem: C'is given implicitly; determine F(.5)
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Example 1: intervals

S ...n points on the real line
configurations are all bounded intervals defined by pairs of points in .S and all
unbounded intervals defined by a point in S

®

a d b f c
@ ®
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Example 1: intervals

S ...n points on the real line
configurations are all bounded intervals defined by pairs of points in .S and all
unbounded intervals defined by a point in S

®

a d b f c
@ ®

C1

tr(c1) = {e, f} st(c1) = b, d;
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Example 1: intervals

S ...n points on the real line
configurations are all bounded intervals defined by pairs of points in .S and all
unbounded intervals defined by a point in S

®

a d b f c
@ ®

C1

tr(c1) = {e, f} st(c1) = b, d;

C2

tr(cz) = by st(c2) = {c, f}
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Example 1: intervals

S ...n points on the real line
configurations are all bounded intervals defined by pairs of points in .S and all
unbounded intervals defined by a point in S

a e d b f c
- @ @ @ @ @ @ >
tr(c1) = {e, f} st(c1) = {b,d) =
tr(cs) = {b} st(c2) = {c, f} = -
-« tr(cs) = {a} st(cs) =0
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Example 1: intervals

S ...n points on the real line

configurations are all bounded intervals defined by pairs of points in .S and all
unbounded intervals defined by a point in S

a e d f
- @ @ @ @
tr(c1) = {e, f} st(c1) = {b,d) =
tr(cs) = {b} st(c2) = {c, f} =
-« tr(cs) = {a} st(cs) =0

tr(ca) = {b,c} st(ca) =1
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Example 1: intervals

S ...n points on the real line

configurations are all bounded intervals defined by pairs of points in .S and all
unbounded intervals defined by a point in S

a e d b f c
® ®

-« @ ® ®

For R C S consecutive points in R (plus leading and trailing unbounded
interval) define the set F{(R) of active configurations in R

Fy(R) yields the sorted order of R
Fy(.5) yields the sorted order of S
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Example 1: intervals

S ...n points on the real line

configurations are all bounded intervals defined by pairs of points in .S and all
unbounded intervals defined by a point in S

- 10 -

a e d b f c
@ ®

-« @ ® ®

For R C S consecutive points in R (plus leading and trailing unbounded
interval) define the set F{(R) of active configurations in R

Fy(R) yields the sorted order of R
Fy(.5) yields the sorted order of S

fo(R) =|R|+1 expected value fy(r) =r+1

d=2

S IC gze;;LaSsd Informatics



Example 2: halfplanes

S ...n points in the real plane in non-degenerate position
configurations are all closed halfplanes bounded by lines that are defined by pairs of
points in S

3 o 8

Saarland Informatics
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Example 2: halfplanes

S ...n points in the real plane in non-degenerate position
configurations are all closed halfplanes bounded by lines that are defined by pairs of
points in S
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Example 2: halfplanes

S ...n points in the real plane in non-degenerate position
configurations are all closed halfplanes bounded by lines that are defined by pairs of
points in S
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Example 2: halfplanes

S ...n points in the real plane in non-degenerate position
configurations are all closed halfplanes bounded by lines that are defined by pairs of
points in S

tr(cs)
st(c3)

{6,8} °
0

Saarland Informatics
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Example 2: halfplanes

S ...n points in the real plane in non-degenerate position
configurations are all closed halfplanes bounded by lines that are defined by pairs of
points in S

For R C S consecutive points around the
convex hull of R define the set Fj(R) of 1 o 2
active configurations in R ®

Fy(R) yields the convex hull of R 3 o 4 g
o
Fy(.5) yields the convex hull of S °

fo(R) < [R] o
expected value fo(r) <r 6

d=2

Saarland Informatics
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Example 2': halfspaces

S ...n points in 3-space in non-degenerate position
configurations are all closed halfspaces bounded by planes that are defined by triples
of points in S

For R C S triples of points that span facets of the convex hull of R define the set
Fy(R) of active configurations in R

Fy(R) yields the convex hull of R
Fy(9) yields the convex hull of S

fo(R) <2-|R[ -4
expected value fy(r) < O(r)

d=3

Saarland Informatics
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Example 3: trapezoidations of segment arrangements

n segments
K Intersection points

Saarland Informatics
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Example 3: trapezoidations of segment arrangements

n segments
K Intersection points

at most 3(n + K) + 1 trapezoids

Saarland Informatics
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Example 3: trapezoidations of segment arrangements

S ...n segments in the plane in non-degenerate position with K intersection points
configurations are all trapezoids that appear in a trapezoidation of some subset of S

/A some trapezoid in trapezoidation for some U C S.
tr(A) are all segments in U that intersect the boundary of A
st(A) are all segments in .S that intersect the interior of A

Saarland Informatics
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Example 3: trapezoidations of segment arrangements

S ...n segments in the plane in non-degenerate position with K intersection points
configurations are all trapezoids that appear in a trapezoidation of some subset of S

/A some trapezoid in trapezoidation for some U C S.
tr(A) are all segments in U that intersect the boundary of A
st(A) are all segments in .S that intersect the interior of A

tr(c) = {1,2,3,4}

Saarland Informatics
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Example 3: trapezoidations of segment arrangements

S ...n segments in the plane in non-degenerate position with K intersection points
configurations are all trapezoids that appear in a trapezoidation of some subset of S

/A some trapezoid in trapezoidation for some U C S.
tr(A) are all segments in U that intersect the boundary of A
st(A) are all segments in .S that intersect the interior of A

tr(c) = {1,2,3,4}

st(c)
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Example 3: trapezoidations of segment arrangements

S ...n segments in the plane in non-degenerate position with K intersection points
configurations are all trapezoids that appear in a trapezoidation of some subset of S

/A some trapezoid in trapezoidation for some U C S.
tr(A) are all segments in U that intersect the boundary of A
st(A) are all segments in .S that intersect the interior of A

For R C S the trapezoids in the trapezoidation of R define the set Fy(R) of active
configurations in R

Fy(R) yields the trapezoidation of R
Fy(.S) yields trapezoidation of S

fo(R) <3-(|R| + Kgr) + 1 and the expected value fo(r) < O(r + 2&__11)) K)

d=14

Saarland Informatics
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Configuration Spaces

ground set S with n Elements

finite set C' of configurations

two functions tr, st : C — 2° with tr(c)Nst(c) =0 forall c € C

elements in tr(c) are the triggers of ¢ (or “definers” of ¢) 7(c) = |tr(c)|
elements in st(c) are the stoppers of ¢ (or “killers” of ¢) o(c) = |st(c)

Assume for each ¢ € C' we have 7(¢) < d, with d a small constant.

We call C' uniform iff for all ¢ € C we have 7(c) = d.

c is active for R C S iff tr(c) C R and st(c)N R =10
Fy(R) is the set of configurations that are active for R

fo(R) = |Fy(R)| and
fo(r) = Ex|fo(R)] when R is chosen uniformly at random from (f)
Typical problem: C'is given implicitly; determine F(.5)

Randomized Incremental Construction (RIC)
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Configuration Spaces: Randomized Incremental Construction

Put S in random order s, ..., s,.
Let Sf,n — {81, .. .,Sf,«}.

for r from 1 to n do
compute Fy(S,) from Fy(S,_1)

Saarland Informatics
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Configuration Spaces: Randomized Incremental Construction

Put S in random order s1,...,s,.
Let Sf,n — {51, .. .,ST}.

for r from 1 to n do
compute Fy(S,) from Fy(S,_1)

Typical additional bookkeeping:
associate each s ¢ S, with some c € F;y(.S,) with s € st(c)

associate each ¢ € F;y(.5;:) with non-empty st(c) with one element in that set

Saarland Informatics
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RIC: strange quicksort
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RIC: 2d convex hulls
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RIC: 3d convex hulls
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RIC: trapezoidations of segments
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RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix’ S,.
v small integer

X; = > (7(c) + o(c))t.

c € C s.t. c becomes active
during random enumeration of S

A; = Ex[X;] typically measures the expected running time of an RIC algorithm.
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RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix’ .S,.
i small integer; define A; = Ex[X;] with

X; = Z (T(c) + a(c))*.

c € C s.t. c becomes active
during random enumeration of S

A; = Ex|[X;] typically measures the expected running time of an RIC algorithm.

RIC Theorem:
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RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix’ .S,.
i small integer; define A; = Ex[X;] with

X; = Z (T(c) + a(c))*.

c € C s.t. c becomes active
during random enumeration of S

A; = Ex|[X;] typically measures the expected running time of an RIC algorithm.

RIC Theorem:

strange quicksort:  fo(r)=r+1 =— A; =O(nlogn)
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RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix’ .S,.
i small integer; define A; = Ex[X;] with

X; = Z (T(c) + a(c))*.

c € C s.t. c becomes active
during random enumeration of S

A; = Ex|[X;] typically measures the expected running time of an RIC algorithm.

RIC Theorem:

convex hull in the plane or in 3-space: :  fo(r) =0(r) = A; =0O(nlogn)

Saarland Informatics
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RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix’ .S,.
i small integer; define A; = Ex[X;] with

X; = Z (T(c) + a(c))*.

c € C s.t. c becomes active
during random enumeration of S

A; = Ex|[X;] typically measures the expected running time of an RIC algorithm.

RIC Theorem:

trapezoidations of segments: fo(r) =0(r+ %K) = A =O0O(K +nlogn)

Saarland Informatics
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RIC: expected running time analysis

c becomes active during an enumeration of S if it is active for some “prefix’ .S,.
i small integer; define A; = Ex[X;] with

X; = Z (7(c) + a(c))r.

c € C s.t. c becomes active
during random enumeration of S

A; = Ex|[X;] typically measures the expected running time of an RIC algorithm.

RIC Theorem:

RIC Lemma:
A <dz—|—1nz Z f /’I“H_l

0<r<n

with equality if the configuration space is uniform. G| C searand mformatcs
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Ingredients for proof of RIC Lemma

configuration ¢: b= 7(c) and k = o(c)
pr(c) = Pr(c is active in random subset of size )

- 36 -
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Ingredients for proof of RIC Lemma

configuration ¢: b= 7(c) and k = o(c)
pr(c) = Pr(c is active in random subset of size )

- 37 -
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Ingredients for proof of RIC Lemma

configuration ¢: b= 7(c) and k = o(c)
pr(c) = Pr(c is active in random subset of size )

— 38 -
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Ingredients for proof of RIC Lemma

configuration ¢: b= 7(c) and k = o(c)
pr(c) = Pr(c is active in random subset of size )

(MY _ (5) ("«
(%) (")

think of R fixed but ¢r(c) and st(c) are chosen randomly

Pr(c is active at stage r)=Pr(c becomes active): (”() (n;) )
b+k

Jo (T) — ZcEC Pr (C)

linearity of expectations allows proof to proceed by proving an equality for each
configuration c

Saarland Informatics
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Ingredients for proof of RIC Lemma

configuration ¢: b= 7(c) and k = o(c)
pr(c) = Pr(c is active in random subset of size )

Pr(c is active at stage r)=Pr(c becomes active): (b() (n;) )
b+k

fo(r) = ZcEC pr(c)

linearity of expectations allows proof to proceed by proving an equality for each
configuration c

(5)(c) = @) (iZk) = (@) (52¢) > (i) (Ce7) = (51e2a)

S I C gger]r:l;&]sd Informatics
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Sampling Theorem

For integer : > 0 and R C S define

Bi(R)= »  o(c)f

c active for R

and let B;(r) be the expectation of B;(R) with R chosen uniformly at random from (f)

Saarland Informatics
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Sampling Theorem

For integer : > 0 and R C S define

Bi(R)= »  o(c)

c active for R

and let B;(r) be the expectation of B;(R) with R chosen uniformly at random from (f)

Theorem:
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Sampling Theorem

For integer : > 0 and R C S define

Bi(R)= »  o(c)

c active for R

and let B;(r) be the expectation of B;(R) with R chosen uniformly at random from (f)

Theorem:

Lemma:

Saarland Informatics
— 43 — SIC Campus



Ingredients for the proof of the sampling Lemma

Same ingredients as for the RIC Lemma

it all reduces to showing that

(r—l—lﬂ—l)(n—rfz)S Z (])(n—])
b+1+1 k —1 02, b k
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Ingredients for the proof of the sampling Lemma

Same ingredients as for the RIC Lemma

it all reduces to showing that
(r—|—2‘+1)(n—r—. z>< (j)(n—])
b+1i+1 k—1 O<Zj<r b k

you argue this inequality by considering all binary strings of length n + 1 with exactly
b+ k+ 1 digits '1" of which exactly b+ ¢ + 1 are in the first r 4+ 7 4+ 1 positions

Saarland Informatics
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Sampling concentration Lemma

Lemma: Assuming that the number of configurations is O(n?) the following holds:
If R is a random subset of .S of size r then with probability at most 1/2 for each ¢ that is
active for 12 the number of stoppers o(c) is O( logr).

Saarland Informatics
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Sampling concentration Lemma

Lemma: Assuming that the number of configurations is O(n?) the following holds:
If R is a random subset of .S of size r then with probability at most 1/2 for each ¢ that is

active for 12 the number of stoppers o(c) is O( logr).

Proof sketch: consider configuration ¢ with 7(¢) = d and o(c) = k.

The probability that c is active for R is roughly

(R (-50)
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Sampling concentration Lemma

Lemma: Assuming that the number of configurations is O(n?) the following holds:
If R is a random subset of S of size r then with probability at least 1/2 for each ¢ that is

active for 12 the number of stoppers o(c) is O( logr).

Proof sketch: consider configuration ¢ with 7(¢) = d and o(c) = k.

The probability that c is active for R is roughly

2 -2

n n
L d _rk

which is < (%) e n

By having k > a2 log r for sufficiently large « this is O(1/n%) and for O(n?)

configurations this sums to less than 1/2.

Saarland Informatics
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Cuttings for lines

Cutting Lemma:

Let S be a set of n lines in the plane in non-degenerate position and let » be some
number less than n.

In O(nr) expected time you can find a partition of the plane into O(r?) trapezoids so
that each trapezoid is intersected by at most n/r of the lines in S.

Saarland Informatics
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Triangle range searching in the plane

Preprocess a set S of n points in the plane so that for any query triangle 1" you can
quickly determine the points of S that are contained in 7.

Saarland Informatics
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