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‘Definition. An embedding f from the metric space (X, distX)\
to (Y, disty ) is a K-bi-Lipschitz if there exists a ¢ > 0 such
that for all z, 2" € X we have

cdist x (z, ") < disty (f(x), f(2")) < cKdistx (z, ).

Definition. The distortion of an embedding f : X — Y is the
smallest A s.t. f is A-bi-Lipscchitz.

If Y = R then we want

dist(z, ") < [|f(z) — f(2)2 < Adist(z, z')
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Why distortion Is necessary

Take Y = R% and

b

- C
A = 1\ a

1
1

d

Where to put a?

min(max{|la — bl la —¢|, [la —d][})

attained when a is circumcenter
... and when bcd is equilateral of sidelength 2.
Distortion is ||b — al| /distx (a,b) = 2/v/3

In general, n-star needs distortion Q(n'/?¢) when Y = R?



The Johnson-Lindenstrauss Lemma

' Theorem (Johnson, Lindenstrauss 1984) Given n points
P CR"™ ! and e € (0,1], there is an embedding f : P — R
with distortion 1+ ¢ where d = O(*2&%).

2

™

a.k.a. "dimension reduction’”,

"JL lemma”



The Johnson-Lindenstrauss Lemma

' Theorem (Johnson, Lindenstrauss 1984) Given n points
P CR"™ ! and e € (0,1], there is an embedding f : P — R
with distortion 1+ ¢ where d = O(*2&%).
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a.k.a. "dimension reduction”, " JL lemma”

e works for Re™Y

e f can be: orthogonal projection to random d-subspace

e can be derandomized (Engebretsen et al. 2002)



Almost equidistant set in RO(ogn)
Let e; = (0,...,0,1,0...,0).
0
The set eq, ..., e, is equidistant. (unit simplex).
Can't be embedded isometrically into R? if d < n — 1. But!
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Almost equidistant set in RO(ogn)
Let e; = (0,...,0,1,0...,0).
0
The set eq, ..., e, is equidistant. (unit simplex).
Can't be embedded isometrically into R? if d < n — 1. But!

Folklore. For any fixed € > 0, there is a set P of n points in
ROUcen) gt ||p—p'lls € [1,1 +¢] for all p,p’ € P.

Proof. Use JL lemma on simplex above. =
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Partitions, probabilistic partitions

Goal: partition (X, dist) into clusters of diameter at most A,
s.t. x,y € X are in the same cluster iff dist(z,y) < A.

Clearly unattainable!

Px: set of all partitions of X. Pick a random partition
II € Px from some distribution D over Px.

Revised goal: Pr(x,z’ are separated in II) is small if
dist(x, z’) is small.

Example: X = R.
Partition: |[zg + A, zg + (¢ + 1)A], where zq is random shift.

z — g
A

Pr(x,y are separated) <
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o € [1/4,1/2] uniform random.



Random partition for any metric space
Set A = 2%,

Let o be uniform random permutation of X,
o € [1/4,1/2] uniform random.

Greedy partiton:
Put all points within distance R := aA of o7 into first cluster.
Remove the cluster from o, repeat.



Random partition for any metric space
Set A = 2%,

Let o be uniform random permutation of X,
o € [1/4,1/2] uniform random.

Greedy partiton:

Put all points within distance R := aA of o7 into first cluster.
Remove the cluster from o, repeat.

Cluster dimater is 2R = 2aA < A Ve
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Clustering quality

‘Lemma. Forany z € X and t < A/8,

8. M
P (B ) I )<—1 i
r{B(z,t) £11(z)) < - In—
where m = # of pts at distance < A/8

\and M = # of pts at distance < A

Proof. Let U = pts w where B(w,A/2) N B(x,t) # ()
U = (w1,...,w)y|) := sorted by increasing distance from x.

£, 1= event that wy, is first in o s.t. II(wy) N B(x,t) # 0,
BUT B(x,t) & Il(wy)

If B(x,t)  II(x) then some &, must occur.
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& only if R in some range

Let I}, = |dist(z, wy) — t, dist(z, wg) + t].
Claim: R € 1, = Pr(Ek) =0

If d(x,wr) < R—t, then B(wg, R) D B(z,t), so Pr(&) = 0.
If d(x,wy) > R+t, then B(wy, R) N B(x,t) =0, so & is
impossible.

= Pr(w;) =0ift<mori>M

Pl‘(gk) = Pr (gk A (R c [k)) = PI‘(R

g< length(Ip) _ 2t __ 8t J
— A/2—A/4  A/4 T A

G w1, ...,Wkr_1 are closer to x than wy, so if one of them
(w;) occurs before wy in o, then wy is not first to scoop
from B(x,t) as dist(z,w;) < d(z,ws) < R+t
iPr(gk‘RGIk)S%




Random partition quality estimate

U]

Pr(B(x,t) £ 1(x ZPrgk ZPrgk

k=m-+1

Z Pr(R € I,)Pr(&; | R € I;;)
k=m-+1
M
8t 1
< _
< > A
k=m-+1

<8t1 M
_n_
A m
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HSTs and quadtrees

‘Definition. A hierarchically well-separated tree (HST) is a
metric space on the leaves of a rooted tree 1" where each
vertex has a label A > 0 s.t.
e leaves have label A, =0
e cach internal vertex v has A, > 0, and for any child u:
A, < A,.
o if x,2" leaves, then distr(z,2") = Ajca(z,2)

\

Example: quadtree.
T' = quadtree, A, = diameter of cell v.

|z — 2’| < Ajca(z,z) = distr(z, z’)
a bad embedding of P C R? into a tree metric

k-HST: a HST where A, < A, /k



Probabilistic embedding into a 2-HST

Randomized alg. for non-contracting embedding from X into a
HST T" has probabilistic distortion:
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Probabilistic embedding into a 2-HST

Randomized alg. for non-contracting embedding from X into a
HST T" has probabilistic distortion:

E(distp(x,y))
max :
zyeX distx(x,y)

Theorem. Given (X, dist), there is a randomized embedding
into a 2-HST with prob. distortion < 24Inn

Proof. Wlog. scale X so diam(X) = 1.

Start with P = X, set 1"'s root label to 1.

Compute random partition with A = diam(P)/2, set the diam
of partition classes as child labels. Recurse on each child.

level of node v in T": [log(A,)] <0



Bounding distortion of rand. HST embedding
x,y € X have lcauinT.

distr(z,y) = A, < 2tevelw)

o: path from root of 1" to leaf .

o;: level i node in o (if exists)

Ei: event that Bx (z,distx (z,y)) < I1(0;).

Y;: indicator that &; occurs but for all j > i event £; does not
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Bounding distortion of rand. HST embedding
x,y € X have lcauinT.

distr(z,y) = A, < 2tevel(w)

o: path from root of 1" to leaf .
o;: level i node in o (if exists)

Ei: event that Bx (z,distx (z,y)) < I1(0;).

Y;: indicator that &; occurs but for all j > i event £; does not
We have dr(z,y) < > . 2'Y;.

Set j := |logdistx (x,y)].

If i < j, then Pr(&;) =0 = E(Y;) =0.

If 7 > 7, then

——. _ 8distx(x,y)

B 2
E(Y;) = Pr(&NE;1N---NEy) < | Bx (z,2")

1l -
2! |Bx (x,2¢/8)



Distortion bound wrap-up

Set n; = Bx(z,2"), and t := distx (z,y).

E(dr(z,y)) < IE( Z QY) _ Z 2E(Y;)

0 St n; 0 n;
< 2t 1 L — 8t ’
< 25— =8t | ]| =

1=3 1=7

S 8t ln(ngnlng) S 24t Inn.
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with a + b = ¢, compute
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and b-median in right child
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k-median in HST
Computing k-median in HST is “easy”

e make it into binary HST
(new nodes have same label)

e Dyanimc program.

Subproblem at v, param /¢ € [k]:

l what is cheapest ¢/-median for
descendants of v?

e Recursive step: for each a, b
with a + b = ¢, compute
a-median in left child subtree
and b-median in right child
subtree.

O(k*n)



Application: k-median approximation in metric spaces

Theorem. There is an O(log n)-approximation for k-median in
any metric space (X, distx).




Application: k-median approximation in metric spaces

Theorem. There is an O(logn)-approximation for k-median in
any metric space (X, distx).
Proof. Emebed P C X into a HST T.

Compute cluster centers C in T'.

C' induces clustering X in P (center of p is nnx(p,C).
Return C, X.  OPT: (Copt, Xopt)

v(C,distx ) < ~(C,disty) < v(Cope, distr)
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Application: k-median approximation in metric spaces

any metric space (X, distx).
Proof. Emebed P C X into a HST T.

Compute cluster centers C in T'.

C' induces clustering X in P (center of p is nnx(p,C).
Return C, X.  OPT: (Copt, Xopt)

v(C,distx ) < ~(C,disty) < v(Cope, distr)
— Z diStT (pa Capt) S Z diStT (p7 nnx (pa Copt))

[Theorem. There is an O(log n)-approximation for k-median in}

peP peP
E(V(Cv dlStX)) — Z E(dIStT (pa nnx (p7 Copt)))
peP
= Z O (distx (p, nnx (p, Copt)) log n)
peP

— O(v(?(opt, Copt, distx) - log n) u
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embedded into ROU°8™) (with f5 metric) with distortion
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This is tight for coonstant-degree expanders.



Embedding into /5

‘Theorem (Bourgain 1985). Any n-pt metric space can be
embedded into ROU°8™) (with f5 metric) with distortion
\O(log n).

~

This is tight for coonstant-degree expanders.

Some proof ideas for weaker version:
e forget dimension (use JL in the end)
e for a given resolution r, use O(logn) random HST
embedding of diameter r.
Flip coin for each cluster; if heads, create an anchor set Y.

e embedding: j-th coord of x wrt. anchors Y; is dist(z,Y").
This 1s non-contracting.

For each resolution we get O(logn) coords each



Proof ideas for weak Bourgain, ctd.

Let x, y arbitrary, and r a resolution where

r/2 < dist(x,y)/2 < r. = x and y are in different
clusters, and with prob. 1/2 the ball B(x,O(1/logn)) is
contained in the cluster of x

Chernoff = w.h.p. a constant proportion of the
coordiantes j will differ by Q(r/logn) (when z,y get
different coin flips)

iIf they differ on k flips, then these cords contribute
distance at least Q(v'k/logn).

spread ®: ratio of largest/smallest distance in X. By
'snapping’ distances less than r/n or much more than r,
we get new metrics on X with spread ® = O(n?), and
there are O(n?) distinct metrics, get coords from each.



Embedding special metrics into /s

Tree metric: induced by possitively edge-weighted tree.

Theorem (Matousek 1999). Any tree metric can be

[embedded into /5 with distortion O(+/loglogn).

Distortion bound is tight (up to constant factors.)



Embedding special metrics into /s

Tree metric: induced by possitively edge-weighted tree.

Theorem (Matousek 1999). Any tree metric can be
embedded into /5 with distortion O(y/loglogn).

Distortion bound is tight (up to constant factors.)

‘Theorem (Rao 1999). Let G be graph class that excludes

some forbidden minor H (e.g. planar graphs.). Then any
(G-metric can be mebedded into {3 with distortion O(y/logn).

~

J

Distortion bound is tight (up to constant factors.)



