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Embeddings, distortion

Definition. An embedding f from the metric space (X,distX)
to (Y,distY ) is a K-bi-Lipschitz if there exists a c > 0 such
that for all x, x′ ∈ X we have

cdistX(x, x′) ≤ distY (f(x), f(x′)) ≤ cKdistX(x, x′).
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Definition. The distortion of an embedding f : X → Y is the
smallest ∆ s.t. f is ∆-bi-Lipscchitz.
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The Johnson-Lindenstrauss Lemma

Theorem (Johnson, Lindenstrauss 1984) Given n points
P ⊆ Rn−1 and ε ∈ (0, 1], there is an embedding f : P → Rd

with distortion 1 + ε where d = O( log n
ε2 ).

a.k.a. ”dimension reduction”, ”JL lemma”



The Johnson-Lindenstrauss Lemma

Theorem (Johnson, Lindenstrauss 1984) Given n points
P ⊆ Rn−1 and ε ∈ (0, 1], there is an embedding f : P → Rd

with distortion 1 + ε where d = O( log n
ε2 ).

• works for Rany

• f can be: orthogonal projection to random d-subspace

• can be derandomized (Engebretsen et al. 2002)

a.k.a. ”dimension reduction”, ”JL lemma”
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Let ei = (0, . . . , 0, 1, 0 . . . , 0).

The set e1, . . . , en is equidistant. (unit simplex).
Can’t be embedded isometrically into Rd if d < n− 1. But!
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Almost equidistant set in RO(logn)

Let ei = (0, . . . , 0, 1, 0 . . . , 0).

The set e1, . . . , en is equidistant. (unit simplex).
Can’t be embedded isometrically into Rd if d < n− 1. But!

i

Folklore. For any fixed ε > 0, there is a set P of n points in
RO(log n) s.t. ‖p− p′‖2 ∈ [1, 1 + ε] for all p, p′ ∈ P .

Proof. Use JL lemma on simplex above.
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Partitions, probabilistic partitions

Goal: partition (X,dist) into clusters of diameter at most ∆,
s.t. x, y ∈ X are in the same cluster iff dist(x, y) ≤ ∆.

Clearly unattainable!

PX : set of all partitions of X. Pick a random partition
Π ∈ PX from some distribution D over PX .

Revised goal: Pr(x, x′ are separated in Π) is small if
dist(x, x′) is small.

Example: X = R.
Partition: [x0 + i∆, x0 + (i+ 1)∆], where x0 is random shift.

Pr(x, y are separated) ≤ |x− y|
∆
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Random partition for any metric space

Set ∆ = 2u.
Let σ be uniform random permutation of X,
α ∈ [1/4, 1/2] uniform random.

Greedy partiton:
Put all points within distance R := α∆ of σ1 into first cluster.
Remove the cluster from σ, repeat.

Cluster dimater is 2R = 2α∆ ≤ ∆ X



Clustering quality

Lemma. For any x ∈ X and t ≤ ∆/8,
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(
B(x, t) 6⊆ Π(x)

)
≤ 8t

∆
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M

m

where m = # of pts at distance ≤ ∆/8
and M = # of pts at distance ≤ ∆



Clustering quality

Lemma. For any x ∈ X and t ≤ ∆/8,

Pr
(
B(x, t) 6⊆ Π(x)

)
≤ 8t

∆
ln
M

m

where m = # of pts at distance ≤ ∆/8
and M = # of pts at distance ≤ ∆

Proof. Let U = pts w where B(w,∆/2) ∩B(x, t) 6= ∅
U = (w1, . . . , w|U |) := sorted by increasing distance from x.

Ek := event that wk is first in σ s.t. Π(wk) ∩B(x, t) 6= ∅,
BUT B(x, t) 6∈ Π(wk)

If B(x, t) 6⊆ Π(x) then some Ek must occur.



Ek only if R in some range

Let Ik = [dist(x,wk)− t, dist(x,wk) + t].
Claim: R 6∈ Ik ⇒ Pr(Ek) = 0



Ek only if R in some range

Let Ik = [dist(x,wk)− t, dist(x,wk) + t].
Claim: R 6∈ Ik ⇒ Pr(Ek) = 0

If d(x,wk) < R− t, then B(wk, R) ⊇ B(x, t), so Pr(Ek) = 0.
If d(x,wk) > R+ t, then B(wk, R) ∩B(x, t) = ∅, so Ek is
impossible.
⇒ Pr(wi) = 0 if i ≤ m or i > M
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Ek only if R in some range

Let Ik = [dist(x,wk)− t, dist(x,wk) + t].
Claim: R 6∈ Ik ⇒ Pr(Ek) = 0

If d(x,wk) < R− t, then B(wk, R) ⊇ B(x, t), so Pr(Ek) = 0.
If d(x,wk) > R+ t, then B(wk, R) ∩B(x, t) = ∅, so Ek is
impossible.
⇒ Pr(wi) = 0 if i ≤ m or i > M

Pr(Ek) = Pr
(
Ek ∩ (R ∈ Ik)

)
= Pr(R ∈ Ik)Pr(Ek | R ∈ Ik)

≤ length(Ik)
∆/2−∆/4 = 2t

∆/4 = 8t
∆

If w1, . . . , wk−1 are closer to x than wk, so if one of them
(wi) occurs before wk in σ, then wk is not first to scoop
from B(x, t) as dist(x,wi) ≤ d(x,wt) ≤ R+ t
⇒ Pr(Ek | R ∈ Ik) ≤ 1

k

t
x

∆/8

wkR ∈ [∆/4,∆/2]



Random partition quality estimate

Pr(B(x, t) 6⊆ Π(x)) =

|U |∑
k=1

Pr(Ek) =
M∑

k=m+1

Pr(Ek)

=

M∑
k=m+1

Pr(R ∈ Ik)Pr(Ek | R ∈ Ik)

≤
M∑

k=m+1

8t

∆

1

k

<
8t

∆
ln
M
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Embedding into HSTs



HSTs and quadtrees

Definition. A hierarchically well-separated tree (HST) is a
metric space on the leaves of a rooted tree T where each
vertex has a label ∆ ≥ 0 s.t.
• leaves have label ∆v = 0
• each internal vertex v has ∆v > 0, and for any child u:

∆u ≤ ∆v.
• if x, x′ leaves, then distT (x, x′) = ∆lca(x,x′)
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HSTs and quadtrees

Example: quadtree.
T = quadtree, ∆v = diameter of cell v.

‖x− x′‖2 ≤ ∆lca(x,x′) = distT (x, x′)

a bad embedding of P ⊂ Rd into a tree metric

k-HST: a HST where ∆u ≤ ∆v/k

Definition. A hierarchically well-separated tree (HST) is a
metric space on the leaves of a rooted tree T where each
vertex has a label ∆ ≥ 0 s.t.
• leaves have label ∆v = 0
• each internal vertex v has ∆v > 0, and for any child u:

∆u ≤ ∆v.
• if x, x′ leaves, then distT (x, x′) = ∆lca(x,x′)



Probabilistic embedding into a 2-HST

Randomized alg. for non-contracting embedding from X into a
HST T has probabilistic distortion:

max
x,y∈X

E(distT (x, y))

distX(x, y)

Theorem. Given (X,dist), there is a randomized embedding
into a 2-HST with prob. distortion ≤ 24 lnn
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Proof. Wlog. scale X so diam(X) = 1.
Start with P = X, set T ’s root label to 1.
Compute random partition with ∆ = diam(P )/2, set the diam
of partition classes as child labels. Recurse on each child.



Probabilistic embedding into a 2-HST

Randomized alg. for non-contracting embedding from X into a
HST T has probabilistic distortion:

max
x,y∈X

E(distT (x, y))

distX(x, y)

Theorem. Given (X,dist), there is a randomized embedding
into a 2-HST with prob. distortion ≤ 24 lnn

Proof. Wlog. scale X so diam(X) = 1.
Start with P = X, set T ’s root label to 1.
Compute random partition with ∆ = diam(P )/2, set the diam
of partition classes as child labels. Recurse on each child.

level of node v in T : dlog(∆v)e ≤ 0



Bounding distortion of rand. HST embedding

x, y ∈ X have lca u in T .

distT (x, y) = ∆u ≤ 2level(u)

σ: path from root of T to leaf x.
σi: level i node in σ (if exists)
Ei: event that BX

(
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)
6⊆ Π(σi).

Yi: indicator that Ei occurs but for all j > i event Ej does not
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Bounding distortion of rand. HST embedding

x, y ∈ X have lca u in T .

distT (x, y) = ∆u ≤ 2level(u)

σ: path from root of T to leaf x.
σi: level i node in σ (if exists)
Ei: event that BX

(
x, distX(x, y)

)
6⊆ Π(σi).

Yi: indicator that Ei occurs but for all j > i event Ej does not

We have dT (x, y) ≤
∑

i 2iYi.
Set j := blog distX(x, y)c.
If i < j, then Pr(Ei) = 0⇒ E(Yi) = 0.

If i ≥ j, then

E(Yi) = Pr(Ei∩Ei+1∩· · ·∩E0) ≤ 8distX(x, y)

2i
ln
|BX(x, 2i)|
|BX(x, 2i/8)|



E(dT (x, y)) ≤ E
(∑

i

2iYi

)
=
∑
i

2iE(Yi)

≤
0∑

i=j

2i
8t

2i
ln

ni
ni−3

= 8t ln

 0∏
i=j

ni
ni−3


≤ 8t ln(n0n1n2) ≤ 24t lnn.

Distortion bound wrap-up

Set ni = BX(x, 2i), and t := distX(x, y).
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• Recursive step: for each a, b
with a+ b = `, compute
a-median in left child subtree
and b-median in right child
subtree.



k-median in HST

Computing k-median in HST is “easy”

• make it into binary HST
(new nodes have same label)

• Dyanimc program.
Subproblem at v, param ` ∈ [k]:
what is cheapest `-median for
descendants of v?

• Recursive step: for each a, b
with a+ b = `, compute
a-median in left child subtree
and b-median in right child
subtree.

O(k2n)



Application: k-median approximation in metric spaces

Theorem. There is an O(log n)-approximation for k-median in
any metric space (X,distX).



Application: k-median approximation in metric spaces

Proof. Emebed P ⊆ X into a HST T .
Compute cluster centers C in T .
C induces clustering X in P (center of p is nnX(p, C).
Return C,X . OPT: (Copt,Xopt)

γ(C,distX) ≤ γ(C,distT ) ≤ γ(Copt,distT )

=
∑
p∈P

distT (p, Copt) ≤
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distT (p, nnX(p, Copt))
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Application: k-median approximation in metric spaces

Proof. Emebed P ⊆ X into a HST T .
Compute cluster centers C in T .
C induces clustering X in P (center of p is nnX(p, C).
Return C,X . OPT: (Copt,Xopt)

γ(C,distX) ≤ γ(C,distT ) ≤ γ(Copt,distT )

=
∑
p∈P

distT (p, Copt) ≤
∑
p∈P

distT (p, nnX(p, Copt))

Theorem. There is an O(log n)-approximation for k-median in
any metric space (X,distX).

E(γ(C,distX)) =
∑
p∈P

E
(
distT (p, nnX(p, Copt))

)
=
∑
p∈P

O
(
distX(p, nnX(p, Copt)) log n

)
= O

(
γ(Xopt, Copt,distX) · log n

)
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Theorem (Bourgain 1985). Any n-pt metric space can be
embedded into RO(log n) (with `2 metric) with distortion
O(log n).

This is tight for coonstant-degree expanders.



Embedding into `2

Theorem (Bourgain 1985). Any n-pt metric space can be
embedded into RO(log n) (with `2 metric) with distortion
O(log n).

Some proof ideas for weaker version:
• forget dimension (use JL in the end)
• for a given resolution r, use O(log n) random HST

embedding of diameter r.
Flip coin for each cluster; if heads, create an anchor set Yj .

• embedding: j-th coord of x wrt. anchors Yj is dist(x, Y ).
This is non-contracting.
For each resolution we get O(log n) coords each

This is tight for coonstant-degree expanders.



• spread Φ: ratio of largest/smallest distance in X. By
’snapping’ distances less than r/n or much more than r,
we get new metrics on X with spread Φ = O(n2), and
there are O(n2) distinct metrics, get coords from each.

• Let x, y arbitrary, and r a resolution where
r/2 < dist(x, y)/2 < r. ⇒ x and y are in different
clusters, and with prob. 1/2 the ball B(x,O(1/ log n)) is
contained in the cluster of x

• Chernoff ⇒ w.h.p. a constant proportion of the
coordiantes j will differ by Ω(r/ log n) (when x, y get
different coin flips)

• if they differ on k flips, then these cords contribute
distance at least Ω(

√
k/ log n).

Proof ideas for weak Bourgain, ctd.



Embedding special metrics into `2
Tree metric: induced by possitively edge-weighted tree.

Distortion bound is tight (up to constant factors.)

Theorem (Matoušek 1999). Any tree metric can be
embedded into `2 with distortion O(

√
log logn).



Embedding special metrics into `2
Tree metric: induced by possitively edge-weighted tree.

Distortion bound is tight (up to constant factors.)

Distortion bound is tight (up to constant factors.)

Theorem (Rao 1999). Let G be graph class that excludes
some forbidden minor H (e.g. planar graphs.). Then any
G-metric can be mebedded into `2 with distortion O(

√
log n).

Theorem (Matoušek 1999). Any tree metric can be
embedded into `2 with distortion O(

√
log logn).


