Dimension reduction, embeddings

Sándor Kisfaludi-Bak

Computaional Geometry Summer semester 2020

• Embeddings, distortion, Johnson-Lindenstrauss

- Embeddings, distortion, Johnson-Lindenstrauss
- Random partitions

- Embeddings, distortion, Johnson-Lindenstrauss
- Random partitions
- Embedding into HSTs

- Embeddings, distortion, Johnson-Lindenstrauss
- Random partitions
- Embedding into HSTs
- Further embeddings into Euclidean space

Embeddings, distortion

Definition. An embedding f from the metric space $(X, \operatorname{dist}_X)$ to $(Y, \operatorname{dist}_Y)$ is a K-bi-Lipschitz if there exists a c > 0 such that for all $x, x' \in X$ we have

 $cdist_X(x, x') \le dist_Y(f(x), f(x')) \le cKdist_X(x, x').$

Embeddings, distortion

Definition. An embedding f from the metric space $(X, \operatorname{dist}_X)$ to $(Y, \operatorname{dist}_Y)$ is a K-bi-Lipschitz if there exists a c > 0 such that for all $x, x' \in X$ we have

 $cdist_X(x, x') \le dist_Y(f(x), f(x')) \le cKdist_X(x, x').$

Definition. The distortion of an embedding $f: X \to Y$ is the smallest Δ s.t. f is Δ -bi-Lipscchitz.

Embeddings, distortion

Definition. An embedding f from the metric space $(X, \operatorname{dist}_X)$ to $(Y, \operatorname{dist}_Y)$ is a K-bi-Lipschitz if there exists a c > 0 such that for all $x, x' \in X$ we have

 $cdist_X(x, x') \le dist_Y(f(x), f(x')) \le cKdist_X(x, x').$

Definition. The distortion of an embedding $f: X \to Y$ is the smallest Δ s.t. f is Δ -bi-Lipscchitz.

If $Y = \mathbb{R}^d$, then we want

 $\operatorname{dist}(x, x') \le \|f(x) - f(x')\|_2 \le \Delta \operatorname{dist}(x, x')$

Why distortion is necessary

attained when \boldsymbol{a} is circumcenter

Why distortion is necessary

attained when \boldsymbol{a} is circumcenter

attained when a is circumcenter ... and when bcd is equilateral of sidelength 2. Distortion is $||b - a||/\text{dist}_X(a, b) = 2/\sqrt{3}$

attained when a is circumcenter ... and when bcd is equilateral of sidelength 2. Distortion is $||b - a||/dist_X(a, b) = 2/\sqrt{3}$

In general, *n*-star needs distortion $\Omega(n^{1/d})$ when $Y = \mathbb{R}^d$

The Johnson-Lindenstrauss Lemma

Theorem (Johnson, Lindenstrauss 1984) Given n points $P \subseteq \mathbb{R}^{n-1}$ and $\varepsilon \in (0,1]$, there is an embedding $f: P \to \mathbb{R}^d$ with distortion $1 + \varepsilon$ where $d = O(\frac{\log n}{\varepsilon^2})$.

a.k.a. "dimension reduction", "JL lemma"

The Johnson-Lindenstrauss Lemma

Theorem (Johnson, Lindenstrauss 1984) Given n points $P \subseteq \mathbb{R}^{n-1}$ and $\varepsilon \in (0,1]$, there is an embedding $f: P \to \mathbb{R}^d$ with distortion $1 + \varepsilon$ where $d = O(\frac{\log n}{\varepsilon^2})$.

a.k.a. "dimension reduction", "JL lemma"

- works for \mathbb{R}^{any}
- f can be: orthogonal projection to random d-subspace
- can be derandomized (Engebretsen et al. 2002)

Almost equidistant set in $\mathbb{R}^{O(\log n)}$ Let $e_i = (0, \dots, 0, 1, 0, \dots, 0)$.

The set e_1, \ldots, e_n is *equidistant*. (unit simplex). Can't be embedded isometrically into \mathbb{R}^d if d < n - 1. But! Almost equidistant set in $\mathbb{R}^{O(\log n)}$ Let $e_i = (0, \dots, 0, 1, 0, \dots, 0)$.

The set e_1, \ldots, e_n is *equidistant*. (unit simplex). Can't be embedded isometrically into \mathbb{R}^d if d < n - 1. But!

Folklore. For any fixed $\varepsilon > 0$, there is a set P of n points in $\mathbb{R}^{O(\log n)}$ s.t. $\|p - p'\|_2 \in [1, 1 + \varepsilon]$ for all $p, p' \in P$.

Almost equidistant set in $\mathbb{R}^{O(\log n)}$ Let $e_i = (0, \dots, 0, 1, 0, \dots, 0)$.

The set e_1, \ldots, e_n is *equidistant*. (unit simplex). Can't be embedded isometrically into \mathbb{R}^d if d < n - 1. But!

Folklore. For any fixed $\varepsilon > 0$, there is a set P of n points in $\mathbb{R}^{O(\log n)}$ s.t. $\|p - p'\|_2 \in [1, 1 + \varepsilon]$ for all $p, p' \in P$.

Proof. Use JL lemma on simplex above.

Random partitions

Goal: partition (X, dist) into clusters of diameter at most Δ , s.t. $x, y \in X$ are in the same cluster iff $\text{dist}(x, y) \leq \Delta$.

Goal: partition (X, dist) into clusters of diameter at most Δ , s.t. $x, y \in X$ are in the same cluster iff $\text{dist}(x, y) \leq \Delta$.

Clearly unattainable!

Goal: partition (X, dist) into clusters of diameter at most Δ , s.t. $x, y \in X$ are in the same cluster iff $\text{dist}(x, y) \leq \Delta$.

Clearly unattainable!

 \mathcal{P}_X : set of all partitions of X. Pick a random partition $\Pi \in \mathcal{P}_X$ from some distribution \mathcal{D} over \mathcal{P}_X . Revised goal: $\Pr(x, x' \text{ are separated in } \Pi)$ is small if $\operatorname{dist}(x, x')$ is small.

Goal: partition (X, dist) into clusters of diameter at most Δ , s.t. $x, y \in X$ are in the same cluster iff $\text{dist}(x, y) \leq \Delta$.

Clearly unattainable!

 \mathcal{P}_X : set of all partitions of X. Pick a random partition $\Pi \in \mathcal{P}_X$ from some distribution \mathcal{D} over \mathcal{P}_X . Revised goal: $\Pr(x, x' \text{ are separated in } \Pi)$ is small if $\operatorname{dist}(x, x')$ is small.

Example: $X = \mathbb{R}$. Partition: $[x_0 + i\Delta, x_0 + (i+1)\Delta]$, where x_0 is random shift.

$$\Pr(x, y \text{ are separated}) \leq \frac{|x - y|}{\Delta}$$

Random partition for any metric space

Set $\Delta = 2^u$.

Let σ be uniform random permutation of X,

 $\alpha \in [1/4, 1/2]$ uniform random.

Random partition for any metric space Set $\Delta = 2^u$. Let σ be uniform random permutation of X, $\alpha \in [1/4, 1/2]$ uniform random.

Greedy partiton: Put all points within distance $R := \alpha \Delta$ of σ_1 into first cluster.

Remove the cluster from σ , repeat.

Random partition for any metric space Set $\Delta = 2^u$. Let σ be uniform random permutation of X, $\alpha \in [1/4, 1/2]$ uniform random.

Greedy partiton: Put all points within distance $R := \alpha \Delta$ of σ_1 into first cluster. Remove the cluster from σ , repeat.

Cluster dimater is $2R = 2\alpha\Delta \leq \Delta$ 🗸

Clustering quality

Lemma. For any $x \in X$ and $t \leq \Delta/8$,

$$\Pr\left(B(x,t) \not\subseteq \Pi(x)\right) \le \frac{8t}{\Delta} \ln \frac{M}{m}$$

where m = # of pts at distance $\leq \Delta/8$ and M = # of pts at distance $\leq \Delta$ Clustering quality

Lemma. For any $x \in X$ and $t \leq \Delta/8$,

$$\Pr\left(B(x,t) \not\subseteq \Pi(x)\right) \le \frac{8t}{\Delta} \ln \frac{M}{m}$$

where m = # of pts at distance $\leq \Delta/8$ and M = # of pts at distance $\leq \Delta$

Proof. Let U = pts w where $B(w, \Delta/2) \cap B(x, t) \neq \emptyset$ $U = (w_1, \dots, w_{|U|}) :=$ sorted by increasing distance from x. $\mathcal{E}_k :=$ event that w_k is first in σ s.t. $\Pi(w_k) \cap B(x, t) \neq \emptyset$, BUT $B(x, t) \notin \Pi(w_k)$

If $B(x,t) \not\subseteq \Pi(x)$ then some \mathcal{E}_k must occur.

\mathcal{E}_k only if R in some range Let $I_k = [\operatorname{dist}(x, w_k) - t, \operatorname{dist}(x, w_k) + t].$

Claim: $R \notin I_k \Rightarrow \Pr(\mathcal{E}_k) = 0$

\mathcal{E}_k only if R in some range

Let $I_k = [\operatorname{dist}(x, w_k) - t, \operatorname{dist}(x, w_k) + t].$ Claim: $R \notin I_k \Rightarrow \Pr(\mathcal{E}_k) = 0$

If $d(x, w_k) < R - t$, then $B(w_k, R) \supseteq B(x, t)$, so $Pr(\mathcal{E}_k) = 0$. If $d(x, w_k) > R + t$, then $B(w_k, R) \cap B(x, t) = \emptyset$, so \mathcal{E}_k is impossible.

 $\Rightarrow \Pr(w_i) = 0 \text{ if } i \le m \text{ or } i > M$

\mathcal{E}_k only if R in some range

Let $I_k = [dist(x, w_k) - t, dist(x, w_k) + t].$ Claim: $R \notin I_k \Rightarrow \Pr(\mathcal{E}_k) = 0$

If $d(x, w_k) < R - t$, then $B(w_k, R) \supseteq B(x, t)$, so $Pr(\mathcal{E}_k) = 0$. If $d(x, w_k) > R + t$, then $B(w_k, R) \cap B(x, t) = \emptyset$, so \mathcal{E}_k is impossible. $R \in [\Delta/4, \Delta/2]$

$$\Rightarrow \Pr(w_i) = 0 \text{ if } i \leq m \text{ or } i > M$$

$$\Pr(\mathcal{E}_k) = \Pr\left(\mathcal{E}_k \cap (R \in I_k)\right) = \Pr(R \in \mathcal{A}_k) \Pr(\mathcal{E}_k \mid R \in I_k)$$

$$\geq \frac{length(I_k)}{\Delta/2 - \Delta/4} = \frac{2t}{\Delta/4} = \frac{8t}{\Delta}$$

If w_1, \ldots, w_{k-1} are closer to x than w_k , so if one of them (w_i) occurs before w_k in σ , then w_k is not first to scoop from B(x,t) as $dist(x,w_i) \le d(x,w_t) \le R+t$ $\Rightarrow \Pr(\mathcal{E}_k \mid R \in I_k) \leq \frac{1}{k}$

Random partition quality estimate

$$\Pr(B(x,t) \not\subseteq \Pi(x)) = \sum_{k=1}^{|U|} \Pr(\mathcal{E}_k) = \sum_{k=m+1}^{M} \Pr(\mathcal{E}_k)$$
$$= \sum_{k=m+1}^{M} \frac{\Pr(R \in I_k) \Pr(\mathcal{E}_k \mid R \in I_k)}{\leq \sum_{k=m+1}^{M} \frac{8t}{\Delta} \frac{1}{k}}$$
$$< \frac{8t}{\Delta} \ln \frac{M}{m}$$

Embedding into HSTs

HSTs and quadtrees

Definition. A hierarchically well-separated tree (HST) is a metric space on the leaves of a rooted tree T where each vertex has a label $\Delta \geq 0$ s.t.

- leaves have label $\Delta_v=0$
- each internal vertex v has $\Delta_v>0,$ and for any child u: $\Delta_u\leq \Delta_v.$
- if x, x' leaves, then $\operatorname{dist}_T(x, x') = \Delta_{lca(x, x')}$

HSTs and quadtrees

Definition. A hierarchically well-separated tree (HST) is a metric space on the leaves of a rooted tree T where each vertex has a label $\Delta \geq 0$ s.t.

- leaves have label $\Delta_v = 0$
- each internal vertex v has $\Delta_v>0,$ and for any child u: $\Delta_u\leq \Delta_v.$
- if x, x' leaves, then $\operatorname{dist}_T(x, x') = \Delta_{lca(x, x')}$

Example: quadtree. T = quadtree, $\Delta_v =$ diameter of cell v. $\|x - x'\|_2 \le \Delta_{lca(x,x')} = \operatorname{dist}_T(x,x')$

a bad embedding of $P \subset \mathbb{R}^d$ into a tree metric

HSTs and quadtrees

Definition. A hierarchically well-separated tree (HST) is a metric space on the leaves of a rooted tree T where each vertex has a label $\Delta \geq 0$ s.t.

- leaves have label $\Delta_v = 0$
- each internal vertex v has $\Delta_v>0,$ and for any child u: $\Delta_u\leq \Delta_v.$
- if x, x' leaves, then $\operatorname{dist}_T(x, x') = \Delta_{lca(x, x')}$

Example: quadtree. T = quadtree, $\Delta_v =$ diameter of cell v. $\|x - x'\|_2 \le \Delta_{lca(x,x')} = \operatorname{dist}_T(x,x')$

a bad embedding of $P \subset \mathbb{R}^d$ into a tree metric

k-HST: a HST where $\Delta_u \leq \Delta_v/k$

Probabilistic embedding into a 2-HST

Randomized alg. for non-contracting embedding from X into a HST T has probabilistic distortion:

$$\max_{x,y\in X} \frac{\mathbf{E}(\operatorname{dist}_T(x,y))}{\operatorname{dist}_X(x,y)}$$

Theorem. Given (X, dist), there is a randomized embedding into a 2-HST with prob. distortion $\leq 24 \ln n$

Probabilistic embedding into a 2-HST

Randomized alg. for non-contracting embedding from X into a HST T has probabilistic distortion:

$$\max_{x,y\in X} \frac{\mathbf{E}(\operatorname{dist}_T(x,y))}{\operatorname{dist}_X(x,y)}$$

Theorem. Given (X, dist), there is a randomized embedding into a 2-HST with prob. distortion $\leq 24 \ln n$

Proof. Wlog. scale X so diam(X) = 1. Start with P = X, set T's root label to 1. Compute random partition with $\Delta = diam(P)/2$, set the diam of partition classes as child labels. Recurse on each child.

Probabilistic embedding into a 2-HST

Randomized alg. for non-contracting embedding from X into a HST T has probabilistic distortion:

$$\max_{x,y\in X} \frac{\mathbf{E}(\operatorname{dist}_T(x,y))}{\operatorname{dist}_X(x,y)}$$

Theorem. Given (X, dist), there is a randomized embedding into a 2-HST with prob. distortion $\leq 24 \ln n$

Proof. Wlog. scale X so diam(X) = 1. Start with P = X, set T's root label to 1. Compute random partition with $\Delta = diam(P)/2$, set the diam of partition classes as child labels. Recurse on each child.

level of node v in T: $\lceil \log(\Delta_v) \rceil \leq 0$

Bounding distortion of rand. HST embedding $x, y \in X$ have lca u in T.

$$\operatorname{dist}_T(x,y) = \Delta_u \le 2^{level(u)}$$

 σ : path from root of T to leaf x. σ_i : level i node in σ (if exists)

- \mathcal{E}_i : event that $B_X(x, \operatorname{dist}_X(x, y)) \not\subseteq \Pi(\sigma_i)$.
- Y_i : indicator that \mathcal{E}_i occurs but for all j > i event \mathcal{E}_j does not

Bounding distortion of rand. HST embedding $x, y \in X$ have lca u in T.

$$\operatorname{dist}_T(x,y) = \Delta_u \le 2^{level(u)}$$

 σ : path from root of T to leaf x. σ_i : level i node in σ (if exists) \mathcal{E}_i : event that $B_X(x, \operatorname{dist}_X(x, y)) \not\subseteq \Pi(\sigma_i)$. Y_i : indicator that \mathcal{E}_i occurs but for all j > i event \mathcal{E}_j does not

We have $d_T(x, y) \leq \sum_i 2^i Y_i$. Set $j := \lfloor \log \operatorname{dist}_X(x, y) \rfloor$. If i < j, then $\Pr(\mathcal{E}_i) = 0 \Rightarrow \mathbb{E}(Y_i) = 0$. Bounding distortion of rand. HST embedding $x, y \in X$ have lca u in T.

$$\operatorname{dist}_T(x,y) = \Delta_u \le 2^{level(u)}$$

 σ : path from root of T to leaf x. σ_i : level i node in σ (if exists) \mathcal{E}_i : event that $B_X(x, \operatorname{dist}_X(x, y)) \not\subseteq \Pi(\sigma_i)$. Y_i : indicator that \mathcal{E}_i occurs but for all j > i event \mathcal{E}_j does not

We have
$$d_T(x, y) \leq \sum_i 2^i Y_i$$
.
Set $j := \lfloor \log \operatorname{dist}_X(x, y) \rfloor$.
If $i < j$, then $\Pr(\mathcal{E}_i) = 0 \Rightarrow \mathbb{E}(Y_i) = 0$.

If $i \geq j$, then

$$\mathbb{E}(Y_i) = \Pr(\mathcal{E}_i \cap \overline{\mathcal{E}_{i+1}} \cap \dots \cap \overline{\mathcal{E}_0}) \le \frac{8 \operatorname{dist}_X(x, y)}{2^i} \ln \frac{|B_X(x, 2^i)|}{|B_X(x, 2^i/8)|}$$

Distortion bound wrap-up

Set
$$n_i = B_X(x, 2^i)$$
, and $t := \operatorname{dist}_X(x, y)$.

$$\mathbb{E}(d_T(x,y)) \leq \mathbb{E}\left(\sum_i 2^i Y_i\right) = \sum_i 2^i \mathbb{E}(Y_i)$$
$$\leq \sum_{i=j}^0 2^i \frac{8t}{2^i} \ln \frac{n_i}{n_{i-3}} = 8t \ln \left(\prod_{i=j}^0 \frac{n_i}{n_{i-3}}\right)$$
$$\leq 8t \ln(n_0 n_1 n_2) \leq 24t \ln n.$$

Computing k-median in HST is "easy"

 make it into binary HST (new nodes have same label)

Computing k-median in HST is "easy"

- make it into binary HST (new nodes have same label)
- Dyanimc program.
 Subproblem at v, param l ∈ [k]: what is cheapest l-median for descendants of v?

Computing k-median in HST is "easy"

- make it into binary HST (new nodes have same label)
- Dyanimc program.
 Subproblem at v, param l ∈ [k]: what is cheapest l-median for descendants of v?
- Recursive step: for each a, b with a + b = ℓ, compute a-median in left child subtree and b-median in right child subtree.

Computing k-median in HST is "easy"

- make it into binary HST (new nodes have same label)
- Dyanimc program.
 Subproblem at v, param l ∈ [k]: what is cheapest l-median for descendants of v?
- Recursive step: for each a, b with a + b = l, compute a-median in left child subtree and b-median in right child subtree.

 $O(k^2n)$

Application: k-median approximation in metric spaces

Theorem. There is an $O(\log n)$ -approximation for k-median in any metric space $(X, \operatorname{dist}_X)$.

Application: k-median approximation in metric spaces

Theorem. There is an $O(\log n)$ -approximation for k-median in any metric space $(X, \operatorname{dist}_X)$.

Proof. Emebed $P \subseteq X$ into a HST T.

Compute cluster centers C in T.

C induces clustering \mathcal{X} in P (center of p is $nn_X(p, C)$. Return C, \mathcal{X} . OPT: $(C_{opt}, \mathcal{X}_{opt})$

 $\gamma(C, \operatorname{dist}_X) \leq \gamma(C, \operatorname{dist}_T) \leq \gamma(C_{opt}, \operatorname{dist}_T)$

 $= \sum_{p \in P} \operatorname{dist}_T(p, C_{opt}) \le \sum_{p \in P} \operatorname{dist}_T(p, nn_X(p, C_{opt}))$

Application: k-median approximation in metric spaces

Theorem. There is an $O(\log n)$ -approximation for k-median in any metric space $(X, \operatorname{dist}_X)$.

Proof. Emebed $P \subseteq X$ into a HST T. Compute cluster centers C in T. C induces clustering \mathcal{X} in P (center of p is $nn_X(p, C)$. Return C, \mathcal{X} . OPT: $(C_{opt}, \mathcal{X}_{opt})$

 $\gamma(C, \operatorname{dist}_X) \leq \gamma(C, \operatorname{dist}_T) \leq \gamma(C_{opt}, \operatorname{dist}_T)$ $= \sum \operatorname{dist}_T(p, C_{opt}) \le \sum \operatorname{dist}_T(p, nn_X(p, C_{opt}))$ $p \in P$ $\mathbb{E}(\gamma(C, \operatorname{dist}_X)) = \sum \mathbb{E}(\operatorname{dist}_T(p, nn_X(p, C_{opt})))$ $p \in P$ $= \sum O(\operatorname{dist}_X(p, nn_X(p, C_{opt})) \log n)$ $p \in P$ $= O(\gamma(\mathcal{X}_{opt}, C_{opt}, \operatorname{dist}_X) \cdot \log n)$

Further embeddings into ℓ_2

Embedding into ℓ_2

Theorem (Bourgain 1985). Any *n*-pt metric space can be embedded into $\mathbb{R}^{O(\log n)}$ (with ℓ_2 metric) with distortion $O(\log n)$.

This is tight for coonstant-degree expanders.

Embedding into ℓ_2

Theorem (Bourgain 1985). Any *n*-pt metric space can be embedded into $\mathbb{R}^{O(\log n)}$ (with ℓ_2 metric) with distortion $O(\log n)$.

This is tight for coonstant-degree expanders.

Some proof ideas for weaker version:

- forget dimension (use JL in the end)
- for a given resolution r, use O(log n) random HST embedding of diameter r.
 Flip coin for each cluster; if heads, create an anchor set Y_i.
- embedding: j-th coord of x wrt. anchors Y_j is dist(x, Y). This is non-contracting.
 For each resolution we get O(log n) coords each

Proof ideas for weak Bourgain, ctd.

- Let x, y arbitrary, and r a resolution where $r/2 < \operatorname{dist}(x, y)/2 < r$. $\Rightarrow x$ and y are in different clusters, and with prob. 1/2 the ball $B(x, O(1/\log n))$ is contained in the cluster of x
- Chernoff \Rightarrow w.h.p. a constant proportion of the coordiantes j will differ by $\Omega(r/\log n)$ (when x, y get different coin flips)
- if they differ on k flips, then these cords contribute distance at least $\Omega(\sqrt{k}/\log n).$
- spread Φ : ratio of largest/smallest distance in X. By 'snapping' distances less than r/n or much more than r, we get new metrics on X with spread $\Phi = O(n^2)$, and there are $O(n^2)$ distinct metrics, get coords from each.

Embedding special metrics into ℓ_2

Tree metric: induced by possitively edge-weighted tree.

Theorem (Matoušek 1999). Any tree metric can be embedded into ℓ_2 with distortion $O(\sqrt{\log \log n})$.

Distortion bound is tight (up to constant factors.)

Embedding special metrics into ℓ_2

Tree metric: induced by possitively edge-weighted tree.

Theorem (Matoušek 1999). Any tree metric can be embedded into ℓ_2 with distortion $O(\sqrt{\log \log n})$.

Distortion bound is tight (up to constant factors.)

Theorem (Rao 1999). Let \mathcal{G} be graph class that excludes some forbidden minor H (e.g. planar graphs.). Then any \mathcal{G} -metric can be mebedded into ℓ_2 with distortion $O(\sqrt{\log n})$.

Distortion bound is tight (up to constant factors.)