Dimension reduction, embeddings

Sándor Kisfaludi-Bak

Computaional Geometry Summer semester 2020

• Embeddings, distortion, Johnson-Lindenstrauss

- Embeddings, distortion, Johnson-Lindenstrauss
- Random partitions

- Embeddings, distortion, Johnson-Lindenstrauss
-
- Random partitions
• Embedding into HSTs

- Embeddings, distortion, Johnson-Lindenstrauss
-
- Random partitions
• Embedding into HSTs
- Further embeddings into Euclidean space

Embeddings, distortion

Definition. An embedding f from the metric space $(X, dist_X)$ to $(Y, dist_Y)$ is a K-bi-Lipschitz if there exists a $c > 0$ such that for all $x,x'\in X$ we have

 $clist_X(x, x') \leq dist_Y(f(x), f(x')) \leq cKdist_X(x, x').$

Embeddings, distortion

Definition. An embedding f from the metric space $(X, dist_X)$ to $(Y, dist_Y)$ is a K-bi-Lipschitz if there exists a $c > 0$ such that for all $x,x'\in X$ we have

 $clist_X(x, x') \leq dist_Y(f(x), f(x')) \leq cKdist_X(x, x').$

Definition. The distortion of an embedding $f: X \rightarrow Y$ is the smallest Δ s.t. f is Δ -bi-Lipscchitz.

Embeddings, distortion

Definition. An embedding f from the metric space $(X, dist_X)$ to $(Y, dist_Y)$ is a K-bi-Lipschitz if there exists a $c > 0$ such that for all $x,x'\in X$ we have

 $clist_X(x, x') \leq dist_Y(f(x), f(x')) \leq cKdist_X(x, x').$

Definition. The distortion of an embedding $f: X \rightarrow Y$ is the smallest Δ s.t. f is Δ -bi-Lipscchitz.

If $Y=\mathbb{R}^d$, then we want

 $dist(x, x') \leq ||f(x) - f(x')||_2 \leq \Delta dist(x, x')$

Why distortion is necessary Take $Y=\mathbb{R}^d$, and $X =$ 1 1 $a_{\mathcal{L}}$ b \overline{C} d Where to put a ? $\begin{array}{c|c} \n\sqrt{\frac{1}{d}} & & & \rightarrow \n\end{array}$

Where to put a?
 $n(\max\{\|a-b\|, \|a-c\|, \|a-d\|\})$

attained when a is circumcenter

$$
\min(\max\{\|a-b\|, \|a-c\|, \|a-d\|\})
$$

Why distortion is necessary

 \overline{d}

 \overline{c}

 ≥ 2

 \ldots and when bcd is equilateral of sidelength 2. Distortion is $||b - a|| / \text{dist}_X(a, b) = 2/\sqrt{3}$ en
∕

 \ldots and when bcd is equilateral of sidelength 2. Distortion is $\|b - a\|/{\operatorname{dist}}_X(a, b) = 2/\sqrt{3}$ en
⁄

In general, n -star needs distortion $\Omega(n^{1/d})$ when $Y=\mathbb{R}^d$

 \overline{d}

 \overline{c}

 ≥ 2

The Johnson-Lindenstrauss Lemma

Theorem (Johnson, Lindenstrauss 1984) Given n points $P \subseteq \mathbb{R}^{n-1}$ and $\varepsilon \in (0,1]$, there is an embedding $f : P \to \mathbb{R}^d$ with distortion $1+\varepsilon$ where $d=O(\frac{\log n}{\varepsilon^2})$ $\frac{\log n}{\varepsilon^2}$).

a.k.a. "dimension reduction", "JL lemma"

The Johnson-Lindenstrauss Lemma

Theorem (Johnson, Lindenstrauss 1984) Given n points $P \subseteq \mathbb{R}^{n-1}$ and $\varepsilon \in (0,1]$, there is an embedding $f : P \to \mathbb{R}^d$ with distortion $1+\varepsilon$ where $d=O(\frac{\log n}{\varepsilon^2})$ $\frac{\log n}{\varepsilon^2}$).

- $\bullet\,$ works for \mathbb{R}^{any}
- f can be: orthogonal projection to random d-subspace • can be: dimension reduction", "JL lemma"
• works for \mathbb{R}^{any}
• f can be: orthogonal projection to random d-subs
• can be derandomized (Engebretsen et al. 2002)
-

$$
\mathsf{Almost}\ \textsf{equidistant}\ \textsf{set}\ \textsf{in}\ \mathbb{R}^{O(\log n)}
$$
\n
$$
\mathsf{Let}\ e_i = (0,\ldots,0,1,0\ldots,0).
$$

The set e_1, \ldots, e_n is equidistant. (unit simplex). Can't be embedded isometrically into \mathbb{R}^d i
is *equidistant*. (unit simplex).
| isometrically into \mathbb{R}^d if $d < n-1.$ But!

$$
\mathsf{Almost}\ \mathsf{equidistant}\ \mathsf{set}\ \mathsf{in}\ \mathbb{R}^{O(\log n)}
$$
\n
$$
\mathsf{Let}\ e_i=(0,\ldots,0,1,0\ldots,0).
$$

The set e_1, \ldots, e_n is equidistant. (unit simplex). Can't be embedded isometrically into \mathbb{R}^d i
is *equidistant*. (unit simplex).
| isometrically into \mathbb{R}^d if $d < n-1$. But!

Folklore. For any fixed $\varepsilon > 0$, there is a set P of n points in $\mathbb{R}^{O(\log n)}$ s.t. $\|p-p'\|_2\in [1, 1+\varepsilon]$ for all $p,p'\in P.$

$$
\mathsf{Almost}\ \mathsf{equidistant}\ \mathsf{set}\ \mathsf{in}\ \mathbb{R}^{O(\log n)}
$$
\n
$$
\mathsf{Let}\ e_i = (0,\ldots,0,1,0\ldots,0).
$$

The set e_1, \ldots, e_n is equidistant. (unit simplex). Can't be embedded isometrically into \mathbb{R}^d i
is *equidistant*. (unit simplex).
| isometrically into \mathbb{R}^d if $d < n-1$. But!

Folklore. For any fixed $\varepsilon > 0$, there is a set P of n points in $\mathbb{R}^{O(\log n)}$ s.t. $\|p-p'\|_2\in [1, 1+\varepsilon]$ for all $p,p'\in P.$

Proof. Use JL lemma on simplex above.

Random partitions

Goal: partition $(X, dist)$ into clusters of diameter at most Δ , s.t. $x, y \in X$ are in the same cluster iff $dist(x, y) \leq \Delta$.

Goal: partition $(X, dist)$ into clusters of diameter at most Δ , s.t. $x, y \in X$ are in the same cluster iff $dist(x, y) \leq \Delta$.

Clearly unattainable!

Goal: partition $(X, dist)$ into clusters of diameter at most Δ , s.t. $x, y \in X$ are in the same cluster iff $dist(x, y) \leq \Delta$.

Clearly unattainable!

 \mathcal{P}_X : set of all partitions of X. Pick a random partition $\Pi \in \mathcal{P}_X$ from some distribution \mathcal{D} over \mathcal{P}_X . Revised goal: $Pr(x, x'$ are separated in $\Pi)$ is small if $dist(x, x')$ is small.

Goal: partition $(X, dist)$ into clusters of diameter at most Δ , s.t. $x, y \in X$ are in the same cluster iff $dist(x, y) \leq \Delta$.

Clearly unattainable!

 \mathcal{P}_X : set of all partitions of X. Pick a random partition $\Pi \in \mathcal{P}_X$ from some distribution \mathcal{D} over \mathcal{P}_X . Revised goal: $Pr(x, x'$ are separated in $\Pi)$ is small if $dist(x, x')$ is small.

Example: $X = \mathbb{R}$. Partition: $[x_0 + i\Delta, x_0 + (i + 1)\Delta]$, where x_0 is random shift.

$$
\Pr(x, y \text{ are separated}) \leq \frac{|x - y|}{\Delta}
$$

Random partition for any metric space

Set $\Delta = 2^u$.

Let σ be uniform random permutation of X,

 $\alpha \in [1/4, 1/2]$ uniform random.

Random partition for any metric space Set $\Delta = 2^u$. Let σ be uniform random permutation of X, $\alpha \in [1/4, 1/2]$ uniform random.

Greedy partiton:

Put all points within distance $R := \alpha \Delta$ of σ_1 into first cluster. Remove the cluster from σ , repeat.

Random partition for any metric space Set $\Delta = 2^u$. Let σ be uniform random permutation of X, $\alpha \in [1/4, 1/2]$ uniform random.

Greedy partiton: Put all points within distance $R := \alpha \Delta$ of σ_1 into first cluster. Remove the cluster from σ , repeat.

Cluster dimater is $2R = 2\alpha\Delta < \Delta$

Clustering quality

Lemma. For any $x \in X$ and $t \leq \Delta/8$,

$$
\Pr\left(B(x,t) \not\subseteq \Pi(x)\right) \le \frac{8t}{\Delta} \ln \frac{M}{m}
$$

where $m = \#$ of pts at distance $\leq \Delta/8$ and $M = \#$ of pts at distance $\leq \Delta$

Clustering quality

Lemma. For any $x \in X$ and $t \leq \Delta/8$,

$$
\Pr\left(B(x,t) \not\subseteq \Pi(x)\right) \le \frac{8t}{\Delta} \ln \frac{M}{m}
$$

where $m = \#$ of pts at distance $\leq \Delta/8$ and $M = \#$ of pts at distance $\leq \Delta$

Proof. Let $U =$ pts w where $B(w, \Delta/2) \cap B(x, t) \neq \emptyset$ $U=(w_1,\ldots,w_{|U|}):$ sorted by increasing distance from $x.$ $\mathcal{E}_k :=$ event that w_k is first in σ s.t. $\Pi(w_k) \cap B(x,t) \neq \emptyset$, BUT $B(x, t) \notin \Pi(w_k)$

If $B(x,t)\not\subseteq \Pi(x)$ then some \mathcal{E}_k must occur.

\mathcal{E}_k only if R in some range

Let $I_k = [\text{dist}(x, w_k) - t, \text{dist}(x, w_k) + t].$ Claim: $R \notin I_k \Rightarrow Pr(\mathcal{E}_k) = 0$

\mathcal{E}_k only if R in some range

Let $I_k = [\text{dist}(x, w_k) - t, \text{dist}(x, w_k) + t].$ Claim: $R \notin I_k \Rightarrow Pr(\mathcal{E}_k) = 0$

If $d(x, w_k) < R-t$, then $B(w_k, R) \supseteq B(x, t)$, so $\Pr(\mathcal{E}_k) = 0$. If $d(x, w_k) > R + t$, then $B(w_k, R) \cap B(x, t) = \emptyset$, so \mathcal{E}_k is impossible.

 $\Rightarrow \Pr(w_i) = 0 \text{ if } i \leq m \text{ or } i > M \ \ \left(\begin{matrix} \frac{1}{\sqrt{N}} & \frac{1}{\sqrt{N}} \ \frac{1}{\sqrt$

\mathcal{E}_k only if R in some range

Let $I_k = [\text{dist}(x, w_k) - t, \text{dist}(x, w_k) + t].$ Claim: $R \notin I_k \Rightarrow Pr(\mathcal{E}_k) = 0$

If $d(x, w_k) < R - t$, then $B(w_k, R) \supseteq B(x, t)$, so $\Pr(\mathcal{E}_k) = 0$. If $d(x, w_k) > R + t$, then $B(w_k, R) \cap B(x, t) = \emptyset$, so \mathcal{E}_k is impossible. \overline{t} $R \in \overline{\{\Delta/4, \Delta/2\}}^{w_k}$

$$
\Rightarrow \Pr(w_i) = 0 \text{ if } i \leq m \text{ or } i > M
$$

$$
\Pr(\mathcal{E}_k) = \Pr\left(\mathcal{E}_k \cap (R \in I_k)\right) = \Pr(R \in \mathcal{N}_k) \Pr(\mathcal{E}_k \mid R \in I_k)
$$

 \overline{x}

$$
\Rightarrow \leq \frac{length(I_k)}{\Delta/2 - \Delta/4} = \frac{2t}{\Delta/4} = \frac{8t}{\Delta}
$$

If w_1, \ldots, w_{k-1} are closer to x than w_k , so if one of them (w_i) occurs before w_k in $\sigma,$ then w_k is not first to scoop from $B(x,t)$ as $\mathop\mathrm{dist}(x,w_i) \leq d(x,w_t) \leq R+t$ \Rightarrow Pr($\mathcal{E}_k \mid R \in I_k$) $\leq \frac{1}{k}$ \boldsymbol{k}

Random partition quality estimate

$$
\Pr(B(x,t) \not\subseteq \Pi(x)) = \sum_{k=1}^{|U|} \Pr(\mathcal{E}_k) = \sum_{k=m+1}^{M} \Pr(\mathcal{E}_k)
$$

$$
= \sum_{k=m+1}^{M} \Pr(R \in I_k) \Pr(\mathcal{E}_k \mid R \in I_k)
$$

$$
\leq \sum_{k=m+1}^{M} \frac{8t}{\Delta} \frac{1}{k}
$$

$$
< \frac{8t}{\Delta} \ln \frac{M}{m}
$$

Embedding into HSTs

HSTs and quadtrees

Definition. A hierarchically well-separated tree (HST) is a metric space on the leaves of a rooted tree T where each vertex has a label $\Delta \geq 0$ s.t.

- $\bullet\,$ leaves have label $\Delta_v=0$
- each internal vertex v has $\Delta_v > 0$, and for any child u : $\Delta_u \leq \Delta_v$.
- if x, x' leaves, then $\mathrm{dist}_T(x, x') = \Delta_{lca(x, x')}$

HSTs and quadtrees

Definition. A hierarchically well-separated tree (HST) is a metric space on the leaves of a rooted tree T where each vertex has a label $\Delta \geq 0$ s.t.

- $\bullet\,$ leaves have label $\Delta_v=0$
- each internal vertex v has $\Delta_v > 0$, and for any child u : $\Delta_u \leq \Delta_v$.
- if x, x' leaves, then $\mathrm{dist}_T(x, x') = \Delta_{lca(x, x')}$

Example: quadtree. $T=$ quadtree, $\Delta_v=$ diameter of cell $v.$ $||x - x'||_2 \leq \Delta_{lca(x,x')} = \text{dist}_T(x,x')$

a bad embedding of $P \subset \mathbb{R}^d$ into a tree metric

HSTs and quadtrees

Definition. A hierarchically well-separated tree (HST) is a metric space on the leaves of a rooted tree T where each vertex has a label $\Delta \geq 0$ s.t.

- $\bullet\,$ leaves have label $\Delta_v=0$
- each internal vertex v has $\Delta_v > 0$, and for any child u : $\Delta_u \leq \Delta_v$.
- if x, x' leaves, then $\mathrm{dist}_T(x, x') = \Delta_{lca(x, x')}$

Example: quadtree. $T=$ quadtree, $\Delta_v=$ diameter of cell $v.$ $||x - x'||_2 \leq \Delta_{lca(x,x')} = \text{dist}_T(x,x')$

a bad embedding of $P \subset \mathbb{R}^d$ into a tree metric

 k -HST: a HST where $\Delta_u \le \Delta_v/k$

Probabilistic embedding into a 2-HST

Randomized alg. for non-contracting embedding from X into a HST T has probabilistic distortion:

$$
\max_{x,y\in X}\frac{\mathbf{E}(\mathrm{dist}_T(x,y))}{\mathrm{dist}_X(x,y)}
$$

Theorem. Given $(X, dist)$, there is a randomized embedding into a 2-HST with prob. distortion $\leq 24 \ln n$

Probabilistic embedding into a 2-HST

Randomized alg. for non-contracting embedding from X into a HST T has probabilistic distortion:

$$
\max_{x,y\in X}\frac{\mathbf{E}(\mathrm{dist}_T(x,y))}{\mathrm{dist}_X(x,y)}
$$

Theorem. Given $(X, dist)$, there is a randomized embedding into a 2-HST with prob. distortion $\leq 24 \ln n$

Proof. Wlog. scale X so $diam(X) = 1$. Start with $P = X$, set T's root label to 1. Compute random partition with $\Delta = \text{diam}(P)/2$, set the diam of partition classes as child labels. Recurse on each child.

Probabilistic embedding into a 2-HST

Randomized alg. for non-contracting embedding from X into a HST T has probabilistic distortion:

$$
\max_{x,y\in X}\frac{\mathbf{E}(\mathrm{dist}_T(x,y))}{\mathrm{dist}_X(x,y)}
$$

Theorem. Given $(X, dist)$, there is a randomized embedding into a 2-HST with prob. distortion $\leq 24 \ln n$

Proof. Wlog. scale X so $diam(X) = 1$. Start with $P = X$, set T's root label to 1. Compute random partition with $\Delta = \text{diam}(P)/2$, set the diam of partition classes as child labels. Recurse on each child.

level of node v in T: $\lceil log(\Delta_v) \rceil \leq 0$

Bounding distortion of rand. HST embedding $x, y \in X$ have lca u in T.

$$
dist_T(x, y) = \Delta_u \le 2^{level(u)}
$$

- σ : path from root of T to leaf x.
- σ_i : level i node in σ (if exists)
- \mathcal{E}_i : event that $B_X\big(x,{\rm dist}_X(x,y)\big) \not\subseteq \Pi(\sigma_i).$
- Y_i : indicator that \mathcal{E}_i occurs but for all $j>i$ event \mathcal{E}_j does not

Bounding distortion of rand. HST embedding $x, y \in X$ have lca u in T.

$$
dist_T(x, y) = \Delta_u \le 2^{level(u)}
$$

- σ : path from root of T to leaf x.
- σ_i : level i node in σ (if exists)
- \mathcal{E}_i : event that $B_X\big(x,{\rm dist}_X(x,y)\big) \not\subseteq \Pi(\sigma_i).$
- Y_i : indicator that \mathcal{E}_i occurs but for all $j>i$ event \mathcal{E}_j does not

We have $d_T(x,y)\leq \sum_i 2^i Y_i$. Set $j := |\log \text{dist}_X(x, y)|$. If $i < j$, then $\Pr(\mathcal{E}_i) = 0 \Rightarrow \mathbb{E}(Y_i) = 0$.

Bounding distortion of rand. HST embedding $x, y \in X$ have lca u in T.

$$
dist_T(x, y) = \Delta_u \le 2^{level(u)}
$$

- σ : path from root of T to leaf x.
- σ_i : level i node in σ (if exists)
- \mathcal{E}_i : event that $B_X\big(x,{\rm dist}_X(x,y)\big) \not\subseteq \Pi(\sigma_i).$
- Y_i : indicator that \mathcal{E}_i occurs but for all $j>i$ event \mathcal{E}_j does not

We have $d_T(x,y)\leq \sum_i 2^i Y_i$. Set $j := |\log \text{dist}_X(x, y)|$. If $i < j$, then $\Pr(\mathcal{E}_i) = 0 \Rightarrow \mathbb{E}(Y_i) = 0$.

If $i \geq j$, then

$$
\mathbb{E}(Y_i) = \Pr(\mathcal{E}_i \cap \overline{\mathcal{E}_{i+1}} \cap \dots \cap \overline{\mathcal{E}_0}) \le \frac{8\text{dist}_X(x, y)}{2^i} \ln \frac{|B_X(x, 2^i)|}{|B_X(x, 2^i/8)|}
$$

Set
$$
n_i = B_X(x, 2^i)
$$
, and $t := \text{dist}_X(x, y)$.

Distribution bound wrap-up

\nSet
$$
n_i = B_X(x, 2^i)
$$
, and $t := \text{dist}_X(x, y)$.

\n
$$
\mathbb{E}(d_T(x, y)) \leq \mathbb{E}\Big(\sum_i 2^i Y_i\Big) = \sum_i 2^i \mathbb{E}(Y_i)
$$
\n
$$
\leq \sum_{i=j}^0 2^i \frac{8t}{2^i} \ln \frac{n_i}{n_{i-3}} = 8t \ln \left(\prod_{i=j}^0 \frac{n_i}{n_{i-3}}\right)
$$
\n
$$
\leq 8t \ln(n_0 n_1 n_2) \leq 24t \ln n.
$$

Computing k -median in HST is "easy"

• make it into binary HST (new nodes have same label)

Computing k -median in HST is "easy"

- make it into binary HST (new nodes have same label)
- Dyanimc program. Subproblem at v, param $\ell \in [k]$: what is cheapest ℓ -median for descendants of v ?

Computing k -median in HST is "easy"

- make it into binary HST (new nodes have same label)
- Dyanimc program. Subproblem at v, param $\ell \in [k]$: what is cheapest ℓ -median for descendants of v ?
- Recursive step: for each a, b with $a + b = \ell$, compute a-median in left child subtree and b-median in right child subtree.

Computing k -median in HST is "easy"

- make it into binary HST (new nodes have same label)
- Dyanimc program. Subproblem at v, param $\ell \in [k]$: what is cheapest ℓ -median for descendants of v ?
- Recursive step: for each a, b with $a + b = \ell$, compute a -median in left child subtree and b-median in right child subtree.

2

 $n)$

 $O(k)$

Application: k-median approximation in metric spaces

Theorem. There is an $O(\log n)$ -approximation for k-median in any metric space $(X, dist_X)$.

Application: k-median approximation in metric spaces

Theorem. There is an $O(\log n)$ -approximation for k-median in

any metric space (X, dist_X) .
 Proof. Emebed $P \subseteq X$ into a HST *T*.
 C induces clustering *X* in *P* (center of *p* is $nn_X(p, C)$).

Return *C*, *X*. OPT: $(C$ any metric space $(X, dist_X)$.

Proof. Emebed $P \subseteq X$ into a HST T.

Compute cluster centers C in T .

C induces clustering X in P (center of p is $nn_X(p, C)$. Return C, \mathcal{X} . OPT: $(C_{opt}, \mathcal{X}_{opt})$

 $\gamma(C, dist_X) \leq \gamma(C, dist_T) \leq \gamma(C_{opt}, dist_T)$

 $=\sum \mathrm{dist}_T(p,C_{opt})\leq \sum$ $p \in P$ $p \in P$

Application: k-median approximation in metric spaces

any metric space $(X, dist_X)$.

Proof. Emebed $P \subset X$ into a HST T. Compute cluster centers C in T.

C induces clustering X in P (center of p is $nn_X(p, C)$. Return C, \mathcal{X} . OPT: $(C_{ont}, \mathcal{X}_{ont})$

 $\gamma(C, dist_X) \leq \gamma(C, dist_T) \leq \gamma(C_{opt}, dist_T)$ $=\sum \mathrm{dist}_T(p,C_{opt})\leq \sum$ $p \in P$ $p\in\mathcal{F}$ **Theorem.** There is an $O(\log n)$ -approximation for k-median in

any metric space (X, dist_X) .
 Proof. Emebed $P \subseteq X$ into a HST *T*.
 C induces clustering *X* in *P* (center of *p* is $nn_X(p, C)$).

Return *C*, *X*. OPT: $(C$ $\mathbb{E}(\gamma(C, \text{dist}_X)) = \sum \mathbb{E}(\text{dist}_T(p, n n_X(p, C_{opt})))$ $p \in P$ $= \sum O(\text{dist}_X(p, n n_X(p, C_{opt})) \log n)$ $p \in P$ $= O(\gamma(\mathcal{X}_{opt}, C_{opt}, \text{dist}_X) \cdot \log n)$

Further embeddings into ℓ_2

Embedding into ℓ_2

Theorem (Bourgain 1985). Any n -pt metric space can be embedded into $\mathbb{R}^{\overline{O}(\log n)}$ (with ℓ_2 metric) with distortion $O(\log n)$.

This is tight for coonstant-degree expanders.

Embedding into ℓ_2

Theorem (Bourgain 1985). Any n -pt metric space can be embedded into $\mathbb{R}^{\overline{O}(\log n)}$ (with ℓ_2 metric) with distortion $O(\log n)$.

Some proof ideas for weaker version:

- forget dimension (use JL in the end)
- for a given resolution r, use $O(\log n)$ random HST embedding of diameter r . Flip coin for each cluster; if heads, create an anchor set Y_i . This is tight for coonstant-degree expanders.

Some proof ideas for weaker version:

• forget dimension (use JL in the end)

• for a given resolution r , use $O(\log n)$ random H!

• embedding of diameter r .

Flip coin for
	- embedding: j-th coord of x wrt. anchors Y_i is $dist(x, Y)$. This is non-contracting.

Proof ideas for weak Bourgain, ctd.

- Let x, y arbitrary, and r a resolution where $r/2 < \text{dist}(x, y)/2 < r$. $\Rightarrow x$ and y are in different clusters, and with prob. $1/2$ the ball $B(x, O(1/\log n))$ is contained in the cluster of x
- Chernoff \Rightarrow w.h.p. a constant proportion of the coordiantes j will differ by $\Omega(r/\log n)$ (when x, y get different coin flips)
- if they differ on k flips, then these cords contribute it they differ on κ flips, then th
distance at least $\Omega(\sqrt{k}/\log n).$
- spread Φ : ratio of largest/smallest distance in X. By 'snapping' distances less than r/n or much more than r , we get new metrics on X with spread $\Phi=O(n^2)$, and there are $O(n^2)$ distinct metrics, get coords from each.

Embedding special metrics into ℓ_2

Tree metric: induced by possitively edge-weighted tree.

Theorem (Matoušek 1999). Any tree metric can be embedded into ℓ_2 with distortion $O(\sqrt{\log \log n}).$ √

Distortion bound is tight (up to constant factors.)

Embedding special metrics into ℓ_2

Tree metric: induced by possitively edge-weighted tree.

Theorem (Matoušek 1999). Any tree metric can be embedded into ℓ_2 with distortion $O(\sqrt{\log \log n}).$ √

Distortion bound is tight (up to constant factors.)

Theorem (Rao 1999). Let G be graph class that excludes some forbidden minor H (e.g. planar graphs.). Then any ${\cal G}$ -metric can be mebedded into ℓ_2 with distortion $O(\sqrt{\log n}).$ √

Distortion bound is tight (up to constant factors.)