
Parameterized Algorithms

Lecture 11: Advanced Kernelization Techniques
July 17, 2020

Max-Planck Institute for Informatics, Germany.

Kernelization.

Compress an instance (X, k) to an instance (X ′, k′) such that
|X ′|+ |k′| ≤ poly(k)

We can solve (X, k) in polynomial time given a solution to
(X ′, k′)

Many Problems don’t have polynomial kernels

Kernelization.

Compress an instance (X, k) to an instance (X ′, k′) such that
|X ′|+ |k′| ≤ poly(k)

We can solve (X, k) in polynomial time given a solution to
(X ′, k′)

Many Problems don’t have polynomial kernels

Turing Kernelization

Compress an instance (X, k) to several instances {(Xi, ki)} such
that |Xi|+ |ki| ≤ poly(k)

We can solve (X, k) in polynomial time given solutions to
{(Xi, ki)}

Lossy Kernelization

Compress an instance (X, k) to an instance (X ′, k′) such that
|X ′|+ |k′| ≤ poly(k)

We can compute an approximate solution to (X, k) from an
approximate solution to (X ′, k′)

Turing Kernelization

Max Leaf Subtree:

Given a graph G, and integer k is there a sub-tree with at least k
leaves ?

When G is connected MLS has a polynomial kernel.

Polynomial Kernel for Connected MLS

Reduction Rule 1: Contract a degree 2 vertex with
non-adjacent neighbors that are also degree 2.

Lemma: When RR1 is not applicable, and there are more
that 6k2 + k vertices, the given instance is a YES instance.

Pick a sequence of vertices, S in the following manner

Initially all vertices are unmarked.
While there is an unmarked vertex of degree ≥ 3:

Pick a largest degree unmarked vertex v into S
Mark N2[v] = {v} ∪ {u | dist(u, v) ≤ 2}

Let S = {v1, v2 . . . vr}
Observation: N [vi] ∩N [vj] = ∅

Polynomial Kernel for Connected MLS

Reduction Rule 1: Contract a degree 2 vertex with
non-adjacent neighbors that are also degree 2.

Lemma: When RR1 is not applicable, and there are more
that 6k2 + k vertices, the given instance is a YES instance.

Pick a sequence of vertices, S in the following manner

Initially all vertices are unmarked.
While there is an unmarked vertex of degree ≥ 3:

Pick a largest degree unmarked vertex v into S
Mark N2[v] = {v} ∪ {u | dist(u, v) ≤ 2}

Let S = {v1, v2 . . . vr}
Observation: N [vi] ∩N [vj] = ∅

Polynomial Kernel for Connected MLS

Claim 1: If
∑r

i=1 d(vi)− 2 ≥ k then we have a YES
instance

Start with a forest where each vi is the center of a star, then
grow it into a (spanning) tree by connecting these stars with
r − 1 paths.

The resulting tree has at least
∑r

i=1 d(vi)− 2 ≥ k leaves.

Claim 2: If r ≥ k then we have a YES instance

Because each v ∈ S has degree at least 3.

Polynomial Kernel for Connected MLS

Claim 1: If
∑r

i=1 d(vi)− 2 ≥ k then we have a YES
instance

Start with a forest where each vi is the center of a star, then
grow it into a (spanning) tree by connecting these stars with
r − 1 paths.

The resulting tree has at least
∑r

i=1 d(vi)− 2 ≥ k leaves.

Claim 2: If r ≥ k then we have a YES instance

Because each v ∈ S has degree at least 3.

Polynomial Kernel for Connected MLS

Claim 3: If there is a vertex v and a number d such that
|{u | dist(u, v) = d}| ≥ k then we have a YES instance.

For each vertex u, pick some path of length exactly d to v

The union of these paths is a subtree with ≥ k leaves.

The key observation is that some ui is not an internal vertex
on the path for uj , as they are both at distance d from v.

Polynomial Kernel for Connected MLS

Claim 4: For some number d, if there at least rk vertices
at distance exactly d from S, then we have a YES instance.

There are r vertices in S, hence there is some vertex in
v ∈ S for which there are at least k vertices at distance
exactly d from v

The previous claim implies we have a YES instance.

Polynomial Kernel for Connected MLS

Let N2[S] = S ∪ {u | dist(v, u) ≤ 2 for some v ∈ S}.
Claim 5: The number of connected components in
G−N2[S] is at most k2.

As G is connected, each connected component of G−N2[S]
has a vertex of distance exactly 3 from S.

By the above claim, the number of vertices at distance
exactly 3 is at most rk ≤ k2.

Polynomial Kernel for Connected MLS

Claim 6: Any connected component G−N2[S] contains at
most 4 vertices.

H = G−N2[S] contains only vertices of degree 2 or less. So
it is a collection of paths, cycles and isolated vertices.

If some component C of H had 5 vertices, then there will be
a degree-2 vertex with two degree-2 neighbors (in G) and
RR1 applies

Polynomial Kernel for Connected MLS

Claim 7: If RR1 is not applicable, and we have more than
6k2 + k vertices, then we have a YES instance.

By Claim 2, |S| = r ≤ k (else a YES instance)

By Claim 3, for d = 1, 2 there are at most 2k2 vertices at distance
1 or 2 from S, (else a YES instance)

Hence |N2[S]| = k + 2k2.

By Claim 5, number of connected components in G−N2[S] is at
most k2, (else a YES instance)

By Claim 6, each connected component has at most 4 vertices.
Hence total number of vertices in G−N2[S] is at most 4k2, (else
RR1 is applicable)

In total there can be at most 6k2 + k vertices. Otherwise, we
already have a YES instance, or RR1 is applicable.

Max Leaf Subtree:

Given a graph G, and integer k is there a sub-tree with at least k
leaves ?

When G is connected MLS has a polynomial kernel.

However, when G is disconnected MLS has no polynomial
kernel.

OR Composition: Take a disjoint union of connected MLS
instances

Max Leaf Subtree:

Given a graph G, and integer k is there a sub-tree with at least k
leaves ?

When G is connected MLS has a polynomial kernel.

However, when G is disconnected MLS has no polynomial
kernel.

OR Composition: Take a disjoint union of connected MLS
instances

Max Leaf Subtree:

Given a graph G, and integer k is there a sub-tree with at least k
leaves ?

When G is connected MLS has a polynomial kernel.

However, when G is disconnected MLS has no polynomial
kernel.

OR Composition: Take a disjoint union of connected MLS
instances

Turing Kernelization

Definition (Turing Kernel)

Let Q be a parameterized problem, and let f : N→ N be a
computable function. A Turing Kernel for Q of size f is an
algorithm that can decide if an instance of the problem is a YES
instance in polynomial time, given access to an Oracle that
solves instance of size f(k) in unit time.

Max Leaf Subtree admits a Turing Kernel of size 6k2 + k.

Just kernelize each connected component separately

Then if, any component (and it’s kernel) is a YES instance,
then the input is a YES instance.

Turing Kernelization

For MLS, we produced O(n) Turing Kernels, all
independent of each other, more or less directly.

However, we can also produce Turing Kernels in a more
complex ways.

the i-th kernel depends on the Oracle’s answers to the
previous (i− 1) kernels

.

Such kind of Turing Kernels are known for k-Path on
certain graph classes.

There is some lower-bound machinery, such as Steiner
Tree and Connected Vertex Cover are unlikely to
admit Turing Kernels.

Lossy Kernels

Kernelization + Approximation

Kernelization
● Formal Study of Preprocessing / Data Reduction Heuristics

● A parameterized language is defined as where,
 is a finite alphabet.

● A parameterized problem w.r.t is
to decide if a given
is in the language or not.

 has a
 Vertex Cover of size

● is called a parameterized
instance.

Kernelization

Kernelization

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

● Formal Study of Preprocessing / Data Reduction Heuristics

The polynomial time algorithm is called a Kernelization Algorithm

Input: A graph and a number

Output: A graph with at most
 vertices and a number

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Reduction Rule 1 :
Remove all vertices of degree

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Reduction Rule 1 :
Remove all vertices of degree

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Reduction Rule 1 :
Remove all vertices of degree

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Apply these Reduction Rules Exhaustively !

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Apply these Reduction Rules Exhaustively !

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Apply these Reduction Rules Exhaustively !

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Apply these Reduction Rules Exhaustively !

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

A kernel for Vertex Cover

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Apply these Reduction Rules Exhaustively !

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Apply these Reduction Rules Exhaustively !

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Apply these Reduction Rules Exhaustively !

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Observation 1 : Every vertex has
at least one edge incident on it

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Observation 1 : Every vertex has
at least one edge incident on it

Observation 2 : Every vertex has
at most edges incident on it

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Observation 3: Either has at
most edges (and at most
vertices)

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Output : and

Observation 3: Either has at
most edges (and at most
vertices)

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Or there are more than edges,
which cannot be covered by
vertices of degree

Observation 3: Either has at
most edges (and at most
vertices)

A kernel for Vertex Cover

Input: A graph and a number

Output: A graph with at most
 vertices and a number

Output : any edges of and

Or there are more than edges,
which cannot be covered by
vertices of degree

Observation 3: Either has at
most edges (and at most
vertices)

A kernel for Vertex Cover

● Thus and are equivalent instances
and

A kernel for Vertex Cover

● Thus and are equivalent instances
and

Can we compute a solution to if we
are given a solution to ?

A kernel for Vertex Cover

● Thus and are equivalent instances
and

Yes we can !

Can we compute a solution to if we
are given a solution to ?

A kernel for Vertex Cover

● Thus and are equivalent instances
and

Yes we can !

Can we compute a solution to if we
are given a solution to ?

A kernel for Vertex Cover

● Thus and are equivalent instances
and

Can we compute a solution to if we
are given a solution to ?

This is true of many kernelization algorithms
for many problems.

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

Kernelization

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

Kernelization

Take a solution of and turn it into a solution for

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

Kernelization

Solution Lifting
Take a solution of and turn it into a solution for

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

Kernelization

Take a solution of and turn it into a solution for

But what is the �quality� of the solution compared to ?

Solution Lifting

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

We need some more definitions :)

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

A parameterized minimization problem is defined as

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

A parameterized minimization problem is defined as

Graph Parameter Solution set

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

A parameterized minimization problem is defined as

Graph Parameter Solution set

if is not a vertex cover
otherwise

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

A parameterized minimization problem is defined as

Graph Parameter Solution set

if is not a vertex cover
otherwise

Value of the solution

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

A parameterized minimization problem is defined as

Graph Parameter Solution set

if is not a vertex cover
otherwise

Value of the solution We are only interested in
solutions of cardinality

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

A parameterized minimization problem is defined as

if is not a vertex cover
otherwise

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

A parameterized minimization problem is defined as

if is not a vertex cover
otherwise

If is an optimum solution to , then for any the
quality of is

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

A parameterized minimization problem is defined as

if is not a vertex cover
otherwise

If is an optimum solution to , then for any the
quality of is a.k.a the Approximation Ratio

Kernels and Optimization Problems

Given an instance , run a polynomial time algorithm and
produce an instance such that,

● both instances are Equivalent
●

A parameterized minimization problem is defined as

If is an optimum solution to , then for any the
quality of is a.k.a the Approximation Ratio

Given a quality solution to find a solution to
 of the same quality in polynomial time !

Kernels and Optimization Problems

Kernelization

Solution Lifting

Kernels and Optimization Problems

Kernelization

Solution Lifting

Lets generalize this notion a bit more

Kernels and Optimization Problems

Kernelization

Solution Lifting

Allow a loss factor in kernelization / solution lifting process

Kernels and Optimization Problems

Kernelization

Solution Lifting

Allow a loss factor in kernelization / solution lifting process

Lossy Kernels !

Kernels and Optimization Problems

Kernelization

Solution Lifting

Allow a loss factor in kernelization / solution lifting process

Lossy Kernels !
But why do we need this notion ?

Input: A graph and a number

Question: Is there a vertex cover of
value that is also connected ?

Connected Vertex Cover

Input: A graph and a number

Question: Is there a vertex cover of
value that is also connected ?

Connected Vertex Cover

This problem cannot have a
Polynomial Kernel.

Reduction Rule 1 :
Remove all vertices of degree

Input: A graph and a number

Question: Is there a vertex cover of
value that is also connected ?

Connected Vertex Cover

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

Input: A graph and a number

Question: Is there a vertex cover of
value that is also connected ?

Connected Vertex Cover

Reduction Rule 1 :
Remove all vertices of degree

Reduction Rule 2 :
Remove a vertex of degree
and decrease by

We lose information about connectivity !

Input: A graph and a number

Question: Is there a vertex cover of
value that is also connected ?

Connected Vertex Cover

Input: A graph and a number

Question: Is there a vertex cover of
value that is also connected ?

● : vertices of degree
● : vertices whose neighborhood

is contained in
● : the remaining vertices

Connected Vertex Cover

Input: A graph and a number

Question: Is there a vertex cover of
value that is also connected ?

● : vertices of degree
● : vertices whose neighborhood

is contained in
● : the remaining vertices

Normally, we remove but they connect subsets of
And could be very large.

Connected Vertex Cover

Input: A graph and a number

Question: Is there a vertex cover of
value that is also connected ?

● : vertices of degree
● : vertices whose neighborhood

is contained in
● : the remaining vertices

Normally, we remove but they connect subsets of
And could be very large.

But this problem admits a lossy polynomial kernel !

Connected Vertex Cover

● A kernelization algorithm sequence of applications reduction rules.

Safe Reduction Rules

● A kernelization algorithm sequence of applications reduction rules.

Safe Reduction Rules

● A kernelization algorithm sequence of applications reduction rules.
● Applying a -lossy reduction rule times leads to a loss.

Safe Reduction Rules

● A kernelization algorithm sequence of applications reduction rules.
● Applying a -lossy reduction rule times leads to a loss.

-loss

Safe Reduction Rules

● A kernelization algorithm sequence of applications reduction rules.
● Applying a -lossy reduction rule times leads to a loss.

-loss

Safe Reduction Rules

● We modify the definition to allow for repeated application

● A kernelization algorithm sequence of applications reduction rules.
● Applying a -lossy reduction rule times leads to a loss.

-loss

Safe Reduction Rules

● We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies

● A kernelization algorithm sequence of applications reduction rules.
● Applying a -lossy reduction rule times leads to a loss.

-loss

Safe Reduction Rules

● We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies

This is called an -safe reduction rule.

● A kernelization algorithm sequence of applications reduction rules.
● Applying a -lossy reduction rule times leads to a loss.

-loss

Safe Reduction Rules

● We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies
 -safe reduction
rule.

We can chain -safe reduction rules safely :)

● A kernelization algorithm sequence of applications reduction rules.
● Applying a -lossy reduction rule times leads to a loss.

-loss

Safe Reduction Rules

● We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies
 -safe reduction
rule.

Solution quality is always or better !

● A kernelization algorithm sequence of applications reduction rules.
● Applying a -lossy reduction rule times leads to a loss.

-loss

Safe Reduction Rules

● We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies
 -safe reduction
rule.

Solution quality is always or better !
Assuming that the
kernel-solution was
quality or better

Input: A graph and a number

Question: Is there a vertex cover of
value that is also connected ?

● : vertices of degree
● : vertices whose neighborhood

is contained in
● : the remaining vertices

Connected Vertex Cover

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?

If there here is a vertex of degree in

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?

If there here is a vertex of degree in

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?

If there is a vertex that has neighbors (in),
then contract into a single vertex
 (by add new neighbors)

Reduction Rule :

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return

No loss of connectivity
But may use 1 extra vertex

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return

No loss of connectivity
But may use 1 extra vertex

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return

This is -safe

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return
Claim 1:

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return
Claim 1:

If is an optimum solution set for
Then
is a solution set for

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return
Claim 1:

Claim 2:

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return
Claim 1:

Claim 2:

Remove 1 vertex and add d + 1

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return
Claim 1:

Claim 2:

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return
Claim 1:

Claim 2:

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return
Claim 1:

Claim 2:

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Solution Lifting Algorithm :

Return
Claim 1:

Claim 2:

Hence Reduction Rule 2 is -safe

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?
Reduction Rule :

Remove any vertex in with more than twins

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?

Every vertex in must have a neighbor in
And any has no common neighbor in

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?

Every vertex in must have a neighbor in
And any has no common neighbor in

So any vertex in has degree

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?

The size of is bounded by

Every vertex in must have a neighbor in
And any has no common neighbor in

So any vertex in has degree

Connected Vertex Cover

Input: A graph and a number
Question: Is there a vertex cover of
value that is also connected ?

The size of is bounded by

Every vertex in must have a neighbor in
And any has no common neighbor in

So any vertex in has degree

Hence a Lossy Polynomial Kernel for CVC !

Thank you

