Parameterized Algorithms

Lecture 11: Advanced Kernelization Techniques
July 17, 2020

Max-Planck Institute for Informatics, Germany.

Kernelization.

Compress an instance (X, k) to an instance (X', k') such that
| X'| + [K| < poly(k)

We can solve (X, k) in polynomial time given a solution to
(X', k)

Kernelization.

Compress an instance (X, k) to an instance (X', k') such that
| X'| + [K| < poly(k)

We can solve (X, k) in polynomial time given a solution to
(X", K)

Many Problems don’t have polynomial kernels

Turing Kernelization

Compress an instance (X, k) to several instances {(X;, k;)} such
that || + [k < poly(k)

We can solve (X, k) in polynomial time given solutions to

{(le kl)}

Lossy Kernelization

Compress an instance (X, k) to an instance (X', k") such that
[X'+ |K'| < poly(k)

We can compute an approximate solution to (X, k) from an
approximate solution to (X', k')

Turing Kernelization

MAX LEAF SUBTREE:

Given a graph G, and integer k is there a sub-tree with at least k
leaves 7

@ When G is connected MLS has a polynomial kernel.

Polynomial Kernel for Connected MLS

o Reduction Rule 1: Contract a degree 2 vertex with
non-adjacent neighbors that are also degree 2.

o Lemma: When RR1 is not applicable, and there are more
that 6k + k vertices, the given instance is a YES instance.

Polynomial Kernel for Connected MLS

o Reduction Rule 1: Contract a degree 2 vertex with
non-adjacent neighbors that are also degree 2.

o Lemma: When RR1 is not applicable, and there are more
that 6k + k vertices, the given instance is a YES instance.

o Pick a sequence of vertices, S in the following manner

o Initially all vertices are unmarked.
e While there is an unmarked vertex of degree > 3:

o Pick a largest degree unmarked vertex v into S
o Mark N?[v] = {v} U {u | dist(u,v) < 2}
o Let S ={vy,va...0,.}

e Observation: N[v;] N N[v;] =10

Polynomial Kernel for Connected MLS

e Claim 1: If }~! | d(v;) — 2 > k then we have a YES
instance

e Start with a forest where each v; is the center of a star, then
grow it into a (spanning) tree by connecting these stars with
r — 1 paths.

o The resulting tree has at least)., d(v;) — 2 > k leaves.

Polynomial Kernel for Connected MLS

e Claim 1: If }~! | d(v;) — 2 > k then we have a YES
instance

Start with a forest where each v; is the center of a star, then
grow it into a (spanning) tree by connecting these stars with
r — 1 paths.

o The resulting tree has at least)., d(v;) — 2 > k leaves.

e Claim 2: If » > k then we have a YES instance

o Because each v € S has degree at least 3.

Polynomial Kernel for Connected MLS

o Claim 3: If there is a vertex v and a number d such that
{u | dist(u,v) = d}| > k then we have a YES instance.

e For each vertex u, pick some path of length exactly d to v
@ The union of these paths is a subtree with > £ leaves.

@ The key observation is that some u; is not an internal vertex
on the path for u;, as they are both at distance d from v.

Polynomial Kernel for Connected MLS

o Claim 4: For some number d, if there at least rk vertices
at distance exactly d from S, then we have a YES instance.

@ There are r vertices in .S, hence there is some vertex in
v € S for which there are at least k vertices at distance
exactly d from v

@ The previous claim implies we have a YES instance.

Polynomial Kernel for Connected MLS

o Let N?[S] = S U {u | dist(v,u) < 2 for some v € S}.

o Claim 5: The number of connected components in
G — N?[9] is at most k.

e As (G is connected, each connected component of GG — N?[S]
has a vertex of distance exactly 3 from S.

o By the above claim, the number of vertices at distance
exactly 3 is at most rk < k2.

Polynomial Kernel for Connected MLS

e Claim 6: Any connected component G' — N?[S] contains at
most 4 vertices.

o H = (G — N?|[S] contains only vertices of degree 2 or less. So
it is a collection of paths, cycles and isolated vertices.

o If some component C' of H had 5 vertices, then there will be
a degree-2 vertex with two degree-2 neighbors (in G) and
RR1 applies

Polynomial Kernel for Connected MLS

Claim 7: If RR1 is not applicable, and we have more than
6k> + k vertices, then we have a YES instance.

@ By Claim 2, |S| =r < k (else a YES instance)

@ By Claim 3, for d = 1,2 there are at most 2k? vertices at distance

1 or 2 from S, (else a YES instance)

@ Hence |[N2[S]| = k + 2k>.

@ By Claim 5, number of connected components in G — N?[S] is at

most k2, (else a YES instance)

By Claim 6, each connected component has at most 4 vertices.
Hence total number of vertices in G — N?[S] is at most 4k, (else
RR1 is applicable)

In total there can be at most 6k2 + k vertices. Otherwise, we
already have a YES instance, or RR1 is applicable.

MAX LEAF SUBTREE:

Given a graph G, and integer k is there a sub-tree with at least k
leaves 7

@ When G is connected MLS has a polynomial kernel.

MAX LEAF SUBTREE:

Given a graph G, and integer k is there a sub-tree with at least k
leaves 7

@ When G is connected MLS has a polynomial kernel.

o However, when G is disconnected MLS has no polynomial
kernel.

MAX LEAF SUBTREE:

Given a graph G, and integer k is there a sub-tree with at least k
leaves 7

@ When G is connected MLS has a polynomial kernel.

o However, when G is disconnected MLS has no polynomial
kernel.

OR Composition: Take a disjoint union of connected MLS
instances

Turing Kernelization

Definition (Turing Kernel)

Let @ be a parameterized problem, and let f : N — N be a
computable function. A Turing Kernel for () of size f is an
algorithm that can decide if an instance of the problem is a YES
instance in polynomial time, given access to an Oracle that
solves instance of size f(k) in unit time.

e MAX LEAF SUBTREE admits a Turing Kernel of size 6k% + k.
o Just kernelize each connected component separately

@ Then if, any component (and it’s kernel) is a YES instance,
then the input is a YES instance.

Turing Kernelization

e For MLS, we produced O(n) Turing Kernels, all
independent of each other, more or less directly.

o However, we can also produce Turing Kernels in a more
complex ways.

the i-th kernel depends on the Oracle’s answers to the
previous (i — 1) kernels

e Such kind of Turing Kernels are known for k-Path on
certain graph classes.

@ There is some lower-bound machinery, such as STEINER
TREE and CONNECTED VERTEX COVER are unlikely to
admit Turing Kernels.

Lossy Kernels

Kernelization + Approximation

Kernelization

* Formal Study of Preprocessing / Data Reduction Heuristics

Kernelization

* A parameterized language is defined as L C 3* X N where,
Y. is a finite alphabet.

* A parameterized problem w.r.t L is
to decide if a given (z,k) € ¥* x N
is in the language or not.

* (z, k) is called a parameterized

instance.

Lyc ={(G,k) | G has a

Vertex Cover of size k}

Kernelization

* Formal Study of Preprocessing / Data Reduction Heuristics

=

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G', k') such that,

* both instances are Equivalent

* |G'|, k'] < poly(k)

The polynomial time algorithm is called a Kernelization Algorithm

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

o

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Reduction Rule 1 :

Remove all vertices of degree 0

o

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Reduction Rule 1 :

Remove all vertices of degree 0

o

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Reduction Rule 1 :

Remove all vertices of degree 0

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Reduction Rule 1 :

Remove all vertices of degree 0

Reduction Rule 2 :
Remove a vertex of degree > k + 1
and decrease k by 1

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Reduction Rule 1 :

Remove all vertices of degree 0

Reduction Rule 2 :
Remove a vertex of degree > k + 1
and decrease k by 1

A kernel for Vertex Cover

Input: A graph G and a numberk

(@]
Output: A graph G’ with at most

2k? vertices and a number &' < k

Reduction Rule 1 :

Remove all vertices of degree 0

Reduction Rule 2 :
Remove a vertex of degree > k + 1
and decrease k by 1

A kernel for Vertex Cover

Input: A graph G and a numberk

(@]
Output: A graph G’ with at most

2k? vertices and a number &' < k

Reduction Rule 1 :

Remove all vertices of degree 0

Reduction Rule 2 :
Remove a vertex of degree > k + 1

and decrease k by 1 k=5

Apply these Reduction Rules Exhaustively !

A kernel for Vertex Cover

Input: A graph G and a numberk

(@]
Output: A graph G’ with at most

2k? vertices and a number &' < k

Reduction Rule 1 :

Remove all vertices of degree 0

Reduction Rule 2 :

Remove a vertex of degree > k + 1
and decrease k by 1 k=5

Apply these Reduction Rules Exhaustively !

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Reduction Rule 1 :

Remove all vertices of degree 0

Reduction Rule 2 :

Remove a vertex of degree > k + 1
and decrease k by 1 k=5

Apply these Reduction Rules Exhaustively !

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Reduction Rule 1 :

Remove all vertices of degree 0

Reduction Rule 2 :

Remove a vertex of degree > k + 1
and decrease k by 1 k=5

Apply these Reduction Rules Exhaustively !

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Reduction Rule 1 : o

Remove all vertices of degree 0

Reduction Rule 2 :

Remove a vertex of degree > k + 1
and decrease k by 1 k=4

Apply these Reduction Rules Exhaustively !

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Reduction Rule 1 : o

Remove all vertices of degree 0

Reduction Rule 2 :

Remove a vertex of degree > k + 1
and decrease k by 1 k=4

Apply these Reduction Rules Exhaustively !

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Reduction Rule 1 :

Remove all vertices of degree 0

Reduction Rule 2 :

Remove a vertex of degree > k + 1
and decrease k by 1 k=4

Apply these Reduction Rules Exhaustively !

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Observation 1 : Every vertex has

at least one edge incident on it

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Observation 1 : Every vertex has

at least one edge incident on it

Observation 2 : Every vertex has

at most k edges incident on it

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Observation 3: Either G has at
most k2 edges (and at most 2k?

vertices)

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Observation 3: Either G has at
most k2 edges (and at most 2k>

vertices)

Output : ¢/ « G and k' + k

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Observation 3: Either G has at
most k2 edges (and at most 2k*
vertices)

Or there are more than k* edges,
which cannot be covered by &

vertices of degree k

A kernel for Vertex Cover

Input: A graph G and a numberk

Output: A graph G’ with at most
2k? vertices and a number k' < k

Observation 3: Either G has at
most k2 edges (and at most 2k>
vertices)

Or there are more than k° edges,

which cannot be covered by &

k=4

vertices of degree k

Output : G’ < any k? + 1 edges of G and k' < k

A kernel for Vertex Cover

* Thus (G, k) and (G', k") are equivalent instances
and |G|, |K'| < 2K?

A kernel for Vertex Cover o

* Thus (G, k) and (G', k") are equivalent instances
and |G|, |K'| < 2K?

are given a solution to(G’, k") ?

ECan we compute a solution to (G, k) if we]

A kernel for Vertex Cover o

* Thus (G, k) and (G', k") are equivalent instances
and |G|, |K'| < 2K?

[Can we compute a solution to (G, k) if we]

are given a solution to(G’, k") ?

Yes we can !

A kernel for Vertex Cover o

* Thus (G, k) and (G', k") are equivalent instances
and |G|, |K'| < 2K?

[Can we compute a solution to (G, k) if we]

are given a solution to(G’, k") ?

Yes we can !

A kernel for Vertex Cover

* Thus (G, k) and (G', k") are equivalent instances
and |G|, |K'| < 2K?

are given a solution to(G’, k") ?

[Can we compute a solution to (G, k) if we]

LThis is true of many kernelization aIgorithmsJ

for many problems.

o

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’, k') such that,
* both instances are Equivalent
* |G'|, |K'] < poly(k

@-e

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’, k') such that,
* both instances are Equivalent
* |G'|, |K'] < poly(k

Kernelization -

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’, k') such that,
* both instances are Equivalent
* |G'|, |K'] < poly(k

. Kernelization

i

Take a solution S’of (G’, k')and turn it into a solution S for (G, k)

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’, k') such that,

* both instances are Equivalent
* |G}, K| < poly(k)

=

Kernelization

i

Solution Lifting
Take a solution S’of (G’, k')and turn it into a solution S for (G, k)

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’, k') such that,

* both instances are Equivalent
* |G}, K| < poly(k)

=

Kernelization

i

Solution Lifting
Take a solution S’of (G’, k')and turn it into a solution S for (G, k)

[But what is the “quality” of the solution S compared toS’ ?]

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G', k") such that,

* both instances are Equivalent
* |G'|,|K'| < poly(k)

We need some more definitions :)

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G', k") such that,

* both instances are Equivalent
* |G'|,|K'| < poly(k)

A parameterized minimization problem is defined as

IT:¥* x N x ¥* — RU {£o00}.

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G', k") such that,

* both instances are Equivalent
* |G'|,|K'| < poly(k)

A parameterized minimization problem is defined as

IT: ¥* x N x X* — RU {£o00}.

Graph Parameter Solution set

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’,k’) such that,

* both instances are Equivalent
* |G}, K| < poly(k)

A parameterized minimization problem is defined as
IT: ¥* x N x X* — RU {£o00}.
Graph Parameter Solution set

oo if S is not a vertex cover

Hyc(GLk,S) = { min{|S|,k + 1} otherwise

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’,k’) such that,

* both instances are Equivalent
* |G}, K| < poly(k)

A parameterized minimization problem is defined as
IT: ¥* x N x X* — RU {£o00}.
Graph Parameter Solution set

oo if S is not a vertex cover

Hyc(GLk,S) = { min{|S|,k + 1} otherwise

Value of the solution S

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’,k’) such that,

* both instances are Equivalent
* |G}, K| < poly(k)

A parameterized minimization problem is defined as

IT: ¥* x N x X* — RU {£o00}.
Graph Parameter Solution set

oo if S is not a vertex cover

Hyc(GLk,S) = { min{|S|,k + 1} otherwise

. We are only interested in
Value of the solution S y

solutions of cardinality < k

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’,k’) such that,

* both instances are Equivalent
* |G}, K| < poly(k)

A parameterized minimization problem is defined as
IT:¥* x N x ¥* — RU {£o00}.

oo if S is not a vertex cover

yc(G,k,S) = { min{|S|,k + 1} otherwise

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’,k’) such that,

* both instances are Equivalent
* |G}, K| < poly(k)

A parameterized minimization problem is defined as
IT:¥* x N x ¥* — RU {£o00}.

oo if S is not a vertex cover

HVC’(G,]%S) = { min{|5|,k+ 1} otherwise

If S* is an optimum solution to (G, k), then for any S the
(G, k, S)

vality of § s V2"
auey (G, k, 5*)

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’,k’) such that,

* both instances are Equivalent
* |G}, K| < poly(k)

A parameterized minimization problem is defined as
IT:¥* x N x ¥* — RU {£o00}.

oo if S is not a vertex cover

HVC’(G,]%S) = { min{|5|,k’+ 1} otherwise

If S* is an optimum solution to (G, k), then for any S the
(G, k, S)

(G, k, S*)

quality of S is a.k.a the Approximation Ratio

Kernels and Optimization Problems

Given an instance (G, k), run a polynomial time algorithm and
produce an instance (G’,k’) such that,

* both instances are Equivalent
* |G}, K| < poly(k)

A parameterized minimization problem is defined as

IT:¥* x N x ¥* — RU {£o00}.

Given a quality ¢ solution to (G, k") find a solution to
(G, k) of the same quality in polynomial time !

If S* is an optimum solution to (G, k), then for any S the
(G, k, S)

(G, k, S*)

quality of S is a.k.a the Approximation Ratio

Kernels and Optimization Problems

>

Kernelization

Solution Lifting
c-OPT ——m c-OPT’

Kernels and Optimization Problems

>

Kernelization

i

Solution Lifting
c-OPT = c-OPT’

Lets generalize this notion a bit more

Kernels and Optimization Problems

>

Kernelization

Solution Lifting
CO[OPT< C‘OPT/

\

Allow a loss factor in kernelization / solution lifting process

Kernels and Optimization Problems

. Kernelization

i

Solution Lifting
CO[OPT< C‘OPT/

\

Allow a loss factor in kernelization / solution lifting process

Lossy Kernels !

Kernels and Optimization Problems

. Kernelization

i

Solution Lifting
CO[OPT< C‘OPT,

\

Allow a loss factor in kernelization / solution lifting process

Lossy Kernels !

But why do we need this notion 7

Connected Vertex Cover

Input: A graph G and a number k

Question: Is there a vertex cover of
value k that is also connected ?

o

Connected Vertex Cover

Input: A graph G and a number k

Question: Is there a vertex cover of
value k that is also connected ?

This problem cannot have a
Polynomial Kernel.

o

Connected Vertex Cover

Input: A graph G and a number k

Question: Is there a vertex cover of
value k that is also connected ?

Reduction Rule 1 :

Remove all vertices of degree 0

o

Connected Vertex Cover

Input: A graph G and a number k

Question: Is there a vertex cover of
value k that is also connected ?

Reduction Rule 1 :

Remove all vertices of degree 0

Reduction Rule 2 :

Remove a vertex of degree > k + 1

and decrease k by 1

Connected Vertex Cover

Input: A graph G and a number k

Question: Is there a vertex cover of
value k that is also connected ?

Reduction Rule 1 :

Remove all vertices of degree 0

Reduction Rule 2 :
Remove a vertex of degree > k + 1
and decrease k by 1 k=6

We lose information about connectivity !

Connected Vertex Cover

Input: A graph G and a number k

Question: Is there a vertex cover of

value k that is also connected ?

* [: vertices of degree > k + 1

e [: vertices whose neighborhood
is contained in [

* R : the remaining vertices

Connected Vertex Cover

Input: A graph G and a number k

Question: Is there a vertex cover of

value k that is also connected ?

* [: vertices of degree > k + 1
* [: vertices whose neighborhood

is contained in [R
* R : the remaining vertices

Normally, we remove I but they connect subsets of H

And |I| could be very large.

Connected Vertex Cover

Input: A graph G and a number k

Question: Is there a vertex cover of

value k that is also connected ?

* [: vertices of degree > k + 1
* [: vertices whose neighborhood

is contained in [R
* R : the remaining vertices

Normally, we remove I but they connect subsets of H

And |I| could be very large.

But this problem admits a lossy polynomial kernel !

Safe Reduction Rules

* A kernelization algorithm sequence of applications reduction rules.

Safe Reduction Rules

* A kernelization algorithm sequence of applications reduction rules.

(I,l{?) <~ (Il,kl) <~ (Ig,k’g) — ... <~ (Ig,kg)

Safe Reduction Rules

* A kernelization algorithm sequence of applications reduction rules.
* Applying a a-lossy reduction rule ¢ times leads to a o’ loss.

(I,l{?) <~ (Il,kl) <~ (Ig,k’g) — ... <~ (Ig,kg)

Safe Reduction Rules

* A kernelization algorithm sequence of applications reduction rules.
* Applying a a-lossy reduction rule ¢ times leads to a o’ loss.

(I,k) <~ (Il,kl) <~ (IQ,ng) = ... — (Ig,kg)

o-loss

Safe Reduction Rules

* A kernelization algorithm sequence of applications reduction rules.
* Applying a a-lossy reduction rule ¢ times leads to a o’ loss.

(k) <= (I1,k1) <= (I2,k2) = < (Iy, ko)
a-loss

* We modify the definition to allow for repeated application

Safe Reduction Rules

* A kernelization algorithm sequence of applications reduction rules.
* Applying a a-lossy reduction rule ¢ times leads to a o’ loss.

(k) <= (I1,k1) <= (I2,k2) = < (Iy, ko)
a-loss

* We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies

H(I, k, S) < ma:c{ H(I” K s/) a}
OPT, k) = OPT (I, k)’

Safe Reduction Rules

* A kernelization algorithm sequence of applications reduction rules.
* Applying a a-lossy reduction rule ¢ times leads to a o’ loss.

(k) <= (I1,k1) <= (I2,k2) = < (Iy, ko)
a-loss

* We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies

H(I, k, S) < ma:c{ H(I’, K s/) a}
OPT, k) = OPT (I, k)’

This is called an a-safe reduction rule.

Safe Reduction Rules

* A kernelization algorithm sequence of applications reduction rules.
* Applying a a-lossy reduction rule ¢ times leads to a o’ loss.

(k) <= (I1,k1) <= (I2,k2) = < (Iy, ko)
a-loss

* We modify the definition to allow for repeated application
Each (Reduction rule, Solution lifting algorithm) pair satisfies
II(1,k, s) - { (', k', s } a-safe reduction
—_— Ty, (U
OPT(I,k) — OPT(I', k')

rule.

We can chain a-safe reduction rules safely :)

Safe Reduction Rules

* A kernelization algorithm sequence of applications reduction rules.
* Applying a a-lossy reduction rule ¢ times leads to a o’ loss.

(k) <= (I1,k1) <= (I2,k2) = < (Iy, ko)
a-loss

* We modify the definition to allow for repeated application
Each (Reduction rule, Solution lifting algorithm) pair satisfies
II(1,k, s) - { (', k', s } a-safe reduction
—_— Ty, (U
OPT(I,k) — OPT(I', k')

rule.

Solution quality is always o or better !

Safe Reduction Rules

* A kernelization algorithm sequence of applications reduction rules.
* Applying a a-lossy reduction rule ¢ times leads to a o’ loss.

(k) <= (I1,k1) <= (I2,k2) = < (Iy, ko)
a-loss

* We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies
II(1,k, s) - sc{ I, k', s a} a-safe reduction
OPT(I,k) — OPT(I',k")’

Assuming that the

rule.

Solution quality is always o or better | kernel-solution was

quality & or better

Connected Vertex Cover

Input: A graph G and a number k

Question: Is there a vertex cover of

value k that is also connected ?

* [: vertices of degree > k + 1

* [: vertices whose neighborhood
is contained in [

* R : the remaining vertices

Connected Vertex Cover

Input: A graph G and a number k
Question: Is there a vertex cover of

value k that is also connected ?
v

I

LB
()
I

H [JdO---0)
hi ho---hy

If there here is a vertex of degree > d in [

Connected Vertex Cover

Input: A graph G and a number k [d [a]]

Question: Is there a vertex cover of -1

value k that is also connected ?
v

I

LB
()
I

H [JdO---0)
hi ho---hy

If there here is a vertex of degree > d in [

Connected Vertex Cover

Input: A graph G and a number k [d [a]]

Question: Is there a vertex cover of -1

value k that is also connected ?
v

I

LB
()
I

H [dO---0)
hi ho---hy

Reduction Rule :
If there is a vertex v € I that has d neighbors (in H),
then contract {U, hi,ha,..., hd} into a single vertex
w € H (by add k + 1 new neighbors)
K+ k—d+1

Connected Vertex Cover

Input: A graph G and a number k J o
Question: Is there a vertex cover of - [— 1]
value k that is also connected ?

Solution Lifting Algorithm :
Return S =S —wU{v,hy,...,hq}

Connected Vertex Cover

Input: A graph G and a number k J o
Question: Is there a vertex cover of [—]
value k that is also connected ?

Solution Lifting Algorithm :
Return S =S —wU{v,hy,...,hq}

No loss of connectivity
But may use 1 extra vertex

Connected Vertex Cover

Input: A graph G and a number k J o
Question: Is there a vertex cover of [—]
value k that is also connected ?

Solution Lifting Algorithm :
Return S =S —wU{v,hy,...,hq}

No loss of connectivity
But may use 1 extra vertex |

Connected Vertex Cover

Input: A graph G and a number k J o
Question: Is there a vertex cover of - [— 1]
value k that is also connected ?

Solution Lifting Algorithm :
Return S =S —wU{v,hy,...,hq}

This is «-safe

Connected Vertex Cover

Input: A graph G and a number k [d [a]]

Question: Is there a vertex cover of -1

value k that is also connected ?
Solution Lifting Algorithm :

Return S =S —wU{v,hy,...,hq}
Claim 1: OPT(G', k') < OPT(G,k) —d+ 1

Connected Vertex Cover

Input: A graph G and a number k [d [Q]]

Question: Is there a vertex cover of -1

value k that is also connected ?
Solution Lifting Algorithm :

Return S =S —wU{v,hy,...,hq}
Claim 1: OPT(G', k') < OPT(G,k) —d+ 1

If Sis an optimum solution set for (G, k)
Then S = S/{v,h1,..., hq} +w

is a solution set for (G', k') I w

Connected Vertex Cover

Input: A graph G and a number k [d [Q]]

Question: Is there a vertex cover of -1

value k that is also connected ?

Solution Lifting Algorithm :
Return S =S —wU{v,hy,...,hq}
Claim 1: OPT(G/, k/) < OPT(G, k‘) —d—+1

Claim 2: CVC(G,k,S) < CVC(G', K, S") +d

Connected Vertex Cover

-1

Input: A graph G and a number k J o
Question: Is there a vertex cover of - []

value k that is also connected ?

Solution Lifting Algorithm :
Return S =S —wU{v,hy,...,hq}
Claim 1: OPT(G/, k/) < OPT(G, k‘) —d—+1

Claim 2: CVC(G,k,S) < CVC(G', k', S") +d

Remove 1 vertex and add d + 1

Connected Vertex Cover

Input: A graph G and a number k [d [a]]

Question: Is there a vertex cover of -1

value k that is also connected ?

Solution Lifting Algorithm :
Return S =S —wU{v,hy,...,hq}
Claim 1: OPT(G/, k/) < OPT(G, k‘) —d—+1

Claim 2: CVC(G,k,S) < CVC(G' K ,S") +d

CVO(G.k,S) _ CVOG K. 8)+d _ {CVC(G’,k’,S’) }
OPT(G.k) — OPT(G'.K)+([d—1) = OPT(G", k)

Connected Vertex Cover

Input: A graph G and a number k [d [a]]

Question: Is there a vertex cover of -1

value k that is also connected ?

Solution Lifting Algorithm :
Return S =S —wU{v,hy,...,hq}
Claim 1: OPT(G/, k/) < OPT(G, k‘) —d—+1

Claim 2: CVC(G,k,S) < CVC(G' K ,S") +d

CVO(G.k,S) _ CVOG K. 8)+d _ {CVC(G’,k’,S’) }
OPT(G.k) — OPT(G'.K)+([d—1) = OPT(G", k)

a T
< maxry{—, —
b+y — {b y}

Connected Vertex Cover

Input: A graph G and a number k o

Question: Is there a vertex cover of [d - [a 1]]

value k that is also connected ?

Solution Lifting Algorithm : \
Return S =S —wU{v,hy,...,hq} d

Claim 1: OPT(G', k') < OPT(G,k) —d + 1 —<a

Claim 2: CVC(G,k,S) < CVC(G' K, S") +d \

OPT(G,k) — OPT(G'.K)+ (d—1) =

CVC(G,k,S) _ CVC(GK,S)+d CVC(G K, S
< <
m‘”{ OPT(G", k') ’0‘}

a T
< maxry{—, —
b+y — {b y}

Connected Vertex Cover

Input: A graph G and a number k [d [a]]

Question: Is there a vertex cover of -1

value k that is also connected ?

Solution Lifting Algorithm :
Return S =S —wU{v,hy,...,hq}
Claim 1: OPT(G/, k/) < OPT(G, k‘) —d—+1

Claim 2: CVC(G,k,S) < CVC(G', K, S") +d

CVO(G.k,S) _ CVOG K. 8)+d _ {CVC(G’,k’,S’) }
OPT(G.k) — OPT(G'.K)+([d—1) = OPT(G", k)

Hence Reduction Rule 2 is a-safe

Connected Vertex Cover

Input: A graph G and a number k J o
Question: Is there a vertex cover of [—]
value k that is also connected ?

Reduction Rule :

Remove any vertex in I with more than k + 1 twins

Connected Vertex Cover

Input: A graph G and a number k [d [a]]

Question: Is there a vertex cover of -1

value k that is also connected ?

Every vertex in I must have a neighbor in H
And any hq hg ---hg has no common neighbor in 1

Connected Vertex Cover

Input: A graph G and a number k [d [a]]

Question: Is there a vertex cover of -1

value k that is also connected ?

Every vertex in I must have a neighbor in H
And any hq hg ---hg has no common neighbor in 1

So any vertex in I has degree < d — 1

Connected Vertex Cover

Input: A graph G and a number k [d [a]]

Question: Is there a vertex cover of -1

value k that is also connected ?

Every vertex in I must have a neighbor in H
And any hq hg ---hg has no common neighbor in 1

So any vertex in I has degree < d — 1

[The size of G' is bounded by O(k? + k2)]

Connected Vertex Cover

Input: A graph G and a number k [d [Q]]

Question: Is there a vertex cover of -1

value k that is also connected ?

Every vertex in I must have a neighbor in H
And any hq hg ---hg has no common neighbor in 1

So any vertex in I has degree < d — 1

[The size of G' is bounded by O(k? + k2)]

Hence a Lossy Polynomial Kernel for CVC !

Thank you

