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Kernelization.

Compress an instance (X, k) to an instance (X ′, k′) such that
|X ′|+ |k′| ≤ poly(k)

We can solve (X, k) in polynomial time given a solution to
(X ′, k′)

Many Problems don’t have polynomial kernels
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Turing Kernelization

Compress an instance (X, k) to several instances {(Xi, ki)} such
that |Xi|+ |ki| ≤ poly(k)

We can solve (X, k) in polynomial time given solutions to
{(Xi, ki)}



Lossy Kernelization

Compress an instance (X, k) to an instance (X ′, k′) such that
|X ′|+ |k′| ≤ poly(k)

We can compute an approximate solution to (X, k) from an
approximate solution to (X ′, k′)



Turing Kernelization



Max Leaf Subtree:

Given a graph G, and integer k is there a sub-tree with at least k
leaves ?

When G is connected MLS has a polynomial kernel.



Polynomial Kernel for Connected MLS

Reduction Rule 1: Contract a degree 2 vertex with
non-adjacent neighbors that are also degree 2.

Lemma: When RR1 is not applicable, and there are more
that 6k2 + k vertices, the given instance is a YES instance.

Pick a sequence of vertices, S in the following manner

Initially all vertices are unmarked.
While there is an unmarked vertex of degree ≥ 3:

Pick a largest degree unmarked vertex v into S
Mark N2[v] = {v} ∪ {u | dist(u, v) ≤ 2}

Let S = {v1, v2 . . . vr}
Observation: N [vi] ∩N [vj ] = ∅
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Polynomial Kernel for Connected MLS

Claim 1: If
∑r

i=1 d(vi)− 2 ≥ k then we have a YES
instance

Start with a forest where each vi is the center of a star, then
grow it into a (spanning) tree by connecting these stars with
r − 1 paths.

The resulting tree has at least
∑r

i=1 d(vi)− 2 ≥ k leaves.

Claim 2: If r ≥ k then we have a YES instance

Because each v ∈ S has degree at least 3.
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Polynomial Kernel for Connected MLS

Claim 3: If there is a vertex v and a number d such that
|{u | dist(u, v) = d}| ≥ k then we have a YES instance.

For each vertex u, pick some path of length exactly d to v

The union of these paths is a subtree with ≥ k leaves.

The key observation is that some ui is not an internal vertex
on the path for uj , as they are both at distance d from v.



Polynomial Kernel for Connected MLS

Claim 4: For some number d, if there at least rk vertices
at distance exactly d from S, then we have a YES instance.

There are r vertices in S, hence there is some vertex in
v ∈ S for which there are at least k vertices at distance
exactly d from v

The previous claim implies we have a YES instance.



Polynomial Kernel for Connected MLS

Let N2[S] = S ∪ {u | dist(v, u) ≤ 2 for some v ∈ S}.
Claim 5: The number of connected components in
G−N2[S] is at most k2.

As G is connected, each connected component of G−N2[S]
has a vertex of distance exactly 3 from S.

By the above claim, the number of vertices at distance
exactly 3 is at most rk ≤ k2.



Polynomial Kernel for Connected MLS

Claim 6: Any connected component G−N2[S] contains at
most 4 vertices.

H = G−N2[S] contains only vertices of degree 2 or less. So
it is a collection of paths, cycles and isolated vertices.

If some component C of H had 5 vertices, then there will be
a degree-2 vertex with two degree-2 neighbors (in G) and
RR1 applies



Polynomial Kernel for Connected MLS

Claim 7: If RR1 is not applicable, and we have more than
6k2 + k vertices, then we have a YES instance.

By Claim 2, |S| = r ≤ k (else a YES instance)

By Claim 3, for d = 1, 2 there are at most 2k2 vertices at distance
1 or 2 from S, (else a YES instance)

Hence |N2[S]| = k + 2k2.

By Claim 5, number of connected components in G−N2[S] is at
most k2, (else a YES instance)

By Claim 6, each connected component has at most 4 vertices.
Hence total number of vertices in G−N2[S] is at most 4k2, (else
RR1 is applicable)

In total there can be at most 6k2 + k vertices. Otherwise, we
already have a YES instance, or RR1 is applicable.



Max Leaf Subtree:

Given a graph G, and integer k is there a sub-tree with at least k
leaves ?

When G is connected MLS has a polynomial kernel.

However, when G is disconnected MLS has no polynomial
kernel.

OR Composition: Take a disjoint union of connected MLS
instances
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Turing Kernelization

Definition (Turing Kernel)

Let Q be a parameterized problem, and let f : N→ N be a
computable function. A Turing Kernel for Q of size f is an
algorithm that can decide if an instance of the problem is a YES
instance in polynomial time, given access to an Oracle that
solves instance of size f(k) in unit time.

Max Leaf Subtree admits a Turing Kernel of size 6k2 + k.

Just kernelize each connected component separately

Then if, any component (and it’s kernel) is a YES instance,
then the input is a YES instance.



Turing Kernelization

For MLS, we produced O(n) Turing Kernels, all
independent of each other, more or less directly.

However, we can also produce Turing Kernels in a more
complex ways.

the i-th kernel depends on the Oracle’s answers to the
previous (i− 1) kernels

.

Such kind of Turing Kernels are known for k-Path on
certain graph classes.

There is some lower-bound machinery, such as Steiner
Tree and Connected Vertex Cover are unlikely to
admit Turing Kernels.



Lossy Kernels

Kernelization + Approximation



  

Kernelization
● Formal Study of Preprocessing / Data Reduction Heuristics



  

● A parameterized language is defined as                   where, 
    is a finite alphabet.

● A parameterized problem w.r.t     is
to decide if a given  
is in the language or not.

                           has a  
      Vertex Cover of size 

●         is called a parameterized 
instance.

Kernelization



  

Kernelization

Given an instance        , run a polynomial time algorithm and
produce an instance           such that,

● both instances are Equivalent
●

● Formal Study of Preprocessing / Data Reduction Heuristics

The polynomial time algorithm is called a Kernelization Algorithm
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Output: A graph     with at most 
      vertices and a number  

A kernel for Vertex Cover
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Output: A graph     with at most 
      vertices and a number  

Apply these Reduction Rules Exhaustively !
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Input: A graph    and a number

Output: A graph     with at most 
      vertices and a number  

Observation 1 : Every vertex has 
at least one edge incident on it 

Observation 2 : Every vertex has 
at most    edges incident on it



  

A kernel for Vertex Cover

Input: A graph    and a number

Output: A graph     with at most 
      vertices and a number  

Observation 3:  Either    has at 
most     edges (and at most      
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A kernel for Vertex Cover

Input: A graph    and a number

Output: A graph     with at most 
      vertices and a number  

Or there are more than      edges, 
which cannot be covered by    
vertices of degree 

Observation 3:  Either    has at 
most     edges (and at most      
vertices)



  

A kernel for Vertex Cover

Input: A graph    and a number

Output: A graph     with at most 
      vertices and a number  

Output :          any           edges of     and   

Or there are more than      edges, 
which cannot be covered by    
vertices of degree 

Observation 3:  Either    has at 
most     edges (and at most      
vertices)



  

A kernel for Vertex Cover

● Thus          and            are equivalent instances 
and



  

A kernel for Vertex Cover

● Thus          and            are equivalent instances 
and

Can we compute a solution to          if we 
are given a solution to           ? 



  

A kernel for Vertex Cover

● Thus          and            are equivalent instances 
and

Yes we can !

Can we compute a solution to          if we 
are given a solution to           ? 



  

A kernel for Vertex Cover

● Thus          and            are equivalent instances 
and

Yes we can !

Can we compute a solution to          if we 
are given a solution to           ? 



  

A kernel for Vertex Cover

● Thus          and            are equivalent instances 
and

Can we compute a solution to          if we 
are given a solution to           ? 

This is true of many kernelization algorithms 
for many problems.
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Kernels and Optimization Problems

Given an instance        , run a polynomial time algorithm and
produce an instance           such that,

● both instances are Equivalent
●

Kernelization

Take a solution    of          and turn it into a solution    for    

But what is the �quality�  of the solution    compared to    ?

Solution Lifting



  

Kernels and Optimization Problems

Given an instance        , run a polynomial time algorithm and
produce an instance           such that,

● both instances are Equivalent
●

We need some more definitions :)
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Given an instance        , run a polynomial time algorithm and
produce an instance           such that,

● both instances are Equivalent
●

A parameterized minimization problem is defined as

Graph  Parameter  Solution set

if    is not a vertex cover
otherwise

Value of the solution We are only interested in 
solutions of cardinality  
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Kernels and Optimization Problems

Given an instance        , run a polynomial time algorithm and
produce an instance           such that,

● both instances are Equivalent
●

A parameterized minimization problem is defined as

If     is an optimum solution to         , then for any    the 
quality of     is                     a.k.a the Approximation Ratio  
   

Given a quality    solution to           find a solution to      
         of the same quality in polynomial time !
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Kernelization

Solution Lifting



  

Kernels and Optimization Problems

Kernelization

Solution Lifting

Lets generalize this notion a bit more 
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Kernels and Optimization Problems

Kernelization

Solution Lifting

Allow a loss factor in kernelization / solution lifting process

Lossy Kernels !
But why do we need this notion ?
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Input: A graph    and a number

Question: Is there a vertex cover of 
value    that is also connected ?   

Connected Vertex Cover

This problem cannot have a
Polynomial Kernel.
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Reduction Rule 1 :
Remove all vertices of degree 

Reduction Rule 2 :
Remove a vertex of degree     
and decrease    by    

We lose information about connectivity !

Input: A graph    and a number

Question: Is there a vertex cover of 
value    that is also connected ?   

Connected Vertex Cover
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Input: A graph    and a number

Question: Is there a vertex cover of 
value    that is also connected ?   

●    : vertices of degree    
●    : vertices whose neighborhood 

is contained in     
●    : the remaining vertices

Normally, we remove    but they connect subsets of    
And     could be very large.

But this problem admits a lossy polynomial kernel !

Connected Vertex Cover
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● A kernelization algorithm sequence of applications reduction rules.
● Applying a   -lossy reduction rule    times leads to a     loss.

-loss

Safe Reduction Rules

● We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies

This is called an   -safe reduction rule.



  

● A kernelization algorithm sequence of applications reduction rules.
● Applying a   -lossy reduction rule    times leads to a     loss.

-loss

Safe Reduction Rules

● We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies
 -safe reduction 
rule.

We can chain    -safe reduction rules safely :) 



  

● A kernelization algorithm sequence of applications reduction rules.
● Applying a   -lossy reduction rule    times leads to a     loss.

-loss

Safe Reduction Rules

● We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies
 -safe reduction 
rule.

Solution quality is always    or better ! 



  

● A kernelization algorithm sequence of applications reduction rules.
● Applying a   -lossy reduction rule    times leads to a     loss.

-loss

Safe Reduction Rules

● We modify the definition to allow for repeated application

Each (Reduction rule, Solution lifting algorithm) pair satisfies
 -safe reduction 
rule.

Solution quality is always    or better ! 
Assuming that the 
kernel-solution was 
quality    or better
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Connected Vertex Cover

Input: A graph    and a number
Question: Is there a vertex cover of 
value    that is also connected ?   

If there is a vertex         that has    neighbors (in    ),
then contract                           into a single vertex
          (by add         new neighbors)

Reduction Rule :
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Question: Is there a vertex cover of 
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Solution Lifting Algorithm :

Return   
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Connected Vertex Cover

Input: A graph    and a number
Question: Is there a vertex cover of 
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Solution Lifting Algorithm :

Return   

This is    -safe 
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Input: A graph    and a number
Question: Is there a vertex cover of 
value    that is also connected ?   
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Claim 1:

If    is an optimum solution set for     
Then                                         
is a solution set for
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Connected Vertex Cover

Input: A graph    and a number
Question: Is there a vertex cover of 
value    that is also connected ?   
Solution Lifting Algorithm :

Return   
Claim 1:

Claim 2:

Remove 1 vertex and add d + 1
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Connected Vertex Cover

Input: A graph    and a number
Question: Is there a vertex cover of 
value    that is also connected ?   
Solution Lifting Algorithm :

Return   
Claim 1:

Claim 2:

Hence Reduction Rule 2 is   -safe



  

Connected Vertex Cover

Input: A graph    and a number
Question: Is there a vertex cover of 
value    that is also connected ?   
Reduction Rule :

Remove any vertex in    with more than          twins
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Connected Vertex Cover

Input: A graph    and a number
Question: Is there a vertex cover of 
value    that is also connected ?   

The size of     is bounded by 

Every vertex in    must have a neighbor in    
And any                  has no common neighbor in   

So any vertex in    has degree 

Hence a Lossy Polynomial Kernel for CVC !



Thank you


