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Recall....

Vertex Cover

Input : Graph G on n vertices and integer k

Parameter : k

Output : S ⊆ V (G) such that G− S is edgeless and
|S| ≤ k.



Iterative Compression



Input

Question

Vertex Cover

Is there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.
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Vertex Cover

A vertex cover of size (k+1).

Let us “guess” how a vertex cover of
size at most k interacts with

this one.
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Vertex Cover

A vertex cover of size (k+1).

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.



Vertex Cover

A vertex cover of size (k+1).

Can there be an edge between
two red vertices?

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.



Vertex Cover

A vertex cover of size (k+1).

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.



Vertex Cover

A vertex cover of size (k+1).

Now we need to make up for the
work that the red vertices were doing.

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.
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Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

The first k+2 vertices in G. It has an easy vertex cover of size k+1.



Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

The first k+2 vertices in G. It has an easy vertex cover of size k+1.



Vertex Cover

Input
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Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

The first k+2 vertices in G. It has an easy vertex cover of size k+1.



Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

The first k+2 vertices in G. It has an easy vertex cover of size k+1.

Compress again… rinse, repeat.



Vertex Cover

Input

QuestionIs there a subset of vertices S of size at most k 
that intersects all the edges?

A graph G = (V,E) with n vertices, m edges, and k.

We have a O*(2k) algorithm for Vertex Cover.



Recall....

Feedback Vertex Set

Input : Graph G on n vertices and integer k

Parameter : k

Output : S ⊆ V (G) such that G− S is acyclic and
|S| ≤ k.



Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

A Feedback Vertex Set of size (k+1).

Let us “guess” how a FVS of 
size at most k interacts with 

this one.
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Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

A vertex with two neighbors in the same component is forced.
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Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

A leaf that has exactly one neighbor above can be preprocessed.
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Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.



Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

…a leaf with at least two neighbors in different components.
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Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.



Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

The leaf merges two components when we don’t include it.
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Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

The number of components “on top” decreases.



Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Start with a leaf. 
!

Two neighbors in one component: forced. 
At most one neighbor above: preprocess. 

At least two neighbors, all in different components above: branch.
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Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.
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Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Let t denote the number of components among
the red vertices. Let w = (k+t).



Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Include v… k drops by 1
Exclude v… t drops by at least 1

Let t denote the number of components among
the red vertices. Let w = (k+t).
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Either way, w drops by at least one.
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Either way, w drops by at least one.

Running time: 2w = 2(k+t)
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Question

Feedback Vertex Set

Is there a subset of at most k vertices whose  
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Either way, w drops by at least one.

Running time: 2w = 2(k+t) ≤ 2k+k ≤ 4k
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4k = 5k

Overall Running Time…



Input

QuestionIs there a subset of k arcs that can be reversed 
to make the tournament acyclic?

A tournament T on n vertices and an integer k.

This implies an O(5k) algorithm for FVS.

Feedback Vertex Set



Bipartite Deletion

Also Known as Odd Cycle Transversal

Input : Graph G on n vertices and integer k

Parameter : k

Output : S ⊆ V (G) such that G− S is Bipartite and
|S| ≤ k.

Bipartite Graphs:

Are 2-colorable

Have no odd cycle



B IPARTITE DELETION

Solution based on iterative compression:

Step 1:
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer

k, find a set S of at most k vertices such that G \ S has a 2-coloring
where B \ S is black and W \ S is white.

FPT algorithmic techniques – p.43/97
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B IPARTITE DELETION

Solution based on iterative compression:

Step 1:
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer

k, find a set S of at most k vertices such that G \ S has a 2-coloring
where B \ S is black and W \ S is white.

Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S′ of k + 1 vertices such
that G \ S′ is bipartite, find a set S of k vertices such that G \ S is

bipartite.

Step 3:
Apply the magic of iterative compression. . .

FPT algorithmic techniques – p.43/97



Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

B

W

FPT algorithmic techniques – p.44/97



Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

W0

B

W

B0

Find an arbitrary 2-coloring (B0,W0) of G.
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Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

W

W0

B

B0

C

C

Find an arbitrary 2-coloring (B0,W0) of G.
C := (B0 ∩ W ) ∪ (W0 ∩ B) should change color, while

R := (B0 ∩ B) ∪ (W0 ∩ W ) should remain the same color.

FPT algorithmic techniques – p.44/97



Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

W

B0 W0

B

C

CR

R

Find an arbitrary 2-coloring (B0,W0) of G.
C := (B0 ∩ W ) ∪ (W0 ∩ B) should change color, while

R := (B0 ∩ B) ∪ (W0 ∩ W ) should remain the same color.

Lemma: G \ S has the required 2-coloring if and only if S separates C and
R, i.e., no component of G \ S contains vertices from both C \ S and R \ S.

FPT algorithmic techniques – p.44/97



Step 1: The annotated problem

Lemma: G \ S has the required 2-coloring if and only if S separates C and

R, i.e., no component of G \ S contains vertices from both C \ S and R \ S.

Proof:
⇒ In a 2-coloring of G \ S, each vertex either remained the same color or

changed color. Adjacent vertices do the same, thus every component either
changed or remained.

⇐ Flip the coloring of those components of G \ S that contain vertices from
C \ S. No vertex of R is flipped.

Algorithm: Using max-flow min-cut techniques, we can check if there is a set

S that separates C and R. It can be done in time O(k|E(G)|) using k

iterations of the Ford-Fulkerson algorithm.

FPT algorithmic techniques – p.45/97



Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

S′

FPT algorithmic techniques – p.46/97



Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

deleted

S′

black white

Branch into 3k+1 cases: each vertex of S′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.

FPT algorithmic techniques – p.46/97
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W

S′

black white deleted

Branch into 3k+1 cases: each vertex of S′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.

Neighbors of the black vertices in S′ should be white and the neighbors of the
white vertices in S′ should be black.
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is bipartite, find a set S of k vertices such that G \ S is bipartite.

BW

S′

black white deleted

Branch into 3k+1 cases: each vertex of S′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.

Neighbors of the black vertices in S′ should be white and the neighbors of the
white vertices in S′ should be black.
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Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

W B

The vertices of S′ can be disregarded. Thus we need to solve the annotated
problem on the bipartite graph G \ S′.

Running time: O(3k · k|E(G)|) time.

FPT algorithmic techniques – p.46/97



Step 3: Iterative compression

How do we get a solution of size k + 1?

FPT algorithmic techniques – p.47/97



Step 3: Iterative compression

How do we get a solution of size k + 1?

We get it for free!
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Step 3: Iterative compression

How do we get a solution of size k + 1?

We get it for free!
Let V (G) = {v1, . . . , vn} and let Gi be the graph induced by {v1, . . . , vi}.

For every i, we find a set Si of size k such that Gi \ Si is bipartite.

For Gk , the set Sk = {v1, . . . , vk} is a trivial solution.

If Si−1 is known, then Si−1 ∪ {vi} is a set of size k + 1 whose deletion
makes Gi bipartite ⇒ We can use the compression algorithm to find a

suitable Si in time O(3k · k|E(Gi)|).

FPT algorithmic techniques – p.47/97



Step 3: Iterative Compression

Bipartite-Deletion(G, k)

1. Sk = {v1, . . . , vk}
2. for i := k + 1 to n

3. Invariant: Gi−1 \ Si−1 is bipartite.

4. Call Compression(Gi, Si−1 ∪ {vi})
5. If the answer is “NO” ⇒ return “NO”

6. If the answer is a set X ⇒ Si := X

7. Return the set Sn

Running time: the compression algorithm is called n times and everything

else can be done in linear time

⇒ O(3k · k|V (G)| · |E(G)|) time algorithm.

FPT algorithmic techniques – p.48/97



Feedback Vertex Set in Tournaments

Input : A tournament D and integer k.

Parameter : k

Output : S ⊆ V (D) such that D − S is an acyclic directed
graph.

Tournament:

A Complete Directed Graph.

Exercise: There is a (directed) cycle if and only if there is a
cycle of length 3.

Exercise: Using iterative compression, show that FVST is
FPT parameterized by the solution size k.



Feedback Vertex Set in Tournaments

Input : A tournament D and integer k.

Parameter : k

Output : S ⊆ V (D) such that D − S is an acyclic directed
graph.

Tournament:

A Complete Directed Graph.

Exercise: There is a (directed) cycle if and only if there is a
cycle of length 3.

Exercise: Using iterative compression, show that FVST is
FPT parameterized by the solution size k.



Dynamic Programming



Set Cover

Input : A universe U of n elements and
a family F = {F1, F2, . . . Fm} of m
subsets of U .

Parameter : n (Size of the Universe)

Output : A subfamily F ′ ⊆ F of
minimum size that “covers U”

⋃

F∈F ′

F = U

Theorem

Set Cover is FPT parameterized by the size of the universe

Running time: 2n · poly(n,m)



Set Cover: Dynamic Programming

Fix an ordering of the family F : F1, F2, . . . , Fm

Dynamic Programming Table,

for every X ⊆ U and j ∈ {0, 1, . . . ,m}

T [X, j] = size of a min subset of {F1, F2, . . . , Fj} that covers X

Table Size: 2|U | ×m

Base Case : T [X, 0] = 0 if X = ∅, else it is ∞.

Recursize Step :

T [X, j] = min
{
T [X, j − 1], 1 + T [X \ Fj , j − 1]

}

Either X can be covered using within {F1, F2, . . . , Fj−1}
Or we need Fj + best solution of X \ Fj

T [U,m] is the minimum set cover size

Maintain a candidate solution along with each T [X, j].

Exercise: Prove that T [X, j] indeed contains a minimum set cover of X
from {F1, F2, . . . , Fj}



Set Cover: Dynamic Programming

Fix an ordering of the family F : F1, F2, . . . , Fm

Dynamic Programming Table,

for every X ⊆ U and j ∈ {0, 1, . . . ,m}

T [X, j] = size of a min subset of {F1, F2, . . . , Fj} that covers X

Table Size: 2|U | ×m

Base Case : T [X, 0] = 0 if X = ∅, else it is ∞.

Recursize Step :

T [X, j] = min
{
T [X, j − 1], 1 + T [X \ Fj , j − 1]

}

Either X can be covered using within {F1, F2, . . . , Fj−1}
Or we need Fj + best solution of X \ Fj

T [U,m] is the minimum set cover size

Maintain a candidate solution along with each T [X, j].

Exercise: Prove that T [X, j] indeed contains a minimum set cover of X
from {F1, F2, . . . , Fj}



Steiner Tree

Input : Graph G on n vertices,
S ⊆ V (G) of k vertices called Terminals.

Parameter : k (Number of Terminals)

Output : Minimum connected
subgraph H of G that contains all of S.

Observation : H must be a Tree

Theorem

Steiner Tree can be solved in time 3k · poly(n).

Notation:

dG(u, v) = length of shortest path between u and v in G.

Assume every terminal s ∈ S has degree 1



Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Table Size: 2S · n

Base Case I: T [∅, v] = 1 for every v ∈ V (G)

Base Case II: T [{s}, v] = dG(s, v) for every
s ∈ S

Recursive Case: for X ⊆ V (G), |X| ≥ 2

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]



Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Correctness: (LHS ≤ RHS)

For any Y ⊆ X and u ∈ V (G), the RHS is the cost of a sub-tree
connecting X ∪ v.

RHS = min-cost subtree for Y ∪ u + min-cost subtree for
(X \ Y ) ∪ u + shortest path between u and v



Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Correctness: (LHS ≥ RHS)

Consider a minimum subtree H of G connecting X ∪ v.

root H at v, and u is the closest descendant with multiple
children {u1, u2, . . . , u`}

Note: u exists because |X| ≥ 2 and all terminals have degree 1.

Further dH(u, v) = dG(u, v), by choice of H



Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Correctness: (LHS ≥ RHS)

Let Y = all terminal from X in sub-tree of u1.

Split H into 3 parts

The sub-path between u and v
The sub-tree of H rooted at u1 + edge (u, u1)
The sub-tree of H excluding the above



Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y(X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Running Time:

Computing T [X, v] requires 2|X| · poly(n) time.

Computing the entire table requires time:
∑

v∈V (G),X⊆S

2|X| · poly(n)

This is 3|S| · poly(n)



Steiner Tree

Input : Graph G on n vertices,
S ⊆ V (G) of k vertices called Terminals.

Parameter : k (Number of Terminals)

Output : Minimum connected
subgraph H of G that contains all of S.

Observation : H must be a Tree

Theorem

Steiner Tree can be solved in time 3k · poly(n).

Exercise: Steiner Tree with weights (Positive Integers)



Thank You.
Iterative Compression slides,

courtesy Neeldhara Misra and Daniel Marx.


