
Parameterized Algorithms

Lecture 2: Introduction cont...
May 15, 2020

Max-Planck Institute for Informatics, Germany.

Recall....

Vertex Cover

Input : Graph G on n vertices and integer k

Parameter : k

Output : S ⊆ V (G) such that G− S is edgeless and
|S| ≤ k.

Iterative Compression

Input

Question

Vertex Cover

Is there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

Input

Question

Vertex Cover

Is there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

A vertex cover of size (k+1).

Input

Question

Vertex Cover

Is there a vertex cover of size at most k?

A vertex cover of size (k+1).

A graph G with a vertex cover of size k+1.

Vertex Cover

A vertex cover of size (k+1).

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.

Vertex Cover

A vertex cover of size (k+1).

Let us “guess” how a vertex cover of
size at most k interacts with

this one.

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.

Vertex Cover

A vertex cover of size (k+1).

Let us “guess” how a vertex cover of
size at most k interacts with

this one.

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.

Vertex Cover

A vertex cover of size (k+1).

Let us “guess” how a vertex cover of
size at most k interacts with

this one.

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.

Vertex Cover

A vertex cover of size (k+1).

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.

Vertex Cover

A vertex cover of size (k+1).

Can there be an edge between
two red vertices?

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.

Vertex Cover

A vertex cover of size (k+1).

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.

Vertex Cover

A vertex cover of size (k+1).

Now we need to make up for the
work that the red vertices were doing.

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.

Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.

Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G with a vertex cover of size k+1.

Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

The first k+2 vertices in G.

Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

The first k+2 vertices in G. It has an easy vertex cover of size k+1.

Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

The first k+2 vertices in G. It has an easy vertex cover of size k+1.

Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

The first k+2 vertices in G. It has an easy vertex cover of size k+1.

Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

The first k+2 vertices in G. It has an easy vertex cover of size k+1.

Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

The first k+2 vertices in G. It has an easy vertex cover of size k+1.

Vertex Cover

Input

QuestionIs there a vertex cover of size at most k?

A graph G = (V,E) with n vertices, m edges, and k.

The first k+2 vertices in G. It has an easy vertex cover of size k+1.

Compress again… rinse, repeat.

Vertex Cover

Input

QuestionIs there a subset of vertices S of size at most k
that intersects all the edges?

A graph G = (V,E) with n vertices, m edges, and k.

We have a O*(2k) algorithm for Vertex Cover.

Recall....

Feedback Vertex Set

Input : Graph G on n vertices and integer k

Parameter : k

Output : S ⊆ V (G) such that G− S is acyclic and
|S| ≤ k.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

A Feedback Vertex Set of size (k+1).

Let us “guess” how a FVS of
size at most k interacts with

this one.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

A vertex with two neighbors in the same component is forced.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

A leaf that has exactly one neighbor above can be preprocessed.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

…a leaf with at least two neighbors in different components.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

The leaf merges two components when we don’t include it.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

The number of components “on top” decreases.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Start with a leaf.
!

Two neighbors in one component: forced.
At most one neighbor above: preprocess.

At least two neighbors, all in different components above: branch.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Let t denote the number of components among
the red vertices. Let w = (k+t).

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Include v… k drops by 1
Exclude v… t drops by at least 1

Let t denote the number of components among
the red vertices. Let w = (k+t).

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Include v… k drops by 1
Exclude v… t drops by at least 1

Let t denote the number of components among
the red vertices. Let w = (k+t).

Either way, w drops by at least one.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Either way, w drops by at least one.

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Either way, w drops by at least one.

Running time: 2w = 2(k+t)

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Either way, w drops by at least one.

Running time: 2w = 2(k+t) ≤ 2k+k ≤ 4k

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Either way, w drops by at least one.

Running time: 2w = 2(k+t) ≤ 2k+k ≤ 4k

Overall Running Time…

Input

Question

Feedback Vertex Set

Is there a subset of at most k vertices whose
removal makes the graph acyclic?

A graph on n vertices, m edges and an integer k.

Either way, w drops by at least one.

Running time: 2w = 2(k+t) ≤ 2k+k ≤ 4k

k�

i=1

�
k

i

�
4k = 5k

Overall Running Time…

Input

QuestionIs there a subset of k arcs that can be reversed
to make the tournament acyclic?

A tournament T on n vertices and an integer k.

This implies an O(5k) algorithm for FVS.

Feedback Vertex Set

Bipartite Deletion

Also Known as Odd Cycle Transversal

Input : Graph G on n vertices and integer k

Parameter : k

Output : S ⊆ V (G) such that G− S is Bipartite and
|S| ≤ k.

Bipartite Graphs:

Are 2-colorable

Have no odd cycle

B IPARTITE DELETION

Solution based on iterative compression:

Step 1:
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer

k, find a set S of at most k vertices such that G \ S has a 2-coloring
where B \ S is black and W \ S is white.

FPT algorithmic techniques – p.43/97

B IPARTITE DELETION

Solution based on iterative compression:

Step 1:
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer

k, find a set S of at most k vertices such that G \ S has a 2-coloring
where B \ S is black and W \ S is white.

Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S′ of k + 1 vertices such
that G \ S′ is bipartite, find a set S of k vertices such that G \ S is

bipartite.

FPT algorithmic techniques – p.43/97

B IPARTITE DELETION

Solution based on iterative compression:

Step 1:
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer

k, find a set S of at most k vertices such that G \ S has a 2-coloring
where B \ S is black and W \ S is white.

Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S′ of k + 1 vertices such
that G \ S′ is bipartite, find a set S of k vertices such that G \ S is

bipartite.

Step 3:
Apply the magic of iterative compression. . .

FPT algorithmic techniques – p.43/97

Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

B

W

FPT algorithmic techniques – p.44/97

Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

W0

B

W

B0

Find an arbitrary 2-coloring (B0,W0) of G.

FPT algorithmic techniques – p.44/97

Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

W

W0

B

B0

C

C

Find an arbitrary 2-coloring (B0,W0) of G.
C := (B0 ∩ W) ∪ (W0 ∩ B) should change color, while

R := (B0 ∩ B) ∪ (W0 ∩ W) should remain the same color.

FPT algorithmic techniques – p.44/97

Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

W

B0 W0

B

C

CR

R

Find an arbitrary 2-coloring (B0,W0) of G.
C := (B0 ∩ W) ∪ (W0 ∩ B) should change color, while

R := (B0 ∩ B) ∪ (W0 ∩ W) should remain the same color.

Lemma: G \ S has the required 2-coloring if and only if S separates C and
R, i.e., no component of G \ S contains vertices from both C \ S and R \ S.

FPT algorithmic techniques – p.44/97

Step 1: The annotated problem

Lemma: G \ S has the required 2-coloring if and only if S separates C and

R, i.e., no component of G \ S contains vertices from both C \ S and R \ S.

Proof:
⇒ In a 2-coloring of G \ S, each vertex either remained the same color or

changed color. Adjacent vertices do the same, thus every component either
changed or remained.

⇐ Flip the coloring of those components of G \ S that contain vertices from
C \ S. No vertex of R is flipped.

Algorithm: Using max-flow min-cut techniques, we can check if there is a set

S that separates C and R. It can be done in time O(k|E(G)|) using k

iterations of the Ford-Fulkerson algorithm.

FPT algorithmic techniques – p.45/97

Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

S′

FPT algorithmic techniques – p.46/97

Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

deleted

S′

black white

Branch into 3k+1 cases: each vertex of S′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.

FPT algorithmic techniques – p.46/97

Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

W

S′

black white deleted

Branch into 3k+1 cases: each vertex of S′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.

Neighbors of the black vertices in S′ should be white and the neighbors of the
white vertices in S′ should be black.

FPT algorithmic techniques – p.46/97

Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

BW

S′

black white deleted

Branch into 3k+1 cases: each vertex of S′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.

Neighbors of the black vertices in S′ should be white and the neighbors of the
white vertices in S′ should be black.

FPT algorithmic techniques – p.46/97

Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

W B

The vertices of S′ can be disregarded. Thus we need to solve the annotated
problem on the bipartite graph G \ S′.

Running time: O(3k · k|E(G)|) time.

FPT algorithmic techniques – p.46/97

Step 3: Iterative compression

How do we get a solution of size k + 1?

FPT algorithmic techniques – p.47/97

Step 3: Iterative compression

How do we get a solution of size k + 1?

We get it for free!

FPT algorithmic techniques – p.47/97

Step 3: Iterative compression

How do we get a solution of size k + 1?

We get it for free!
Let V (G) = {v1, . . . , vn} and let Gi be the graph induced by {v1, . . . , vi}.

For every i, we find a set Si of size k such that Gi \ Si is bipartite.

For Gk , the set Sk = {v1, . . . , vk} is a trivial solution.

If Si−1 is known, then Si−1 ∪ {vi} is a set of size k + 1 whose deletion
makes Gi bipartite ⇒ We can use the compression algorithm to find a

suitable Si in time O(3k · k|E(Gi)|).

FPT algorithmic techniques – p.47/97

Step 3: Iterative Compression

Bipartite-Deletion(G, k)

1. Sk = {v1, . . . , vk}
2. for i := k + 1 to n

3. Invariant: Gi−1 \ Si−1 is bipartite.

4. Call Compression(Gi, Si−1 ∪ {vi})
5. If the answer is “NO” ⇒ return “NO”

6. If the answer is a set X ⇒ Si := X

7. Return the set Sn

Running time: the compression algorithm is called n times and everything

else can be done in linear time

⇒ O(3k · k|V (G)| · |E(G)|) time algorithm.

FPT algorithmic techniques – p.48/97

Feedback Vertex Set in Tournaments

Input : A tournament D and integer k.

Parameter : k

Output : S ⊆ V (D) such that D − S is an acyclic directed
graph.

Tournament:

A Complete Directed Graph.

Exercise: There is a (directed) cycle if and only if there is a
cycle of length 3.

Exercise: Using iterative compression, show that FVST is
FPT parameterized by the solution size k.

Feedback Vertex Set in Tournaments

Input : A tournament D and integer k.

Parameter : k

Output : S ⊆ V (D) such that D − S is an acyclic directed
graph.

Tournament:

A Complete Directed Graph.

Exercise: There is a (directed) cycle if and only if there is a
cycle of length 3.

Exercise: Using iterative compression, show that FVST is
FPT parameterized by the solution size k.

Dynamic Programming

Set Cover

Input : A universe U of n elements and
a family F = {F1, F2, . . . Fm} of m
subsets of U .

Parameter : n (Size of the Universe)

Output : A subfamily F ′ ⊆ F of
minimum size that “covers U”

⋃

F∈F ′

F = U

Theorem

Set Cover is FPT parameterized by the size of the universe

Running time: 2n · poly(n,m)

Set Cover: Dynamic Programming

Fix an ordering of the family F : F1, F2, . . . , Fm

Dynamic Programming Table,

for every X ⊆ U and j ∈ {0, 1, . . . ,m}

T [X, j] = size of a min subset of {F1, F2, . . . , Fj} that covers X

Table Size: 2|U | ×m

Base Case : T [X, 0] = 0 if X = ∅, else it is ∞.

Recursize Step :

T [X, j] = min
{
T [X, j − 1], 1 + T [X \ Fj , j − 1]

}

Either X can be covered using within {F1, F2, . . . , Fj−1}
Or we need Fj + best solution of X \ Fj

T [U,m] is the minimum set cover size

Maintain a candidate solution along with each T [X, j].

Exercise: Prove that T [X, j] indeed contains a minimum set cover of X
from {F1, F2, . . . , Fj}

Set Cover: Dynamic Programming

Fix an ordering of the family F : F1, F2, . . . , Fm

Dynamic Programming Table,

for every X ⊆ U and j ∈ {0, 1, . . . ,m}

T [X, j] = size of a min subset of {F1, F2, . . . , Fj} that covers X

Table Size: 2|U | ×m

Base Case : T [X, 0] = 0 if X = ∅, else it is ∞.

Recursize Step :

T [X, j] = min
{
T [X, j − 1], 1 + T [X \ Fj , j − 1]

}

Either X can be covered using within {F1, F2, . . . , Fj−1}
Or we need Fj + best solution of X \ Fj

T [U,m] is the minimum set cover size

Maintain a candidate solution along with each T [X, j].

Exercise: Prove that T [X, j] indeed contains a minimum set cover of X
from {F1, F2, . . . , Fj}

Steiner Tree

Input : Graph G on n vertices,
S ⊆ V (G) of k vertices called Terminals.

Parameter : k (Number of Terminals)

Output : Minimum connected
subgraph H of G that contains all of S.

Observation : H must be a Tree

Theorem

Steiner Tree can be solved in time 3k · poly(n).

Notation:

dG(u, v) = length of shortest path between u and v in G.

Assume every terminal s ∈ S has degree 1

Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Table Size: 2S · n

Base Case I: T [∅, v] = 1 for every v ∈ V (G)

Base Case II: T [{s}, v] = dG(s, v) for every
s ∈ S

Recursive Case: for X ⊆ V (G), |X| ≥ 2

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Correctness: (LHS ≤ RHS)

For any Y ⊆ X and u ∈ V (G), the RHS is the cost of a sub-tree
connecting X ∪ v.

RHS = min-cost subtree for Y ∪ u + min-cost subtree for
(X \ Y) ∪ u + shortest path between u and v

Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Correctness: (LHS ≥ RHS)

Consider a minimum subtree H of G connecting X ∪ v.

root H at v, and u is the closest descendant with multiple
children {u1, u2, . . . , u`}

Note: u exists because |X| ≥ 2 and all terminals have degree 1.

Further dH(u, v) = dG(u, v), by choice of H

Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Correctness: (LHS ≥ RHS)

Let Y = all terminal from X in sub-tree of u1.

Split H into 3 parts

The sub-path between u and v
The sub-tree of H rooted at u1 + edge (u, u1)
The sub-tree of H excluding the above

Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y(X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Running Time:

Computing T [X, v] requires 2|X| · poly(n) time.

Computing the entire table requires time:
∑

v∈V (G),X⊆S

2|X| · poly(n)

This is 3|S| · poly(n)

Steiner Tree

Input : Graph G on n vertices,
S ⊆ V (G) of k vertices called Terminals.

Parameter : k (Number of Terminals)

Output : Minimum connected
subgraph H of G that contains all of S.

Observation : H must be a Tree

Theorem

Steiner Tree can be solved in time 3k · poly(n).

Exercise: Steiner Tree with weights (Positive Integers)

Thank You.
Iterative Compression slides,

courtesy Neeldhara Misra and Daniel Marx.

