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Lower bounds
So far we have seen positive results: basic algorithmic techniques for fixed-parameter
tractability.

What kind of negative results we have?
Can we show that a problem (e.g., Clique) is not FPT?
Can we show that a problem (e.g., Vertex Cover) has no algorithm with
running time, say, 2o(k) · nO(1)?

This would require showing that P 6= NP: if P = NP, then, e.g., k-Clique is
polynomial-time solvable, hence FPT.

Can we give some evidence for negative results?
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Classical complexity — reminder
NP:

The class of all languages that can be recognized by a polynomial-time NTM.
The class of all languages with a witness of polynomial size

Nondeterministic Turing Machine (NTM): single tape, finite alphabet, finite state,
head can move left/right only one cell. In each step, the machine can branch into an
arbitrary number of directions. Run is successful if at least one branch is successful.

Polynomial-time reduction from problem P to problem Q: a function φ with the
following properties:

φ(x) is a yes-instance of Q ⇐⇒ x is a yes-instance of P ,
φ(x) can be computed in time |x |O(1).

Definition: Problem Q is NP-hard if any problem in NP can be reduced to Q.

If an NP-hard problem can be solved in polynomial time, then every problem in NP can
be solved in polynomial time (i.e., P = NP).
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Parameterized complexity
To build a complexity theory for parameterized problems, we need two concepts:

An appropriate notion of reduction.
An appropriate hypothesis.

Polynomial-time reductions are not good for our purposes.

Fact: Graph G has an independent set k ⇔ G has a vertex cover of size n − k .

Independent Set
(G , k)

⇒ Vertex Cover
(G , n − k)

This is a correct polynomial-time reduction.
However, Vertex Cover is FPT, but Independent Set is not known to be
FPT.
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Parameterized reductions

Definition
Parameterized reduction from problem A to problem B : a function φ with the
following properties:

φ(x) is a yes-instance of B ⇐⇒ x is a yes-instance of A,
φ(x) can be computed in time f (k) · |x |O(1), where k is the parameter of x ,
If k is the parameter of x and k ′ is the parameter of φ(x), then k ′ ≤ g(k) for
some function g .
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Parameterized reduction from problem A to problem B : a function φ with the
following properties:

φ(x) is a yes-instance of B ⇐⇒ x is a yes-instance of A,
φ(x) can be computed in time f (k) · |x |O(1), where k is the parameter of x ,
If k is the parameter of x and k ′ is the parameter of φ(x), then k ′ ≤ g(k) for
some function g .

Theorem
If there is a parameterized reduction from problem A to problem B and B is FPT, then
A is also FPT.

Intuitively: Reduction A→ B + algorithm for B gives and algorithm for A.
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Parameterized reductions

Definition
Parameterized reduction from problem A to problem B : a function φ with the
following properties:

φ(x) is a yes-instance of B ⇐⇒ x is a yes-instance of A,
φ(x) can be computed in time f (k) · |x |O(1), where k is the parameter of x ,
If k is the parameter of x and k ′ is the parameter of φ(x), then k ′ ≤ g(k) for
some function g .

Non-example: Transforming an Independent Set instance (G , k) into a Vertex
Cover instance (G , n − k) is not a parameterized reduction.

Example: Transforming an Independent Set instance (G , k) into a Clique instance
(G , k) is a parameterized reduction.
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Parameterized reductions

Theorem
If there is a parameterized reduction from problem A to problem B and B is FPT, then
A is also FPT.

Proof: Suppose that
the reduction has running time f (k)nc1 ,
the reduction creates an instance with parameter at most g(k), and
B can be solved in time h(k)nc2 .

Then running the reduction an solving the created instance of B gives an algorithm for
A with running time

f (k)nc1 + h(g(k)) · (f (k)nc1)c2 ≤ f ′(k)nc1c2

for some function f ′.
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Multicolored Clique
A useful variant of Clique:

Multicolored Clique: The vertices of the input graph G are colored with k colors
and we have to find a clique containing one vertex from each color.

(or Partitioned Clique)
V1 V2 . . . Vk

Theorem
There is a parameterized reduction from Clique to Multicolored Clique.

Create G ′ by replacing each vertex v with k vertices, one in each color class. If u and v
are adjacent in the original graph, connect all copies of u with all copies of v .

G G ′

V1 V2 . . . Vk

v
u u1, . . . , uk

v1, . . . , vk

k-clique in G ⇐⇒ multicolored k-clique in G ′.

Similarly: reduction to Multicolored Independent Set.
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Dominating Set

Theorem
There is a parameterized reduction from Multicolored Independent Set to
Dominating Set.

Proof: Let G be a graph with color classes V1, . . . , Vk . We construct a graph H such
that G has a multicolored k-clique iff H has a dominating set of size k .

V1

x1 y1 x2 y2 xk yk

u
v

V2 Vk

The dominating set has to contain one vertex from each of the k cliques V1, . . . ,
Vk to dominate every xi and yi .

For every edge e = uv , an additional vertex we ensures that these selections
describe an independent set.
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Dominating Set

Theorem
There is a parameterized reduction from Multicolored Independent Set to
Dominating Set.

Proof: Let G be a graph with color classes V1, . . . , Vk . We construct a graph H such
that G has a multicolored k-clique iff H has a dominating set of size k .
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Variants of Dominating Set

Dominating Set: Given a graph, find k vertices that dominate every vertex.
Red-Blue Dominating Set: Given a bipartite graph, find k vertices on the red
side that dominate the blue side.
Set Cover: Given a set system, find k sets whose union covers the universe.
Hitting Set: Given a set system, find k elements that intersect every set in the
system.

All of these problems are equivalent under parameterized reductions, hence at least as
hard as Clique.
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Basic hypotheses
It seems that parameterized complexity theory cannot be built on assuming P 6= NP –
we have to assume something stronger.

Engineers’ Hypothesis

k-Clique cannot be solved in time f (k) · nO(1).

Theorists’ Hypothesis
k-Step Halting Problem (is there a path of the given NTM that stops in k
steps?) cannot be solved in time f (k) · nO(1).

Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).

Which hypothesis is the most plausible?
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Summary

Independent Set and k-Step Halting Problem can be reduced to each
other ⇒ Engineers’ Hypothesis and Theorists’ Hypothesis are equivalent!
Independent Set and k-Step Halting Problem can be reduced to
Dominating Set.

Is there a parameterized reduction from Dominating Set to Independent
Set?
Probably not. Unlike in NP-completeness, where most problems are equivalent,
here we have a hierarchy of hard problems.

Independent Set is W[1]-complete.
Dominating Set is W[2]-complete.

Does not matter if we only care about whether a problem is FPT or not!
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Boolean circuit
A Boolean circuit consists of input gates, negation gates, AND gates, OR gates, and
a single output gate.

x1 x7x6x4x3x2

Circuit Satisfiability: Given a Boolean circuit C , decide if there is an assignment
on the inputs of C making the output true.

Weight of an assignment: number of true values.

Weighted Circuit Satisfiability: Given a Boolean circuit C and an integer k ,
decide if there is an assignment of weight k making the output true.

12



Boolean circuit
A Boolean circuit consists of input gates, negation gates, AND gates, OR gates, and
a single output gate.

x1 x7x6x4x3x2

Circuit Satisfiability: Given a Boolean circuit C , decide if there is an assignment
on the inputs of C making the output true.

Weight of an assignment: number of true values.

Weighted Circuit Satisfiability: Given a Boolean circuit C and an integer k ,
decide if there is an assignment of weight k making the output true.

12



Weighted Circuit Satisfiability
Independent Set can be reduced to Weighted Circuit Satisfiability:

x1 x7x6x4x3x2

Dominating Set can be reduced to Weighted Circuit Satisfiability:
x1 x7x6x4x3x2

To express Dominating Set, we need more complicated circuits.
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Depth and weft
The depth of a circuit is the maximum length of a path from an input to the output.
A gate is large if it has more than 2 inputs. The weft of a circuit is the maximum
number of large gates on a path from an input to the output.

Independent Set: weft 1, depth 3
x2 x3 x4 x6 x7x1

Dominating Set: weft 2, depth 2
x1 x7x6x4x3x2

14



The W-hierarchy
Let C [t, d ] be the set of all circuits having weft at most t and depth at most d .

Definition
A problem P is in the class W[t] if there is a constant d and a parameterized reduction
from P to Weighted Circuit Satisfiability of C [t, d ].

We have seen that Independent Set is in W[1] and Dominating Set is in W[2].

Fact: Independent Set is W[1]-complete.
Fact: Dominating Set is W[2]-complete.

If any W[1]-complete problem is FPT, then FPT = W[1] and every problem in W[1] is
FPT.

If any W[2]-complete problem is in W[1], then W[1] = W[2].

⇒ If there is a parameterized reduction from Dominating Set to Independent
Set, then W[1] = W[2].
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Weft

Weft is a term related to weaving cloth: it is the thread that runs from side to side in
the fabric.
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Parameterized reductions
Typical NP-hardness proofs: reduction from e.g., Clique or 3SAT, representing each
vertex/edge/variable/clause with a gadget.

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Usually doesn’t work for parameterized reduction: cannot afford the parameter increase.

Types of parameterized reductions:
Reductions keeping the structure of the graph.

Clique ⇒ Independent Set
Reductions with vertex representations.

Multicolored Independent Set ⇒ Dominating Set

Reductions with vertex and edge representations.
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Odd Set
Odd Set: Given a set system F over a universe U and an integer k , find a set S of
at most k elements such that |S ∩ F | is odd for every F ∈ F .

Theorem
Odd Set is W[1]-hard parameterized by k .

First try: Reduction from Multicolored Independent Set. Let U = V1 ∪ . . .Vk

and introduce each set Vi into F .
⇒ The solution has to contain exactly one element from each Vi .

If xy ∈ E (G ), how can we express that x ∈ Vi and y ∈ Vj cannot be selected
simultaneously? Seems difficult:

introducing {x , y} into F forces that exactly one of x and y appears in the
solution,
introducing {x} ∪ (Vj \ {y}) into F forces that either both x and y or none of x
and y appear in the solution.
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Odd Set
Reduction from Multicolored Clique.

U :=
⋃k

i=1 Vi ∪
⋃

1≤i<j≤k Ei ,j .

k ′ := k +
(k
2

)
.

Let F contain Vi (1 ≤ i ≤ k) and Ei ,j (1 ≤ i < j ≤ k).

For every v ∈ Vi and x 6= i , we introduce the sets:
(Vi \ {v}) ∪ {every edge from Ei ,x with endpoint v}
(Vi \ {v}) ∪ {every edge from Ex ,i with endpoint v}

E1,2 E1,3 E1,4 E2,3 E2,4 E3,4

V1 V4V2 V3
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Vertex and edge representation

Key idea
Represent the vertices of the clique by k gadgets.
Represent the edges of the clique by

(k
2

)
gadgets.

Connect edge gadget Ei ,j to vertex gadgets Vi and Vj such that if Ei ,j represents
the edge between x ∈ Vi and y ∈ Vj , then it forces Vi to x and Vj to y .

20



Variants of Hitting Set
The following problems are W[1]-hard, with very similar proofs:

Odd Set

Exact Odd Set (find a set of size exactly k . . . )
Exact Even Set

Unique Hitting Set
(at most k elements that hit each set exactly once)
Exact Unique Hitting Set
(exactly k elements that hit each set exactly once)

A problem that is also W[1]-hard, but requires very different techniques:

Even Set: Given a set system F and an integer k , find a nonempty set S of at
most k elements such |F ∩ S | is even for every F ∈ F .
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Summary

By parameterized reductions, we can show that lots of parameterized problems are
at least as hard as Clique, hence unlikely to be fixed-parameter tractable.
Connection with Turing machines gives some supporting evidence for hardness
(only of theoretical interest).
The W-hierarchy classifies the problems according to hardness
(only of theoretical interest).
Important trick in W[1]-hardness proofs: vertex and edge representations.
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Shift of focus

FPT or W[1]-hard?
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Shift of focus

FPT or W[1]-hard?

What is the best possible
multiplier f (k) in the
running time f (k) · nO(1)?

What is the best possible
exponent g(k) in the
running time f (k) · ng(k)?

FPT
W[1]-hard

qu
an
tit
at
iv
e

qu
es
tio

n
qu

al
ita

tiv
e

qu
es
tio

n

2k? 1.0001k? 2
√
k? nO(k)? nlog k? nlog log k?
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Better algorithms for Vertex Cover

We have seen a 2k · nO(1) time algorithm.
Easy to improve to, e.g., 1.618k · nO(1).
Current best f (k): 1.2738k · nO(1).
Lower bounds?

Is, say, 1.001k · nO(1) time possible?
Is 2k/ log k · nO(1) time possible?

Of course, for all we know, it is possible that P = NP and Vertex Cover is
polynomial-time solvable.

⇒ We can hope only for conditional lower bounds.
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Exponential Time Hypothesis (ETH)
3CNF: φ is a conjuction of clauses, where each clause is a disjunction of at most 3
literals (= a variable or its negation), e.g., (x1 ∨ x3 ∨ x̄4) ∧ (x̄2 ∨ x̄3) ∨ (x1 ∨ x2 ∨ x4).

3SAT: given a 3CNF formula φ with n variables and m clauses, decide whether φ is
satisfiable.

Current best algorithm is 1.30704n [Hertli 2011].
Can we do significantly better, e.g, 2O(n/ log n)?

Hypothesis introduced by Impagliazzo, Paturi, and Zane in 2001:
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Current best algorithm is 1.30704n [Hertli 2011].
Can we do significantly better, e.g, 2O(n/ log n)?

Hypothesis introduced by Impagliazzo, Paturi, and Zane in 2001:

Exponential Time Hypothesis (ETH) [real statement]

There is a constant δ > 0 such that there is no O(2δn) time algorithm for 3SAT.
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Sparsification

Exponential Time Hypothesis (ETH) [consequence of]

There is no 2o(n)-time algorithm for n-variable 3SAT.

Observe: an n-variable 3SAT formula can have m = Ω(n3) clauses.

Are there algorithms that are subexponential in the size n + m of the 3SAT formula?

Sparsification Lemma

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

Intuitively: When considering a hard 3SAT instance, we can assume that it has
m = O(n) clauses.
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Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

27



Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:

formula is satisfiable ⇔ there is a vertex cover of size n + 2m

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

x1 ∨ x̄2 ∨ x3
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Lower bounds based on ETH
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The textbook reduction from 3SAT to Vertex Cover:
3SAT formula φ

n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4
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Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:
3SAT formula φ

n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(n) algorithm for Vertex Cover on an n-vertex graph.
27



Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:
3SAT formula φ

n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(k) · nO(1) algorithm for Vertex Cover.
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Other problems
There are polytime reductions from 3SAT to many problems such that the reduction
creates a graph with O(n + m) vertices/edges.

Consequence: Assuming ETH, the following problems cannot be solved in time 2o(n)

and hence in time 2o(k) · nO(1) (but 2O(k) · nO(1) time algorithms are known):
Vertex Cover

Longest Cycle

Feedback Vertex Set

Multiway Cut

Odd Cycle Transversal

Steiner Tree

. . .

Seems to be the natural behavior of FPT problems?
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The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly
super-

exponential"

Tower of
exponentials
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover the edges of G
with at most k cliques.

(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a k element universe?

30



Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover the edges of G
with at most k cliques.

(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a k element universe?

6 cliques
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover the edges of G
with at most k cliques.

(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a k element universe?

5 cliques
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover the edges of G
with at most k cliques.

(the cliques need not be edge disjoint)

Simple algorithm (sketch)
If two adjacent vertices have the same neighborhood (“twins”), then remove one of
them.
If there are no twins and isolated vertices, then |V (G )| > 2k implies that there is
no solution.
Use brute force.

Running time: 22O(k) · nO(1) — double exponential dependence on k!
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover the edges of G
with at most k cliques.

(the cliques need not be edge disjoint)

Double-exponential dependence on k cannot be avoided!

Theorem

Assuming ETH, there is no 22o(k) · nO(1) time algorithm for Edge Clique Cover.

Proof:

3SAT
n variables

⇒ Edge Clique Cover
k = O(log n)

30



The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly
super-

exponential"

Tower of
exponentials
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Slightly superexponential algorithms

Running time of the form 2O(k log k) · nO(1) appear naturally in parameterized algorithms
usually because of one of two reasons:

1 Branching into k directions at most k times explores a search tree of size
kk = 2O(k log k).
Example: Feedback Vertex Set in the first lecture.

2 Trying k! = 2O(k log k) permutations of k elements (or partitions, matchings, . . .)

Can we avoid these steps and obtain 2O(k) · nO(1) time algorithms?
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Closest String
Closest String
Given strings s1, . . . , sk of length L over alphabet Σ, and an integer d , find a string
s (of length L) such that Hamming distance d(s, si ) ≤ d for every 1 ≤ i ≤ k .

(Hamming distance: number of differing positions)
s1 C B D C C A C B B
s2 A B D B C A B D B
s3 C D D B A C C B D
s4 D D A B A C C B D
s5 A C D B D D C B C

We can ask for running time for example
f (d)nO(1): FPT parameterized by d

f (k , |Σ|)nO(1): FPT with combined parameters k and |Σ|

33



Closest String
Closest String
Given strings s1, . . . , sk of length L over alphabet Σ, and an integer d , find a string
s (of length L) such that Hamming distance d(s, si ) ≤ d for every 1 ≤ i ≤ k .

(Hamming distance: number of differing positions)
s1 C B D C C A C B B
s2 A B D B C A B D B
s3 C D D B A C C B D
s4 D D A B A C C B D
s5 A C D B D D C B C

A D D B C A C B D

We can ask for running time for example
f (d)nO(1): FPT parameterized by d

f (k , |Σ|)nO(1): FPT with combined parameters k and |Σ|

33



Closest String
Closest String
Given strings s1, . . . , sk of length L over alphabet Σ, and an integer d , find a string
s (of length L) such that Hamming distance d(s, si ) ≤ d for every 1 ≤ i ≤ k .

(Hamming distance: number of differing positions)
s1 C B D C C A C B B
s2 A B D B C A B D B
s3 C D D B A C C B D
s4 D D A B A C C B D
s5 A C D B D D C B C

A D D B C A C B D

Different parameters:
Number k of strings.
Length L of strings
Maximum distance d .
Alphabet size |Σ|.

We can ask for running time for example
f (d)nO(1): FPT parameterized by d

f (k , |Σ|)nO(1): FPT with combined parameters k and |Σ|

33



Closest String
Closest String
Given strings s1, . . . , sk of length L over alphabet Σ, and an integer d , find a string
s (of length L) such that Hamming distance d(s, si ) ≤ d for every 1 ≤ i ≤ k .

(Hamming distance: number of differing positions)
s1 C B D C C A C B B
s2 A B D B C A B D B
s3 C D D B A C C B D
s4 D D A B A C C B D
s5 A C D B D D C B C

A D D B C A C B D

Different parameters:
Number k of strings.
Length L of strings
Maximum distance d .
Alphabet size |Σ|.

We can ask for running time for example
f (d)nO(1): FPT parameterized by d

f (k , |Σ|)nO(1): FPT with combined parameters k and |Σ|

33



Closest String

Theorem
Closest String can be solved in time 2O(d log d)nO(1).

Main idea: Given a string y at Hamming distance ` from some solution, we use
branching to find a string at distance at most `− 1 from some solution.
Initially, y = x1 is at distance at most d from some solution.

If y is not a solution, then there is an xi with d(y , xi ) ≥ d + 1.
Look at the first d + 1 positions p where xi [p] 6= y [p]. For every solution z , it is true
for one such p that xi [p] = z [p].
Branch on choosing one of these d + 1 positions and replace y [p] with xi [p]:
distance of y from solution z decreases to `− 1.

Running time (d + 1)d · nO(1) = 2O(d log d)nO(1).
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Closest String

Theorem
Assuming ETH, Closest String has no 2o(d log d)nO(1) algorithm.

Proof:

3SAT
O(d log d) variables

⇒ Closest String
distance d
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Shift of focus

FPT or W[1]-hard?

What is the best possible
multiplier f (k) in the
running time f (k) · nO(1)?

What is the best possible
exponent g(k) in the
running time f (k) · ng(k)?

FPT
W[1]-hard

qu
an
tit
at
iv
e

qu
es
tio

n
qu

al
ita

tiv
e

qu
es
tio

n

2k? 1.0001k? 2
√
k? nO(k)? nlog k? nlog log k?
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Better algorithms for W[1]-hard problems

O(nk) algorithm for k-Clique by brute force.
O(n0.79k) algorithms using fast matrix multiplication.
W[1]-hardness of k-Clique gives evidence
that there is no f (k) · nO(1) time algorithm.
But what about improvements of the
exponent O(k)?

n
√
k

nk/log log k
nlog k

n
√
k

22k · nlog log log k

Theorem
Assuming ETH, k-Clique has no f (k) · no(k) algorithm for any computable function f .

In particular, ETH implies that k-Clique is not FPT.
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But what about improvements of the
exponent O(k)?

n log log log k

Theorem
Assuming ETH, k-Clique has no f (k) · no(k) algorithm for any computable function f .

In particular, ETH implies that k-Clique is not FPT.

37



Basic hypotheses

Engineers’ Hypothesis

k-Clique cannot be solved in time f (k) · nO(1).

Theorists’ Hypothesis
k-Step Halting Problem (is there a path of the given NTM that stops in k
steps?) cannot be solved in time f (k) · nO(1).

Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).
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Lower bound for k-Clique
Theorem
Assuming ETH, k-Clique has no f (k) ·No(k) algorithm for any computable function f .

Proof:
Textbook reduction from 3SAT to 3-Coloring shows that, assuming ETH, there is
no 2o(n) time algorithm for 3-Coloring on an n-vertex graph. Then

3-coloring
n vertices

⇒ Clique
(G , k) with

N ≈ 3n/k vertices

No(k) algorithm for Clique ⇒ (3n/k)o(k) = 3o(n) algorithm for 3-coloring
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Lower bound for k-Clique
Theorem
Assuming ETH, k-Clique has no f (k) ·No(k) algorithm for any computable function f .

Proof:

≤ 3n/k

n/k

k k

Create a vertex per each consistent coloring of each group.
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Theorem
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Proof:

≤ 3n/k

n/k

k k

Connect two vertices if they represent colorings that are consistent together.
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Lower bound for k-Clique
Theorem
Assuming ETH, k-Clique has no f (k) ·No(k) algorithm for any computable function f .

Proof:

n/k

k

≤ 3n/k
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Connect two vertices if they represent colorings that are consistent together.
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Lower bound for k-Clique
Theorem
Assuming ETH, k-Clique has no f (k) ·No(k) algorithm for any computable function f .

Proof:

≤ 3n/k

n/k

k k

Left graph has a 3-coloring ⇔ Right graph contains a k-clique
39



Lower bound for k-Clique
Theorem
Assuming ETH, k-Clique has no f (k) ·No(k) algorithm for any computable function f .

Proof:
We have constructed a new graph with N = k · 3n/k vertices that has a k-clique if
and only if the original graph is 3-colorable.
Suppose that k-Clique has a 2k · No(k) time algorithm.
Doing the reduction with k := log n gives us an algorithm for 3-Coloring with
running time

2k · No(k) = n · (log n)o(log n) · 3n·o(log n)/ log n = 2o(n).

Choosing k := log log n would rule out a 22k · No(k) algorithm etc.
In general, we need to choose roughly k := f −1(n) groups (technicalities omitted).
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Tight bounds

Theorem
Assuming ETH, k-Clique has no f (k) · no(k) algorithm for any computable function f .

Transfering to other problems:

k-Clique
(x , k) ⇒ Problem A

(x ′,O(k))

f (k) · no(k)
algorithm

⇐ f (k) · no(k))
algorithm

Bottom line:
To rule out f (k) · no(k) algorithms, we need a parameterized reduction that blows
up the parameter at most linearly.
To rule out f (k) · no(

√
k) algorithms, we need a parameterized reduction that blows

up the parameter at most quadratically.

40



Tight bounds

Theorem
Assuming ETH, k-Clique has no f (k) · no(k) algorithm for any computable function f .

Transfering to other problems:

k-Clique
(x , k) ⇒ Problem A

(x ′, k2)

f (k) · no(k)
algorithm

⇐ f (k) · no(
√
k)

algorithm

Bottom line:
To rule out f (k) · no(k) algorithms, we need a parameterized reduction that blows
up the parameter at most linearly.
To rule out f (k) · no(

√
k) algorithms, we need a parameterized reduction that blows

up the parameter at most quadratically.

40



Tight bounds

Theorem
Assuming ETH, k-Clique has no f (k) · no(k) algorithm for any computable function f .

Transfering to other problems:

k-Clique
(x , k) ⇒ Problem A

(x ′, g(k))

f (k) · no(k)
algorithm

⇐ f (k) · no(g−1(k))

algorithm

Bottom line:
To rule out f (k) · no(k) algorithms, we need a parameterized reduction that blows
up the parameter at most linearly.
To rule out f (k) · no(

√
k) algorithms, we need a parameterized reduction that blows

up the parameter at most quadratically.

40



Tight bounds

Theorem
Assuming ETH, k-Clique has no f (k) · no(k) algorithm for any computable function f .

Transfering to other problems:

k-Clique
(x , k) ⇒ Problem A

(x ′, g(k))

f (k) · no(k)
algorithm

⇐ f (k) · no(g−1(k))

algorithm

Bottom line:
To rule out f (k) · no(k) algorithms, we need a parameterized reduction that blows
up the parameter at most linearly.
To rule out f (k) · no(

√
k) algorithms, we need a parameterized reduction that blows

up the parameter at most quadratically. 40



Tight bounds
Assuming ETH, there is no f (k)no(k) time algorithms for

Set Cover

Hitting Set

Connected Dominating Set

Independent Dominating Set

Partial Vertex Cover

Dominating Set in bipartite graphs
. . .
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Summary

Parameterized reductions from Clique or Independent Set can give evidence
that a problem is not FPT.
ETH can give tight bounds on the f (k) for FPT problems.
ETH can give tight bounds on the exponent of n for W[1]-hard problems.
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