Parameterized Algorithms

Lecture 5: Kernelization II
June 05, 2020

Max-Planck Institute for Informatics, Germany.

More Kernelization techniques

Crown Decomposition

Crown Decomposition

A partition of the vertex set of a graph into 3 parts (crown)C,
(head)H and (the rest) R, such that:
o (' is non-empty and an independent set, with edges to
vertices of H alone.
@ The bipartite graph between C' and H in G contains a
matching of size |H|.

Crown Decomposition

Lemma

Let G be a graph on at least 3k + 1 vertices. Then in polynomial
time, either we can find a matching of size k + 1 or a Crown
Decomposition of G.

Crown Decomposition

Lemma

Let G be a graph on at least 3k + 1 vertices. Then in polynomial
time, either we can find a matching of size k + 1 or a Crown
Decomposition of G.

o Find a greedy matching M of G, if |[M| > k + 1 we are done

o Else V); be the endpoints of M and I =V (G)\ Vi

@ Consider the bipartite graph G’ between V), and I, compute a
minimum vertex cover X of G’

Crown Decomposition

Lemma

Let G be a graph on at least 3k + 1 vertices. Then in polynomial
time, either we can find a matching of size k + 1 or a Crown
Decomposition of G.

o Find a greedy matching M of G, if |[M| > k + 1 we are done
@ Else Vs be the endpoints of M and I =V (G) \ Vi,

@ Consider the bipartite graph G’ between V), and I, compute a
minimum vertex cover X of G’

o If X NVy, =0, then |I] <k, and hence |V(G)| < 3k

@ Else, M’ be a maximum matching in G’, and M* is subset of
edges with exactly one endpoint in X.

@ Crown Decomposition:

C=V(MNI,H=V(M)NX,R

Crown Decomposition

VERTEX COVER kernel on 3k vertices.
@ Remove all isolated vertices in GG
e Find a Crown Decomposition (C, H, R) or a k + 1 matching

o In the former case, the reduced instance is #6—€5Fk—=—1CE1r

o In the latter case, a trivial no instance (6‘\ CUH, k- h“l)

c
Mo\’l’d\'\wc} —

EalL

Linear Programming

Linear Programming

Ty + x4y > 1 Y(u,v) € E(G)
xy, >0 Yo e V(G)

Consider a (fractional) optimal solution x

1 1 1
Voz{v|xv<§},V%:{v|xv:§},V1:{v|xv>§}

Theorem (Nemhauser-Trotter)

There is an optimum vertex cover S such that V; C S C V3 U V%

Linear Programming

@ Observe: V| is an independent set, and has edges only to V7.
@ Given an optimum vertex cover S’ let S = (5" \ V) U V4.

If |S| > |S'| then [S' N Vo| < V4 \]

. 1
@ Let € = min,ev,uy, |5 — 20

@ Consider the LP solution where,

we decrease x,, by € for v € V3 \ S’
we increase x, by ¢ for v € Vo NS’

o It is feasible, and smaller than LP-Opt! Hence, |S| = |97
Vo Y 7

Linear Programming

Consider a (fractional) optimal solution =

1 1 1
Vo={vl oy < 3hVi={v]a=5hVi=1{o|z >}

Theorem (Nemhauser-Trotter)

There is an optimum vertex cover S such that V4 C S C V3 U VL
2

e Reduction Rule: Delete Vj U V1, and reduce k by |V.

@ When reduction doesn’t apply, every vertex is in V1, i.e.
2
there are 2k Vertices.

Linear Programming

Consider a (fractional) optimal solution =

1 1 1
Vo={vl oy < 3hVi={v]a=5hVi=1{o|z >}

Theorem (Nemhauser-Trotter)

There is an optimum vertex cover S such that V4 C S C V3 U VL
2

e Reduction Rule: Delete Vj U V1, and reduce k by |V.

@ When reduction doesn’t apply, every vertex is in V1, i.e.
2
there are 2k Vertices.

Vertex Cover has a kernel on 2k vertices

Planar Graphs

CONNECTED VERTEX COVER in Planar Graphs

o Planar Graphs: Graphs that can be drawn on a plane,
without crossing edges.

e Euler’s formula: f = |E(G)| — |[V(G)| + 2

Lemma

Let G be a planar graph and A be a subset of vertices. Then
G — A has at most 2| A| connected components that see 3 vertices

of A.

CONNECTED VERTEX COVER in Planar Graphs

CONNECTED VERTEX COVER: Find a vertex cover X of size k such
that G[X] is connected.

@ Remove all isolated vertices, and G must be connected with at
least 3 vertices

@ Keep at most one degree-1 neighbors of a vertex

o If v is a degree-2 cut vertex, contract it; k£ drops by 1.

Lemma

If v is a degree-2 vertex, but not a cut vertex, then there is an optimum
CVC S that excludes v

CONNECTED VERTEX COVER in Planar Graphs

o If v € S, then one of it’s two neighbors u,w in S
@ Suppose v,w € S, and u ¢ S, then consider 8" =S —v+u

@ S’ is a connected vertex cover
Consider a spanning tree of G[S], v is a leaf there, and all other
neighbors of u are present in S.

,,z;/;/\‘iv\
| <<{7 .

& (5] &5-S

CONNECTED VERTEX COVER in Planar Graphs

o If v € S, then one of it’s two neighbors u,w in S
@ Suppose v,w € S, and u ¢ S, then consider 8" =S —v+u

@ 5’ is a connected vertex cover
Consider a spanning tree of G[S], v is a leaf there, and all other
neighbors of u are present in S.

@ Otherwise u,v,w € S. Then S — v is a vertex cover but perhaps
not connected. Let X1, Xo be two components of G[S]| — v.

@ Consider a cycle C' in GG contain u, v, w.
There are 3 consecutive vertices in C' — v, say x1yxs such that
x1 € Xq,20 € Xo andy¢S

@ S — v+ y is a connected vertex cover

CONNECTED VERTEX COVER in Planar Graphs

CONNECTED VERTEX COVER: Find a vertex cover X of size k such
that G[X] is connected.

@ Remove all isolated vertices, and G must be connected with at
least 3 vertices

@ Keep at most one degree-1 neighbors of a vertex
o If v is a degree-2 cut vertex, contract it; k£ drops by 1.

o If v is a degree-2 non-cut vertex, split v into two vertices.

CONNECTED VERTEX COVER in Planar Graphs

CONNECTED VERTEX COVER: Find a vertex cover X of size k such
that G[X] is connected.

Remove all isolated vertices, and G must be connected with at
least 3 vertices

Keep at most one degree-1 neighbors of a vertex
o If v is a degree-2 cut vertex, contract it; k£ drops by 1.

o If v is a degree-2 non-cut vertex, split v into two vertices.

Lemma

When no reduction rules apply, if G has a CVC of size k, then
V(G)| < 4k.

Recall, G — S can have at most 2k vertices that see 3 or more vertices
of S. Any other vertex is a degree-2 vertex, which can be reduced, or a
degree-1 vertex, of which there are at most k. Hence, at most 4k
vertices.

Kernelization Lower Bounds

Intuition

o k-PATH: Decide if G contains a path of length £.
e Suppose that k-PATH has a kernel of size k3.
It can be encoded in k% bits.

e Consider a collection of ¢ instances of k-PaATH, for ¢t = k.
(G1,k), (Ga, k) ... (G, k)

o G =G1UGy...Gy has a path of length k£ if and only if one
of GG; does.

ie. (G,k)isan OR of (G1,k) ..., (Gt k)
e Let (H, k') be the kernel for (G, k).
(H, k) has “lost information” about some of the ¢ instances!

o The Kernelization algorithm must have “solved” these
forgotten instances.

NP-hard problem in polytime!

Distillation

o Let L, R C ¥* be two languages. An OR-distillation of L into R is
an algorithm that given a sequence of strings x1, xo,...,2; € X" each
of maximum length ¢, runs in polynomial time in the total length of
these strings and produces a string y € 3* such that |y| = poly(¢) and
y € R if and only if some z; € L.

o A language L is in the complexity class coNP/poly if there is a
Turing machine M and for each integer n, there is a string «,, of length
poly(n), called advice such that given any string x € X", using «,, M
can decide if x € L in non-deterministic polynomaial time.

Theorem

Let L, R C ¥* be two languages. If there is an OR-distillation of L into
R, then L € coNP /poly.

If L were NP-hard, then NP C coNP /Poly

Kernelization + Composition = Distillation

o An equivalence relation R on the set ¥* is called a polynomial
equivalence relation if (i) there exists an algorithm that, given strings
x,y € X*, resolves whether =g y in time polynomial in |z| + |y|; and
(b) Relation R restricted to the set £™ has at most poly(n) equivalence
classes.

o Let L C ¥* be a language and Q C ¥* x N be a parameterized
language. We say that L cross-composes into @ if there exists a
polynomial equivalence relation R and an algorithm A that takes as
input a sequence of strings =1, %o, ...,z; € X* that are equivalent with
respect to R, runs in time polynomial in total length of the strings, and
outputs one instance (y,k’) € £* x N such that:

(a) K < poly(k + t) where k is the max length a string z;, and

(b) (y, &) € Q if and only if some z; € L

Theorem (Main Tool)

If an NP-hard language L cross-composes into a parameterized

language @, then @ does not admit a polynomial compression, unless
NP C coNP/ poly.

k-PATH

HAM-PATH cross-composes into k-PATH

e Equiv Relation R: all malformed instances (in ¥*) in
one-class, and all well-formed instances in another.

o Given t instances of HAM-PATH G4, Go, ..., G, on
n-vertices, let (G, k) where G = G1U...G; and k = n be an
instance of k-PATH.

@ Therefore k-PATH has no polynomial kernel (
compression).

L 7

O H

k-PATH

HAM-PATH cross-composes into k-PATH

e Equiv Relation R: all malformed instances (in ¥*) in
one-class, and all well-formed instances in another.

o Given t instances of HAM-PATH G4, Go, ..., G, on
n-vertices, let (G, k) where G = G1U...G; and k = n be an
instance of k-PATH.

@ Therefore k-PATH has no polynomial kernel (or
compression).

Similarly we have AND-Distillation and AND-Composition

GRAPH MOTIF

GRAPH MOTIF: Given a graph G, integer k£ and a coloring ¢ of
V(@) using k colors, find a connected subgraph H on k vertices
with exactly one vertex of each color.

GRAPH MOTIF

GRAPH MOTIF: Given a graph G, integer k£ and a coloring ¢ of
V(@) using k colors, find a connected subgraph H on k vertices
with exactly one vertex of each color.

OR-Composition: ¢ instances with same number of colors k
(Gla ka Cl)> (G27 ka 62)7 R (Gt7 ka Ct)
Define (G, k, ¢) via disjoint union

(G, k,c) has a colorful motif H if and only if some (G5, k, ¢;) does

Lemma

GRAPH MOTIF has no polynomial kernel parameterized by the
number of colors k.

STEINER TREE par. by tree-size

Polynomial Parameter Transform: A polynomial time reduction
that preserves the parameter value upto a polynomial factor,
(i.e. k becomes poly(k)).

GRAPH MOTIF to STEINER TREE par. by tree-size

e Given (G, k,c), construct G’ by add k new terminal vertices
adjacent to each color class. Consider (G, T, /) as the
STEINER TREE INSTANCE where ¢ = 2k.

@ Note: Tree-size ¢/ = number of vertices

)

STEINER TREE par. by tree-size

Polynomial Parameter Transform: A polynomial time reduction
that preserves the parameter value upto a polynomial factor,
(i.e. k becomes poly(k)).

GRAPH MOTIF to STEINER TREE par. by tree-size

e Given (G, k,c), construct G’ by add k new terminal vertices
adjacent to each color class. Consider (G',T,/) as the
STEINER TREE INSTANCE where ¢ = 2k.

@ Note: Tree-size ¢/ = number of vertices

Theorem

STEINER TREE parameterized by the tree-size, has no polynomial
kernel.

Thank You.

