#### Parameterized Algorithms

Lecture 5: Kernelization II June 05, 2020

Max-Planck Institute for Informatics, Germany.

#### More Kernelization techniques

A partition of the vertex set of a graph into 3 parts (crown)C, (head)H and (the rest) R, such that:

- C is non-empty and an independent set, with edges to vertices of H alone.
- The bipartite graph between C and H in G contains a matching of size |H|.

Lemma

Let G be a graph on at least 3k + 1 vertices. Then in polynomial time, either we can find a matching of size k + 1 or a Crown Decomposition of G.

#### Lemma

Let G be a graph on at least 3k + 1 vertices. Then in polynomial time, either we can find a matching of size k + 1 or a Crown Decomposition of G.

- Find a greedy matching M of G, if  $|M| \ge k + 1$  we are done
- Else  $V_M$  be the endpoints of M and  $I = V(G) \setminus V_M$
- Consider the bipartite graph G' between  $V_M$  and I, compute a minimum vertex cover X of G'

#### Lemma

Let G be a graph on at least 3k + 1 vertices. Then in polynomial time, either we can find a matching of size k + 1 or a Crown Decomposition of G.

- Find a greedy matching M of G, if  $|M| \ge k + 1$  we are done
- Else  $V_M$  be the endpoints of M and  $I = V(G) \setminus V_M$
- Consider the bipartite graph G' between  $V_M$  and I, compute a minimum vertex cover X of G'
- If  $X \cap V_M = \emptyset$ , then  $|I| \le k$ , and hence  $|V(G)| \le 3k$
- Else, M' be a maximum matching in G', and  $M^*$  is subset of edges with exactly one endpoint in X.
- Crown Decomposition:

$$C = V(M^*) \cap I, H = V(M^*) \cap X, R$$

VERTEX COVER kernel on 3k vertices.

- Remove all isolated vertices in  ${\cal G}$
- Find a Crown Decomposition (C, H, R) or a k + 1 matching
- In the former case, the reduced instance is (G C, k |C|)
- In the latter case, a trivial no instance

Matching -> H Saturating H H

(G-CUH, K-|H|)

$$\min \sum_{v \in V(G)} x_v$$
$$x_u + x_v \ge 1 \quad \forall (u, v) \in E(G)$$
$$x_v \ge 0 \quad \forall v \in V(G)$$

Consider a (fractional) optimal solution  $\boldsymbol{x}$ 

$$V_0 = \{v \mid x_v < \frac{1}{2}\}, V_{\frac{1}{2}} = \{v \mid x_v = \frac{1}{2}\}, V_1 = \{v \mid x_v > \frac{1}{2}\}$$

Theorem (Nemhauser-Trotter)

There is an optimum vertex cover S such that  $V_1 \subseteq S \subseteq V_1 \cup V_{\frac{1}{2}}$ 

- Observe:  $V_0$  is an independent set, and has edges only to  $V_1$ .
- Given an optimum vertex cover S', let  $S = (S' \setminus V_0) \cup V_1$ .
- If |S| > |S'| then  $|S' \cap V_0| < |V_1 \setminus S'|$
- Let  $\epsilon = \min_{v \in V_1 \cup V_0} |\frac{1}{2} x_v|$
- Consider the LP solution where,

we decrease  $x_v$  by  $\epsilon$  for  $v \in V_1 \setminus S'$ we increase  $x_v$  by  $\epsilon$  for  $v \in V_0 \cap S'$ 

• It is feasible, and smaller than LP-Opt! Hence, |S| = |S'|



Consider a (fractional) optimal solution  $\boldsymbol{x}$ 

$$V_0 = \{v \mid x_v < \frac{1}{2}\}, V_{\frac{1}{2}} = \{v \mid x_v = \frac{1}{2}\}, V_1 = \{v \mid x_v > \frac{1}{2}\}$$

Theorem (Nemhauser-Trotter) There is an optimum vertex cover S such that  $V_1 \subseteq S \subseteq V_1 \cup V_{\frac{1}{2}}$ 

- Reduction Rule: Delete  $V_0 \cup V_1$ , and reduce k by  $|V_1$ .
- When reduction doesn't apply, every vertex is in  $V_{\frac{1}{2}}$ , i.e. there are 2k Vertices.

Consider a (fractional) optimal solution  $\boldsymbol{x}$ 

$$V_0 = \{v \mid x_v < \frac{1}{2}\}, V_{\frac{1}{2}} = \{v \mid x_v = \frac{1}{2}\}, V_1 = \{v \mid x_v > \frac{1}{2}\}$$

Theorem (Nemhauser-Trotter) There is an optimum vertex cover S such that  $V_1 \subseteq S \subseteq V_1 \cup V_{\frac{1}{2}}$ 

- Reduction Rule: Delete  $V_0 \cup V_1$ , and reduce k by  $|V_1$ .
- When reduction doesn't apply, every vertex is in  $V_{\frac{1}{2}}$ , i.e. there are 2k Vertices.

Vertex Cover has a kernel on 2k vertices

Planar Graphs

- Planar Graphs: Graphs that can be drawn on a plane, without crossing edges.
- Euler's formula: f = |E(G)| |V(G)| + 2

#### Lemma

Let G be a planar graph and A be a subset of vertices. Then G - A has at most 2|A| connected components that see 3 vertices of A.



CONNECTED VERTEX COVER: Find a vertex cover X of size k such that G[X] is connected.

- Remove all isolated vertices, and G must be connected with at least 3 vertices
- Keep at most one degree-1 neighbors of a vertex
- If v is a degree-2 cut vertex, contract it; k drops by 1.

#### Lemma

If v is a degree-2 vertex, but not a cut vertex, then there is an optimum CVC  $\frac{S}{S}$  that excludes v

- If  $v \in S$ , then one of it's two neighbors u, w in S
- Suppose  $v, w \in S$ , and  $u \notin S$ , then consider S' = S v + u
- S' is a connected vertex cover Consider a spanning tree of G[S], v is a leaf there, and all other neighbors of u are present in S.



- If  $v \in S$ , then one of it's two neighbors u, w in S
- Suppose  $v, w \in S$ , and  $u \notin S$ , then consider S' = S v + u
- S' is a connected vertex cover Consider a spanning tree of G[S], v is a leaf there, and all other neighbors of u are present in S.
- Otherwise  $u, v, w \in S$ . Then S v is a vertex cover but perhaps not connected. Let  $X_1, X_2$  be two components of G[S] v.
- Consider a cycle C in G contain u, v, w. There are 3 consecutive vertices in C - v, say  $x_1yx_2$  such that  $x_1 \in X_1, x_2 \in X_2$  and  $y \notin S$
- S v + y is a connected vertex cover



CONNECTED VERTEX COVER: Find a vertex cover X of size k such that G[X] is connected.

- Remove all isolated vertices, and G must be connected with at least 3 vertices
- Keep at most one degree-1 neighbors of a vertex
- If v is a degree-2 cut vertex, contract it; k drops by 1.
- If v is a degree-2 non-cut vertex, split v into two vertices.

CONNECTED VERTEX COVER: Find a vertex cover X of size k such that G[X] is connected.

- Remove all isolated vertices, and G must be connected with at least 3 vertices
- Keep at most one degree-1 neighbors of a vertex
- If v is a degree-2 cut vertex, contract it; k drops by 1.
- If v is a degree-2 non-cut vertex, split v into two vertices.

#### Lemma

When no reduction rules apply, if G has a CVC of size k, then  $|V(G)| \leq 4k$ .

Recall, G - S can have at most 2k vertices that see 3 or more vertices of S. Any other vertex is a degree-2 vertex, which can be reduced, or a degree-1 vertex, of which there are at most k. Hence, at most 4k vertices.

#### Kernelization Lower Bounds

#### Intuition

- k-PATH: Decide if G contains a path of length k.
- Suppose that k-PATH has a kernel of size  $k^3$ .

It can be encoded in  $k^6$  bits.

• Consider a collection of t instances of k-PATH, for  $t = k^7$ .

 $(G_1,k), (G_2,k) \dots (G_t,k)$ 

•  $G = G_1 \cup G_2 \dots G_t$  has a path of length k if and only if one of  $G_i$  does.

i.e. (G, k) is an OR of  $(G_1, k) \dots, (G_t, k)$ 

- Let (H, k') be the kernel for (G, k).
  (H, k) has "lost information" about some of the t instances!
- The Kernelization algorithm must have "solved" these forgotten instances.

#### NP-hard problem in polytime!

#### Distillation

• Let  $L, R \subseteq \Sigma^*$  be two languages. An <u>OR-distillation</u> of L into R is an **algorithm** that given a sequence of strings  $x_1, x_2, \ldots, x_t \in \Sigma^*$  each of maximum length  $\ell$ , runs in polynomial time in the total length of these strings and produces a string  $y \in \Sigma^*$  such that  $|y| = poly(\ell)$  and  $y \in R$  if and only if some  $x_i \in L$ .

• A language L is in the complexity class coNP/poly if there is a Turing machine M and for each integer n, there is a string  $\alpha_n$  of length poly(n), called *advice* such that given any string  $x \in \Sigma^n$ , using  $\alpha_n M$  can decide if  $x \in L$  in *non-deterministic polynomial time*.

#### Theorem

Let  $L, R \subseteq \Sigma^*$  be two languages. If there is an OR-distillation of L into R, then  $L \in coNP/poly$ .

If L were NP-hard, then NP  $\subseteq$  coNP/Poly

# Kernelization + Composition $\implies$ Distillation

• An equivalence relation R on the set  $\Sigma^*$  is called a <u>polynomial</u> equivalence relation if (i) there exists an algorithm that, given strings  $x, y \in \Sigma^*$ , resolves whether  $x \equiv_R y$  in time polynomial in |x| + |y|; and (b) Relation R restricted to the set  $\Sigma^n$  has at most poly(n) equivalence classes.

• Let  $L \subseteq \Sigma^*$  be a language and  $Q \subseteq \Sigma^* \times N$  be a parameterized language. We say that L cross-composes into Q if there exists a polynomial equivalence relation R and an algorithm A that takes as input a sequence of strings  $x_1, x_2, \ldots, x_t \in \Sigma^*$  that are equivalent with respect to R, runs in time polynomial in total length of the strings, and outputs one instance  $(y, k') \in \Sigma^* \times N$  such that: (a)  $k' \leq poly(k+t)$  where k is the max length a string  $x_i$ , and (b)  $(y, k') \in Q$  if and only if some  $x_i \in L$ 

#### Theorem (Main Tool)

If an NP-hard language L cross-composes into a parameterized language Q, then Q does not admit a polynomial compression, unless  $NP \subseteq coNP/poly$ .

# *k*-Ратн

HAM-PATH cross-composes into  $k\-$  PATH

- Equiv Relation R: all malformed instances (in  $\Sigma^*$ ) in one-class, and all well-formed instances in another.
- Given t instances of HAM-PATH  $G_1, G_2, \ldots, G_n$  on *n*-vertices, let (G, k) where  $G = G_1 \cup \ldots G_t$  and k = n be an instance of k-PATH.
- Therefore k-PATH has no polynomial kernel (or compression).



# *k*-Ратн

HAM-PATH cross-composes into  $k\-$  PATH

- Equiv Relation R: all malformed instances (in  $\Sigma^*$ ) in one-class, and all well-formed instances in another.
- Given t instances of HAM-PATH  $G_1, G_2, \ldots, G_n$  on *n*-vertices, let (G, k) where  $G = G_1 \cup \ldots G_t$  and k = n be an instance of k-PATH.
- Therefore k-PATH has no polynomial kernel (or compression).

Similarly we have AND-Distillation and AND-Composition

# Graph Motif

GRAPH MOTIF: Given a graph G, integer k and a coloring c of V(G) using k colors, find a connected subgraph H on k vertices with exactly one vertex of each color.



### Graph Motif

GRAPH MOTIF: Given a graph G, integer k and a coloring c of V(G) using k colors, find a connected subgraph H on k vertices with exactly one vertex of each color.

OR-Composition: t instances with same number of colors k

 $(G_1, k, c_1), (G_2, k, c_2), \dots, (G_t, k, c_t)$ 

Define (G, k, c) via disjoint union

(G, k, c) has a colorful motif H if and only if some  $(G_i, k, c_i)$  does

#### Lemma

GRAPH MOTIF has no polynomial kernel parameterized by the number of colors k.

STEINER TREE par. by tree-size

Polynomial Parameter Transform: A polynomial time reduction that preserves the parameter value up to a polynomial factor, (i.e. k becomes poly(k)).

GRAPH MOTIF to STEINER TREE par. by tree-size

- Given (G, k, c), construct G' by add k new terminal vertices adjacent to each color class. Consider  $(G', T, \ell)$  as the STEINER TREE INSTANCE where  $\ell = 2k$ .
- Note: Tree-size  $\ell$  = number of vertices



STEINER TREE par. by tree-size

Polynomial Parameter Transform: A polynomial time reduction that preserves the parameter value up to a polynomial factor, (i.e. k becomes poly(k)).

GRAPH MOTIF to STEINER TREE par. by tree-size

- Given (G, k, c), construct G' by add k new terminal vertices adjacent to each color class. Consider  $(G', T, \ell)$  as the STEINER TREE INSTANCE where  $\ell = 2k$ .
- Note: Tree-size  $\ell$  = number of vertices

#### Theorem

STEINER TREE parameterized by the tree-size, has no polynomial kernel.

# Thank You.