
Parameterized Algorithms

Lecture 5: Kernelization II
June 05, 2020

Max-Planck Institute for Informatics, Germany.

More Kernelization techniques

Crown Decomposition

Crown Decomposition

A partition of the vertex set of a graph into 3 parts (crown)C,
(head)H and (the rest) R, such that:

C is non-empty and an independent set, with edges to
vertices of H alone.

The bipartite graph between C and H in G contains a
matching of size |H|.

Crown Decomposition

Lemma

Let G be a graph on at least 3k + 1 vertices. Then in polynomial
time, either we can find a matching of size k + 1 or a Crown
Decomposition of G.

Find a greedy matching M of G, if |M | ≥ k + 1 we are done

Else VM be the endpoints of M and I = V (G) \ VM
Consider the bipartite graph G′ between VM and I, compute a
minimum vertex cover X of G′

If X ∩ VM = ∅, then |I| ≤ k, and hence |V (G)| ≤ 3k

Else, M ′ be a maximum matching in G′, and M∗ is subset of
edges with exactly one endpoint in X.

Crown Decomposition:

C = V (M∗) ∩ I, H = V (M∗) ∩X,R

Crown Decomposition

Lemma

Let G be a graph on at least 3k + 1 vertices. Then in polynomial
time, either we can find a matching of size k + 1 or a Crown
Decomposition of G.

Find a greedy matching M of G, if |M | ≥ k + 1 we are done

Else VM be the endpoints of M and I = V (G) \ VM
Consider the bipartite graph G′ between VM and I, compute a
minimum vertex cover X of G′

If X ∩ VM = ∅, then |I| ≤ k, and hence |V (G)| ≤ 3k

Else, M ′ be a maximum matching in G′, and M∗ is subset of
edges with exactly one endpoint in X.

Crown Decomposition:

C = V (M∗) ∩ I, H = V (M∗) ∩X,R

Crown Decomposition

Lemma

Let G be a graph on at least 3k + 1 vertices. Then in polynomial
time, either we can find a matching of size k + 1 or a Crown
Decomposition of G.

Find a greedy matching M of G, if |M | ≥ k + 1 we are done

Else VM be the endpoints of M and I = V (G) \ VM
Consider the bipartite graph G′ between VM and I, compute a
minimum vertex cover X of G′

If X ∩ VM = ∅, then |I| ≤ k, and hence |V (G)| ≤ 3k

Else, M ′ be a maximum matching in G′, and M∗ is subset of
edges with exactly one endpoint in X.

Crown Decomposition:

C = V (M∗) ∩ I, H = V (M∗) ∩X,R

Crown Decomposition

Vertex Cover kernel on 3k vertices.

Remove all isolated vertices in G

Find a Crown Decomposition (C,H,R) or a k + 1 matching

In the former case, the reduced instance is (G− C, k − |C|)
In the latter case, a trivial no instance

Linear Programming

Linear Programming

min
∑

v∈V (G)

xv

xu + xv ≥ 1 ∀(u, v) ∈ E(G)

xv ≥ 0 ∀v ∈ V (G)

Consider a (fractional) optimal solution x

V0 = {v | xv <
1

2
}, V 1

2
= {v | xv =

1

2
}, V1 = {v | xv >

1

2
}

Theorem (Nemhauser-Trotter)

There is an optimum vertex cover S such that V1 ⊆ S ⊆ V1 ∪ V 1
2

Linear Programming

Observe: V0 is an independent set, and has edges only to V1.

Given an optimum vertex cover S′, let S = (S′ \ V0) ∪ V1.

If |S| > |S′| then |S′ ∩ V0| < |V1 \ S′|

Let ε = minv∈V1∪V0 | 12 − xv|

Consider the LP solution where,

we decrease xv by ε for v ∈ V1 \ S′
we increase xv by ε for v ∈ V0 ∩ S′

It is feasible, and smaller than LP-Opt! Hence, |S| = |S′|

Linear Programming

Consider a (fractional) optimal solution x

V0 = {v | xv <
1

2
}, V 1

2
= {v | xv =

1

2
}, V1 = {v | xv >

1

2
}

Theorem (Nemhauser-Trotter)

There is an optimum vertex cover S such that V1 ⊆ S ⊆ V1 ∪ V 1
2

Reduction Rule: Delete V0 ∪ V1, and reduce k by |V1.
When reduction doesn’t apply, every vertex is in V 1

2
, i.e.

there are 2k Vertices.

Vertex Cover has a kernel on 2k vertices

Linear Programming

Consider a (fractional) optimal solution x

V0 = {v | xv <
1

2
}, V 1

2
= {v | xv =

1

2
}, V1 = {v | xv >

1

2
}

Theorem (Nemhauser-Trotter)

There is an optimum vertex cover S such that V1 ⊆ S ⊆ V1 ∪ V 1
2

Reduction Rule: Delete V0 ∪ V1, and reduce k by |V1.
When reduction doesn’t apply, every vertex is in V 1

2
, i.e.

there are 2k Vertices.

Vertex Cover has a kernel on 2k vertices

Planar Graphs

Connected Vertex Cover in Planar Graphs

Planar Graphs: Graphs that can be drawn on a plane,
without crossing edges.

Euler’s formula: f = |E(G)| − |V (G)|+ 2

Lemma

Let G be a planar graph and A be a subset of vertices. Then
G−A has at most 2|A| connected components that see 3 vertices
of A.

Connected Vertex Cover in Planar Graphs

Connected Vertex Cover: Find a vertex cover X of size k such
that G[X] is connected.

Remove all isolated vertices, and G must be connected with at
least 3 vertices

Keep at most one degree-1 neighbors of a vertex

If v is a degree-2 cut vertex, contract it; k drops by 1.

Lemma
If v is a degree-2 vertex, but not a cut vertex, then there is an optimum
CVC S that excludes v

Connected Vertex Cover in Planar Graphs

If v ∈ S, then one of it’s two neighbors u,w in S

Suppose v, w ∈ S, and u /∈ S, then consider S′ = S − v + u

S′ is a connected vertex cover
Consider a spanning tree of G[S], v is a leaf there, and all other
neighbors of u are present in S.

Otherwise u, v, w ∈ S. Then S − v is a vertex cover but perhaps
not connected. Let X1, X2 be two components of G[S]− v.

Consider a cycle C in G contain u, v, w.
There are 3 consecutive vertices in C − v, say x1yx2 such that
x1 ∈ X1, x2 ∈ X2 and y /∈ S

S − v + y is a connected vertex cover

Connected Vertex Cover in Planar Graphs

If v ∈ S, then one of it’s two neighbors u,w in S

Suppose v, w ∈ S, and u /∈ S, then consider S′ = S − v + u

S′ is a connected vertex cover
Consider a spanning tree of G[S], v is a leaf there, and all other
neighbors of u are present in S.

Otherwise u, v, w ∈ S. Then S − v is a vertex cover but perhaps
not connected. Let X1, X2 be two components of G[S]− v.

Consider a cycle C in G contain u, v, w.
There are 3 consecutive vertices in C − v, say x1yx2 such that
x1 ∈ X1, x2 ∈ X2 and y /∈ S

S − v + y is a connected vertex cover

Connected Vertex Cover in Planar Graphs

Connected Vertex Cover: Find a vertex cover X of size k such
that G[X] is connected.

Remove all isolated vertices, and G must be connected with at
least 3 vertices

Keep at most one degree-1 neighbors of a vertex

If v is a degree-2 cut vertex, contract it; k drops by 1.

If v is a degree-2 non-cut vertex, split v into two vertices.

Lemma
When no reduction rules apply, if G has a CVC of size k, then
|V (G)| ≤ 4k.

Recall, G− S can have at most 2k vertices that see 3 or more vertices
of S. Any other vertex is a degree-2 vertex, which can be reduced, or a
degree-1 vertex, of which there are at most k. Hence, at most 4k
vertices.

Connected Vertex Cover in Planar Graphs

Connected Vertex Cover: Find a vertex cover X of size k such
that G[X] is connected.

Remove all isolated vertices, and G must be connected with at
least 3 vertices

Keep at most one degree-1 neighbors of a vertex

If v is a degree-2 cut vertex, contract it; k drops by 1.

If v is a degree-2 non-cut vertex, split v into two vertices.

Lemma
When no reduction rules apply, if G has a CVC of size k, then
|V (G)| ≤ 4k.

Recall, G− S can have at most 2k vertices that see 3 or more vertices
of S. Any other vertex is a degree-2 vertex, which can be reduced, or a
degree-1 vertex, of which there are at most k. Hence, at most 4k
vertices.

Kernelization Lower Bounds

Intuition

k-Path: Decide if G contains a path of length k.

Suppose that k-Path has a kernel of size k3.

It can be encoded in k6 bits.

Consider a collection of t instances of k-Path, for t = k7.

(G1, k), (G2, k) . . . (Gt, k)

G = G1 ∪G2 . . . Gt has a path of length k if and only if one
of Gi does.

i.e. (G, k) is an OR of (G1, k) . . . , (Gt, k)

Let (H, k′) be the kernel for (G, k).

(H, k) has “lost information” about some of the t instances!

The Kernelization algorithm must have “solved” these
forgotten instances.

NP-hard problem in polytime!

Distillation

◦ Let L,R ⊆ Σ∗ be two languages. An OR-distillation of L into R is
an algorithm that given a sequence of strings x1, x2, . . . , xt ∈ Σ∗ each
of maximum length `, runs in polynomial time in the total length of
these strings and produces a string y ∈ Σ∗ such that |y| = poly(`) and
y ∈ R if and only if some xi ∈ L.

◦ A language L is in the complexity class coNP/poly if there is a
Turing machine M and for each integer n, there is a string αn of length
poly(n), called advice such that given any string x ∈ Σn, using αn M
can decide if x ∈ L in non-deterministic polynomial time.

Theorem
Let L,R ⊆ Σ∗ be two languages. If there is an OR-distillation of L into
R, then L ∈ coNP/poly.

If L were NP-hard, then NP ⊆ coNP/Poly

Kernelization + Composition =⇒ Distillation

◦ An equivalence relation R on the set Σ∗ is called a polynomial
equivalence relation if (i) there exists an algorithm that, given strings
x, y ∈ Σ∗, resolves whether x ≡R y in time polynomial in |x|+ |y|; and
(b) Relation R restricted to the set Σn has at most poly(n) equivalence
classes.

◦ Let L ⊆ Σ∗ be a language and Q ⊆ Σ∗ ×N be a parameterized
language. We say that L cross-composes into Q if there exists a
polynomial equivalence relation R and an algorithm A that takes as
input a sequence of strings x1, x2, . . . , xt ∈ Σ∗ that are equivalent with
respect to R, runs in time polynomial in total length of the strings, and
outputs one instance (y, k′) ∈ Σ∗ ×N such that:
(a) k′ ≤ poly(k + t) where k is the max length a string xi, and
(b) (y, k′) ∈ Q if and only if some xi ∈ L

Theorem (Main Tool)

If an NP-hard language L cross-composes into a parameterized
language Q, then Q does not admit a polynomial compression, unless
NP ⊆ coNP/ poly.

k-Path

Ham-Path cross-composes into k-Path

Equiv Relation R: all malformed instances (in Σ∗) in
one-class, and all well-formed instances in another.

Given t instances of Ham-Path G1, G2, . . . , Gn on
n-vertices, let (G, k) where G = G1 ∪ . . . Gt and k = n be an
instance of k-Path.

Therefore k-Path has no polynomial kernel (or
compression).

Similarly we have AND-Distillation and AND-Composition

k-Path

Ham-Path cross-composes into k-Path

Equiv Relation R: all malformed instances (in Σ∗) in
one-class, and all well-formed instances in another.

Given t instances of Ham-Path G1, G2, . . . , Gn on
n-vertices, let (G, k) where G = G1 ∪ . . . Gt and k = n be an
instance of k-Path.

Therefore k-Path has no polynomial kernel (or
compression).

Similarly we have AND-Distillation and AND-Composition

Graph Motif

Graph Motif: Given a graph G, integer k and a coloring c of
V (G) using k colors, find a connected subgraph H on k vertices
with exactly one vertex of each color.

OR-Composition: t instances with same number of colors k

(G1, k, c1), (G2, k, c2), . . . , (Gt, k, ct)

Define (G, k, c) via disjoint union

(G, k, c) has a colorful motif H if and only if some (Gi, k, ci) does

Lemma

Graph Motif has no polynomial kernel parameterized by the
number of colors k.

Graph Motif

Graph Motif: Given a graph G, integer k and a coloring c of
V (G) using k colors, find a connected subgraph H on k vertices
with exactly one vertex of each color.

OR-Composition: t instances with same number of colors k

(G1, k, c1), (G2, k, c2), . . . , (Gt, k, ct)

Define (G, k, c) via disjoint union

(G, k, c) has a colorful motif H if and only if some (Gi, k, ci) does

Lemma

Graph Motif has no polynomial kernel parameterized by the
number of colors k.

Steiner Tree par. by tree-size

Polynomial Parameter Transform: A polynomial time reduction
that preserves the parameter value upto a polynomial factor,
(i.e. k becomes poly(k)).

Graph Motif to Steiner Tree par. by tree-size

Given (G, k, c), construct G′ by add k new terminal vertices
adjacent to each color class. Consider (G′, T, `) as the
Steiner Tree instance where ` = 2k.

Note: Tree-size ` = number of vertices

Theorem

Steiner Tree parameterized by the tree-size, has no polynomial
kernel.

Steiner Tree par. by tree-size

Polynomial Parameter Transform: A polynomial time reduction
that preserves the parameter value upto a polynomial factor,
(i.e. k becomes poly(k)).

Graph Motif to Steiner Tree par. by tree-size

Given (G, k, c), construct G′ by add k new terminal vertices
adjacent to each color class. Consider (G′, T, `) as the
Steiner Tree instance where ` = 2k.

Note: Tree-size ` = number of vertices

Theorem

Steiner Tree parameterized by the tree-size, has no polynomial
kernel.

Thank You.

