Parameterized Algorithms

Lecture 6: Algebraic Methods
June 12, 2020

Max-Planck Institute for Informatics, Germany.

Parameterized Algorithms via Set Systems,
Polynomials etc.

Inclusion-Exclusion Principle

Inclusion-Exclusion

Theorem

Let Ay, Ao, ..., A be subsets of a universe U, and let

| ﬂ Al = > ()X njex Byl

X C[k]

Unweighted Steiner Tree

Unweighted STEINER TREE: Given a graph G in n vertices, a
subset K of k terminals, find a subgraph(tree) on at most ¢
edges that connects all the terminals.!

Theorem

Unweighted STEINER TREE can be solved in 2F - poly(n) time.

Using Inclusion-Exclusion

1¢ > k, and we can always guess the smallest value of ¢ for which a
Steiner Tree exists.

Unweighted Steiner Tree

Intuition:

@ We solve the Counting Problem.

If the number of /-edge subtrees of G containing K is non-zero,
then a STEINER TREE on ¢ edges exists.

@ Counting trees is hard, so we count an easier object called
Branching Walks.

@ We count Branching Walks via Inclusion-Exclusion.

Unweighted Steiner Tree

Ordered Rooted Tree : A tree H where vertices have been labeled
by {0,2,3...,|V(H)| — 1} via a DFS. Alternatively, every internal
node of H has an ordering among it’s children.

Let r € V(H) denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree
in G. It is a pair B = (H, h) where H is an ordered rooted tree, and
h:V(H)— V(G) is a map such that if (z,y) € E(H) then
(h(), h(y) € B(G).

Let V(B) = {h(z) | x € V(H)}, and s = h(r) be the root of B.

0
1 b
2
/3 7 9
4 s

Unweighted Steiner Tree

Ordered Rooted Tree : A tree H where vertices have been labeled
by {0,2,3...,|V(H)| — 1} via a DFS. Alternatively, every internal
node of H has an ordering among it’s children.

Let r € V(H) denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree
in G. It is a pair B = (H, h) where H is an ordered rooted tree, and
h:V(H)— V(G) is a map such that if (z,y) € E(H) then
(h(x),h(y) € E(G).

Let V(B) = {h(z) | x € V(H)}, and s = h(r) be the root of B.

Lemma

Fig a terminal s € K as the root. G contains a Steiner Tree on [edges
if and only if there is a Branching Walk B = (H, h) from s such that
K CV(B), and |[E(H)| < ¢.

Call ¢ = |E(H)| the length of the Branching Walk.

Unweighted Steiner Tree
Counting Branching Walks from s.
@ Universe U = all Branching walks of length ¢ from s
@ Foreachve K, A, ={BeU|veV(B)}
Clearly |, cx Av| # 0 if and only if there is a Steiner Tree.
e Sufficient: Given X C K compute |, .y By| where B, = U \ A,.

(N,ex Bo is the set of all Branching Walks that avoid X
@ They lie in the graph G — X,
so enough to count all Branching Walks from s in the graph

G — X of length ¢.

Lemma

|(Nyex Bol can be computed in polynomial time.

Unweighted Steiner Tree

Computing | (), x Bol:
o Let G’ = G — X. It contains all Branching Walks avoiding X.

For uw € V(G') and j < ¢ let b;(u) denote the number of
Branching Walks from « of length j in G.

We want the value by(s) = |[),cx Bo|, assuming that s € V(G").

Dynamic Programming;:

bj(u)—{l if j =0

S weNer (@) S ramg 1 b (Wi () otherwise

Unweighted Steiner Tree

COUNTING STEINER TREES

e Once we have the numbers |,y B,| for every X C K, we
can compute the number of Steiner Trees via the
Inclusion-Exclusion formula

| ﬂ Ayl = Z (_1)‘X|| Nuex Bul

veK XCK

e Running Time: 2% - poly(n).

This approach can be applied to many other problems such as
HAMILTONIAN PATH, CHROMATIC NUMBER etc.

Multivariate Polynomials: FPT Algorithms

Multivariate Polynomials

Finite Field: A tuple (F,+,*) capturing arithmetic in a finite
set.

Characteristic 2: Foranya € F a+a = 0.
Note that |F| >> 2 is possible.

Polynomials over F: coefficients a_ € F
C C: C
P(zy,z9,...,2,) = E ey o en X1 TS o TN
(c1,¢2,..5cn)E(NU{O})™

degree of P = maxX(c, ;.. c,)|ac, ey, en#0 > ¢; where

Identically Zero Polynomial: P = 0 means
P(xy =by,x9 =ba,...,x, =b,) =0 for all choices in F"

Lemma (Schwartz-Zippel)

Let P be a polynomial over a field F of degree d, and let S C F. Pick
b1,ba, ..., b, randomly from S. If P # 0, then P(by,ba,...,b,) =0
with probability at most d/|S|.

k-Path

k-PATH: Given a graph GG and an integer k, decide if G contains
a path of length k.

Theorem
There is a randomized FPT algorithm for k-PATH running in
time 2F - poly(n).

k-Path

k-PATH: Given a graph GG and an integer k, decide if G contains
a path of length k.

Theorem

There is a randomized FPT algorithm for k-PATH running in
time 2F - poly(n).

Intuition
@ Encode k-walks as monomials of a polynomial

@ Ensure the walks “cancel out” (using characteristic 2), hence the
polynomial encodes only k-paths

@ The polynomial is non-zero means there is a k-path. Test using
Schwartz-Zippel Lemma.

Path to Polynomials

@ variables x =< x1,...,x,, > for edges,
y=<1w,...,Yyn > for vertices.

@ Path polynomial (hard to eval)

P(:r,y) = Z (H x’Ui-,’U«H—I)) (H y'Ui)

k-Path REG (v;,v;41)ER viER

@ Walk polynomial (easy to eval, but not very useful)

P(xvy) = Z (H xviavi+1) ’ (H y’Ui)
k-Walk WeG (v;,vit1)EW v, EW
@ Labeled Walk Polynomial.
o vertex variable set vy = {y,; | v € V(G),i € [k]}
o For a bijective function ¢ : [k] — [k] and a k-Walk W we
have the monomial

mon(W, £) = (H(’Lli7vz+1>€W xvu’b‘i+1) ’ (HWEW yvuf(i))

P(z,y) = Z Z mon(W, £)

Walks W bijection £

Path to polynomials

Lemma
Over a field of characteristic 2,

P(z,y) = Z Z mon(R, ()

Paths R bijection £

o Any k-Walk W corresponds to a number of labeled walks,
one for each bijection ¢ : [k] — [k].

o For a k-Path R, every bijection ¢ gives a distinct monomial.

e However for a walk W, for every bijection ¢ there is another
bijection ¢’ that produces the same monomial, and they
cancel out.

e For a walk W where a vertex v repeats at pos a and b
o Given ¢ : [k] — [k] define

£(b) i=a
0@y =L a) i=b
£(7) otherwise

Path to polynomials

Lemma
QOver a field of characteristic 2,

P(x,y) = Z Z mon(R, /)

Paths R bijection £

Corollary

The polynomial P(x,y) is non-zero over fields of characteristic 2
if and only if G contains a k-path.

o We test if P = 0 using the Schwartz-Zippel Lemma

@ We randomly pick an assignment of the variables from F
and then evaluate P.

o Evaluating P will require an algorithm based on
Inclusion-Exclusion.

Evaluating P(x,y)

Theorem (Weighted Inclusion Exclusion)

Let Ay, Ao, ..., A be subsets of a universe U, and let
B;=U\A4;. Let w: U — R be a weight function Then

w(() 4) = Y (-1)Flw(njexB;)

i€[k] XCIK]

Evaluating P(x,y)

Fix a walk W
@ Universe U = all functions [k| — [k]
e for ¢ € U, define w(l) = mon(W, ()
For each i € [k], A; ={(€ U | £71(i) # 0}
Then w(Miep Ai) = Ppijection ¢ MW, £)
w(Niepy Ai) = 2 xcp w(Njex B)),
o and)y w(NjexBj) = X xcim) 2oun)\ x mon(W,),
Therefore,

P(z,y) = Z Z mon(W, £)

Walks W bijection ¢

= Z Z Z mon(W, £)

Walks W XC[k] £[k]—[k]\X

Evaluating P(x,y)

z,y) = Z Z Z mon(W, ()

XC[k] Walks W £:[k]—[k]\X

o fixing X C [k] and let Y = [k] \ X we obtain a polynomial

Z Z mon(W, ¢)

Walks W £:]

@ To evaluate Py (x,y) we use Dynamic Programming.

@ For d < k, and vertex v

Tlv,d] = Z Z (H xe)(H v; € Wyvi,f(i))

Walk W:v=vivz...vq £:[d]>Y eeW

We want the value T'[v, k] for all vertices v € V(G).

Evaluating P(x,y)

Diey Yoi 2o(vw)eE(@) Tow - T w,d —1]

Once we have computed this table,

Py(z,y)= Y Tlv,k

veV(Q)
Then over all Y C [k]

P(z,y) = Y Pr(z,y)

YCk]

d=1

otherwise

Summary: k-Path via Polynomials

Theorem

There is a randomized FPT algorithm for k-PATH running in
time 2F - poly(n).

Thank you

