Parameterized Algorithms

Lecture 6: Algebraic Methods June 12, 2020

Max-Planck Institute for Informatics, Germany.

Parameterized Algorithms via Set Systems, Polynomials etc.

Inclusion-Exclusion Principle

Inclusion-Exclusion

Theorem

Let A_1, A_2, \ldots, A_k be subsets of a universe U, and let $B_i = U \setminus A_i$. Then

$$
\left|\bigcap_{i\in[k]} A_i\right| = \sum_{X\subseteq[k]} (-1)^{|X|} |\cap_{j\in X} B_j|
$$

Unweighted STEINER TREE: Given a graph G in n vertices, a subset K of k terminals, find a subgraph(tree) on at most ℓ edges that connects all the terminals.¹

Theorem

Unweighted STEINER TREE can be solved in $2^k \cdot poly(n)$ time.

Using Inclusion-Exclusion

 $\frac{1}{\ell} \geq k$, and we can always guess the smallest value of ℓ for which a Steiner Tree exists.

Intuition:

We solve the Counting Problem.

If the number of ℓ -edge subtrees of G containing K is non-zero, then a STEINER TREE on ℓ edges exists.

- Counting trees is hard, so we count an easier object called Branching Walks.
- We count Branching Walks via Inclusion-Exclusion.

Ordered Rooted Tree : A tree H where vertices have been labeled by $\{0, 2, 3, \ldots, |V(H)| - 1\}$ via a DFS. Alternatively, every internal node of H has an ordering among it's children.

Let $r \in V(H)$ denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree in G. It is a pair $B=(H,h)$ where H is an ordered rooted tree, and $h: V(H) \to V(G)$ is a map such that if $(x, y) \in E(H)$ then $(h(x), h(y) \in E(G)).$ Let $V(B) = \{h(x) | x \in V(H)\}\$, and $s = h(r)$ be the root of B.

Ordered Rooted Tree : A tree H where vertices have been labeled by $\{0, 2, 3, \ldots, |V(H)| - 1\}$ via a DFS. Alternatively, every internal node of H has an ordering among it's children.

Let $r \in V(H)$ denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree in G. It is a pair $B = (H, h)$ where H is an ordered rooted tree, and $h: V(H) \to V(G)$ is a map such that if $(x, y) \in E(H)$ then $(h(x), h(y) \in E(G)).$ Let $V(B) = \{h(x) | x \in V(H)\}\$, and $s = h(r)$ be the root of B.

Lemma

Fix a terminal $s \in K$ as the root. G contains a Steiner Tree on ℓ edges if and only if there is a Branching Walk $B = (H, h)$ from s such that $K \subseteq V(B)$, and $|E(H)| \leq \ell$.

Call $\ell = |E(H)|$ the length of the Branching Walk.

Counting Branching Walks from s.

- Universe $U =$ all Branching walks of length ℓ from s
- For each $v \in K$, $A_v = \{B \in U \mid v \in V(B)\}\$
- Clearly $|\bigcap_{v\in K} A_v| \neq 0$ if and only if there is a Steiner Tree.
- Sufficient: Given $X \subseteq K$ compute $\left| \bigcap_{v \in X} B_v \right|$ where $B_v = U \setminus A_v$.

 $\bigcap_{v\in X} B_v$ is the set of all Branching Walks that avoid X

• They lie in the graph $G - X$,

so enough to count all Branching Walks from s in the graph $G - X$ of length ℓ .

Lemma

 $|\bigcap_{v\in X} B_v|$ can be computed in polynomial time.

- Computing $\bigcap_{v\in X} B_v$:
	- Let $G' = G X$. It contains all Branching Walks avoiding X.
	- For $u \in V(G')$ and $j \leq \ell$ let $b_j(u)$ denote the number of Branching Walks from u of length j in G' .
	- We want the value $b_{\ell}(s) = |\bigcap_{v \in X} B_v|$, assuming that $s \in V(G')$.
	- Dynamic Programming:

$$
b_j(u) = \begin{cases} 1 & \text{if } j = 0\\ \sum_{w \in N_{G'}(a)} \sum_{j_1 + j_2 = j - 1} b_{j_1}(u) b_{j_2}(w) & \text{otherwise} \end{cases}
$$

Counting Steiner Trees

Once we have the numbers $\left| \bigcap_{v \in X} B_v \right|$ for every $X \subseteq K$, we can compute the number of Steiner Trees via the Inclusion-Exclusion formula

$$
|\bigcap_{v \in K} A_v| = \sum_{X \subseteq K} (-1)^{|X|} |\bigcap_{u \in X} B_u|
$$

Running Time: $2^k \cdot poly(n)$.

This approach can be applied to many other problems such as Hamiltonian Path, Chromatic Number etc.

Multivariate Polynomials: FPT Algorithms

Multivariate Polynomials

- Finite Field: A tuple $(\mathbb{F}, +, \star)$ capturing arithmetic in a finite set.
- Characteristic 2: For any $a \in \mathbb{F}$ $a + a = 0$. Note that $|\mathbb{F}| >> 2$ is possible.
- Polynomials over \mathbb{F} : coefficients $a \in \mathbb{F}$

$$
P(x_1, x_2,..., x_n) = \sum_{(c_1, c_2,..., c_n) \in (\mathbb{N} \cup \{0\})^n} a_{c_1, c_2,..., c_n} x_1^{c_1} x_2^{c_2} ... x_n^{c_n}
$$

degree of $P = \max_{(c_1, c_2,...,c_n)|a_{c_1,c_2,...,c_n} \neq 0} \sum c_i$ where

• Identically Zero Polynomial: $P \equiv 0$ means $P(x_1 = b_1, x_2 = b_2, ..., x_n = b_n) = 0$ for all choices in \mathbb{F}^n

Lemma (Schwartz-Zippel)

Let P be a polynomial over a field $\mathbb F$ of degree d, and let $S \subseteq \mathbb F$. Pick b_1, b_2, \ldots, b_n randomly from S. If $P \not\equiv 0$, then $P(b_1, b_2, \ldots, b_n) = 0$ with probability at most $d/|S|$.

k-Path

 k -Path: Given a graph G and an integer k, decide if G contains a path of length k .

Theorem

There is a randomized FPT algorithm for k -PATH running in time $2^k \cdot poly(n)$.

k-Path

 k -Path: Given a graph G and an integer k, decide if G contains a path of length k .

Theorem

There is a randomized FPT algorithm for k -PATH running in time $2^k \cdot poly(n)$.

Intuition

- \bullet Encode k-walks as monomials of a polynomial
- Ensure the walks "cancel out" (using characteristic 2), hence the polynomial encodes only k-paths
- \bullet The polynomial is non-zero means there is a k-path. Test using Schwartz-Zippel Lemma.

Path to Polynomials

• variables $x = \langle x_1, \ldots, x_m \rangle$ for edges, $y = \langle y_1, \ldots, y_n \rangle$ for vertices.

• Path polynomial (hard to eval)

$$
P(x, y) = \sum_{k \text{-Path } R \in G} \left(\prod_{(v_i, v_{i+1}) \in R} x_{v_i, v_{i+1}} \right) \cdot \left(\prod_{v_i \in R} y_{v_i} \right)
$$

Walk polynomial (easy to eval, but not very useful)

$$
P(x, y) = \sum_{k\text{-Walk } W \in G} (\prod_{(v_i, v_{i+1}) \in W} x_{v_i, v_{i+1}}) \cdot (\prod_{v_i \in W} y_{v_i})
$$

Labeled Walk Polynomial.

- vertex variable set $y = \{y_{v,i} \mid v \in V(G), i \in [k]\}\$
- For a bijective function $\ell : [k] \to [k]$ and a k-Walk W we have the monomial

 $mon(W, \ell) = (\prod_{(v_i, v_{i+1}) \in W} x_{v_i, v_{i+1}}) \cdot (\prod_{v_i \in W} y_{v_i, \ell(i)})$

$$
P(x,y) = \sum_{\text{Walks }W} \sum_{\text{bijection }\ell} \text{mon}(W,\ell)
$$

Path to polynomials

Lemma

Over a field of characteristic 2,

$$
P(x,y) \equiv \sum_{Paths\ R} \sum_{bijection\ \ell} \ mon(R,\ell)
$$

- Any k-Walk W corresponds to a number of labeled walks, one for each bijection $\ell : [k] \to [k]$.
- For a k-Path R, every bijection ℓ gives a distinct monomial.
- However for a walk W, for every bijection ℓ there is another bijection ℓ' that produces the same monomial, and they cancel out.
	- For a walk W where a vertex v repeats at pos a and b
	- Given $\ell : [k] \to [k]$ define

$$
\ell'(i) = \begin{cases} \ell(b) & i = a \\ \ell(a) & i = b \\ \ell(i) & \text{otherwise} \end{cases}
$$

Path to polynomials

Lemma

Over a field of characteristic 2,

$$
P(x,y) \equiv \sum_{Paths\ R} \sum_{bijection\ \ell} \ mon(R,\ell)
$$

Corollary

The polynomial $P(x, y)$ is non-zero over fields of characteristic 2 if and only if G contains a k -path.

- We test if $P \equiv 0$ using the Schwartz-Zippel Lemma
- \bullet We randomly pick an assignment of the variables from $\mathbb F$ and then evaluate P.
- Evaluating P will require an algorithm based on Inclusion-Exclusion.

Theorem (Weighted Inclusion Exclusion)

Let A_1, A_2, \ldots, A_k be subsets of a universe U, and let $B_i = U \setminus A_i$. Let $w: U \to \mathbb{R}$ be a weight function Then

$$
w(\bigcap_{i\in[k]} A_i) = \sum_{X\subseteq[k]} (-1)^{|X|} w(\bigcap_{j\in X} B_j)
$$

Fix a walk W

- Universe $U = \text{all functions } [k] \rightarrow [k]$
- for $\ell \in U$, define $w(\ell) = mon(W, \ell)$
- For each $i \in [k]$, $A_i = \{ \ell \in U \mid \ell^{-1}(i) \neq \emptyset \}$
- Then $w(\bigcap_{i\in[k]} A_i) = \sum_{\text{bijection } \ell} \mod{W, \ell}$
- $w(\bigcap_{i\in[k]} A_i) = \sum_{X\subseteq[k]} w(\bigcap_{j\in X} B_j),$
- and $\sum_{X \subseteq [k]} w(\cap_{j \in X} B_j) = \sum_{X \subseteq [k]} \sum_{\ell: [k] \to [k] \setminus X} mon(W, \ell),$ Therefore,

$$
P(x, y) = \sum_{\text{Walks } W} \sum_{\text{bijection } \ell} \text{mon}(W, \ell)
$$

$$
= \sum_{\text{Walks } W} \sum_{X \subseteq [k]} \sum_{\ell: [k] \to [k] \setminus X} \text{mon}(W, \ell)
$$

$$
P(x,y) = \sum_{X \subseteq [k]} \sum_{\text{Walks } W} \sum_{\ell : [k] \to [k] \setminus X} \text{mon}(W, \ell)
$$

• fixing $X \subseteq [k]$ and let $Y = [k] \setminus X$ we obtain a polynomial

$$
P_Y(x, y) = \sum_{\text{Walks } W} \sum_{\ell : [k] \to Y} \text{mon}(W, \ell)
$$

- To evaluate $P_Y(x, y)$ we use Dynamic Programming.
- For $d \leq k$, and vertex v

$$
T[v,d] = \sum_{\text{Walk } W: v = v_1 v_2 \dots v_d} \sum_{\ell:[d] \to Y} (\prod_{e \in W} x_e) (\prod_{e \in W} v_i \in W y_{v_i, \ell(i)})
$$

We want the value $T[v, k]$ for all vertices $v \in V(G)$.

$$
T[v,d] = \begin{cases} \sum_{i \in Y} y_{v,i} & d = 1\\ \sum_{i \in Y} y_{v,i} \sum_{(v,w) \in E(G)} x_{v,w} \cdot T[w,d-1] & \text{otherwise} \end{cases}
$$

Once we have computed this table,

$$
P_Y(x,y) = \sum_{v \in V(G)} T[v,k]
$$

Then over all $Y \subseteq [k]$

$$
P(x,y) = \sum_{Y \subseteq [k]} P_Y(x,y)
$$

Summary: k-Path via Polynomials

Theorem

There is a randomized FPT algorithm for k -PATH running in time $2^k \cdot poly(n)$.

Thank you