
Parameterized Algorithms

Lecture 6: Algebraic Methods
June 12, 2020

Max-Planck Institute for Informatics, Germany.

Parameterized Algorithms via Set Systems,
Polynomials etc.

Inclusion-Exclusion Principle

Inclusion-Exclusion

Theorem

Let A1, A2, . . . , Ak be subsets of a universe U , and let
Bi = U \Ai. Then

|
⋂
i∈[k]

Ai| =
∑
X⊆[k]

(−1)|X|| ∩j∈X Bj |

Unweighted Steiner Tree

Unweighted Steiner Tree: Given a graph G in n vertices, a
subset K of k terminals, find a subgraph(tree) on at most `
edges that connects all the terminals.1

Theorem

Unweighted Steiner Tree can be solved in 2k · poly(n) time.

Using Inclusion-Exclusion

1` ≥ k, and we can always guess the smallest value of ` for which a
Steiner Tree exists.

Unweighted Steiner Tree

Intuition:

We solve the Counting Problem.

If the number of `-edge subtrees of G containing K is non-zero,
then a Steiner Tree on ` edges exists.

Counting trees is hard, so we count an easier object called
Branching Walks.

We count Branching Walks via Inclusion-Exclusion.

Unweighted Steiner Tree

Ordered Rooted Tree : A tree H where vertices have been labeled
by {0, 2, 3 . . . , |V (H)| − 1} via a DFS. Alternatively, every internal
node of H has an ordering among it’s children.

Let r ∈ V (H) denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree
in G. It is a pair B = (H,h) where H is an ordered rooted tree, and
h : V (H)→ V (G) is a map such that if (x, y) ∈ E(H) then
(h(x), h(y) ∈ E(G).

Let V (B) = {h(x) | x ∈ V (H)}, and s = h(r) be the root of B.

Lemma
Fix a terminal s ∈ K as the root. G contains a Steiner Tree on ` edges
if and only if there is a Branching Walk B = (H,h) from s such that
K ⊆ V (B), and |E(H)| ≤ `.

Call ` = |E(H)| the length of the Branching Walk.

Unweighted Steiner Tree

Ordered Rooted Tree : A tree H where vertices have been labeled
by {0, 2, 3 . . . , |V (H)| − 1} via a DFS. Alternatively, every internal
node of H has an ordering among it’s children.

Let r ∈ V (H) denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree
in G. It is a pair B = (H,h) where H is an ordered rooted tree, and
h : V (H)→ V (G) is a map such that if (x, y) ∈ E(H) then
(h(x), h(y) ∈ E(G).

Let V (B) = {h(x) | x ∈ V (H)}, and s = h(r) be the root of B.

Lemma
Fix a terminal s ∈ K as the root. G contains a Steiner Tree on ` edges
if and only if there is a Branching Walk B = (H,h) from s such that
K ⊆ V (B), and |E(H)| ≤ `.

Call ` = |E(H)| the length of the Branching Walk.

Unweighted Steiner Tree

Counting Branching Walks from s.

Universe U = all Branching walks of length ` from s

For each v ∈ K, Av = {B ∈ U | v ∈ V (B)}

Clearly |
⋂

v∈K Av| 6= 0 if and only if there is a Steiner Tree.

Sufficient: Given X ⊆ K compute |
⋂

v∈X Bv| where Bv = U \Av.⋂
v∈X Bv is the set of all Branching Walks that avoid X

They lie in the graph G−X,

so enough to count all Branching Walks from s in the graph
G−X of length `.

Lemma

|
⋂

v∈X Bv| can be computed in polynomial time.

Unweighted Steiner Tree

Computing |
⋂

v∈X Bv|:
Let G′ = G−X. It contains all Branching Walks avoiding X.

For u ∈ V (G′) and j ≤ ` let bj(u) denote the number of
Branching Walks from u of length j in G′.

We want the value b`(s) = |
⋂

v∈X Bv|, assuming that s ∈ V (G′).

Dynamic Programming:

bj(u) =

{
1 if j = 0∑

w∈NG′ (a)

∑
j1+j2=j−1 bj1(u)bj2(w) otherwise

Unweighted Steiner Tree

Counting Steiner Trees

Once we have the numbers |
⋂

v∈X Bv| for every X ⊆ K, we
can compute the number of Steiner Trees via the
Inclusion-Exclusion formula

|
⋂
v∈K

Av| =
∑
X⊆K

(−1)|X|| ∩u∈X Bu|

Running Time: 2k · poly(n).

This approach can be applied to many other problems such as
Hamiltonian Path, Chromatic Number etc.

Multivariate Polynomials: FPT Algorithms

Multivariate Polynomials

Finite Field: A tuple (F,+, ?) capturing arithmetic in a finite
set.

Characteristic 2: For any a ∈ F a + a = 0.
Note that |F| >> 2 is possible.

Polynomials over F: coefficients a... ∈ F

P (x1, x2, . . . , xn) =
∑

(c1,c2,...,cn)∈(N∪{0})n
ac1,c2,...,cnx

c1
1 xc2

2 . . . xcn
n

degree of P = max(c1,c2,...,cn)|ac1,c2,...,cn 6=0

∑
ci where

Identically Zero Polynomial: P ≡ 0 means
P (x1 = b1, x2 = b2, . . . , xn = bn) = 0 for all choices in Fn

Lemma (Schwartz-Zippel)

Let P be a polynomial over a field F of degree d, and let S ⊆ F. Pick
b1, b2, . . . , bn randomly from S. If P 6≡ 0, then P (b1, b2, . . . , bn) = 0
with probability at most d/|S|.

k-Path

k-Path: Given a graph G and an integer k, decide if G contains
a path of length k.

Theorem

There is a randomized FPT algorithm for k-Path running in
time 2k · poly(n).

Intuition

Encode k-walks as monomials of a polynomial

Ensure the walks “cancel out” (using characteristic 2), hence the
polynomial encodes only k-paths

The polynomial is non-zero means there is a k-path. Test using
Schwartz-Zippel Lemma.

k-Path

k-Path: Given a graph G and an integer k, decide if G contains
a path of length k.

Theorem

There is a randomized FPT algorithm for k-Path running in
time 2k · poly(n).

Intuition

Encode k-walks as monomials of a polynomial

Ensure the walks “cancel out” (using characteristic 2), hence the
polynomial encodes only k-paths

The polynomial is non-zero means there is a k-path. Test using
Schwartz-Zippel Lemma.

Path to Polynomials

variables x =< x1, . . . , xm > for edges,
y =< y1, . . . , yn > for vertices.

Path polynomial (hard to eval)

P (x, y) =
∑

k-Path R∈G

(
∏

(vi,vi+1)∈R

xvi,vi+1
) · (

∏
vi∈R

yvi)

Walk polynomial (easy to eval, but not very useful)

P (x, y) =
∑

k-Walk W∈G

(
∏

(vi,vi+1)∈W

xvi,vi+1) · (
∏

vi∈W
yvi)

Labeled Walk Polynomial.

vertex variable set y = {yv,i | v ∈ V (G), i ∈ [k]}
For a bijective function ` : [k]→ [k] and a k-Walk W we
have the monomial
mon(W, `) = (

∏
(vi,vi+1)∈W xvi,vi+1

) · (
∏

vi∈W yvi,`(i))

P (x, y) =
∑

Walks W

∑
bijection `

mon(W, `)

Path to polynomials

Lemma

Over a field of characteristic 2,

P (x, y) ≡
∑

Paths R

∑
bijection `

mon(R, `)

Any k-Walk W corresponds to a number of labeled walks,
one for each bijection ` : [k]→ [k].

For a k-Path R, every bijection ` gives a distinct monomial.
However for a walk W , for every bijection ` there is another
bijection `′ that produces the same monomial, and they
cancel out.

For a walk W where a vertex v repeats at pos a and b
Given ` : [k]→ [k] define

`′(i) =

`(b) i = a

`(a) i = b

`(i) otherwise

Path to polynomials

Lemma

Over a field of characteristic 2,

P (x, y) ≡
∑

Paths R

∑
bijection `

mon(R, `)

Corollary

The polynomial P (x, y) is non-zero over fields of characteristic 2
if and only if G contains a k-path.

We test if P ≡ 0 using the Schwartz-Zippel Lemma

We randomly pick an assignment of the variables from F
and then evaluate P .

Evaluating P will require an algorithm based on
Inclusion-Exclusion.

Evaluating P (x, y)

Theorem (Weighted Inclusion Exclusion)

Let A1, A2, . . . , Ak be subsets of a universe U , and let
Bi = U \Ai. Let w : U → R be a weight function Then

w(
⋂
i∈[k]

Ai) =
∑
X⊆[k]

(−1)|X|w(∩j∈XBj)

Evaluating P (x, y)

Fix a walk W

Universe U = all functions [k]→ [k]

for ` ∈ U , define w(`) = mon(W, `)

For each i ∈ [k], Ai = {` ∈ U | `−1(i) 6= ∅}
Then w(∩i∈[k]Ai) =

∑
bijection ` mon(W, `)

w(
⋂

i∈[k]Ai) =
∑

X⊆[k]w(∩j∈XBj),

and
∑

X⊆[k]w(∩j∈XBj) =
∑

X⊆[k]
∑

`:[k]→[k]\X mon(W, `),

Therefore,

P (x, y) =
∑

Walks W

∑
bijection `

mon(W, `)

=
∑

Walks W

∑
X⊆[k]

∑
`:[k]→[k]\X

mon(W, `)

Evaluating P (x, y)

P (x, y) =
∑
X⊆[k]

∑
Walks W

∑
`:[k]→[k]\X

mon(W, `)

fixing X ⊆ [k] and let Y = [k] \X we obtain a polynomial

PY (x, y) =
∑

Walks W

∑
`:[k]→Y

mon(W, `)

To evaluate PY (x, y) we use Dynamic Programming.

For d ≤ k, and vertex v

T [v, d] =
∑

Walk W :v=v1v2...vd

∑
`:[d]→Y

(
∏
e∈W

xe)(
∏

vi ∈Wyvi,`(i))

We want the value T [v, k] for all vertices v ∈ V (G).

Evaluating P (x, y)

T [v, d] =

{∑
i∈Y yv,i d = 1∑
i∈Y yv,i

∑
(v,w)∈E(G) xv,w · T [w, d− 1] otherwise

Once we have computed this table,

PY (x, y) =
∑

v∈V (G)

T [v, k]

Then over all Y ⊆ [k]

P (x, y) =
∑
Y⊆[k]

PY (x, y)

Summary: k-Path via Polynomials

Theorem

There is a randomized FPT algorithm for k-Path running in
time 2k · poly(n).

Thank you

