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Treewidth

Treewidth: a notion of “treelike” graphs.
Some combinatorial properties.
Algorithmic results.

Algorithms on graphs of bounded treewidth.
Applications for other problems.
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The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.
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Input: A tree with weights on the
vertices.
Task: Find an independent set of
maximum weight.
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Solving the Party Problem

Dynamic programming paradigm:
We solve a large number of subproblems that depend on each other. The answer is a
single subproblem.

Subproblems:
Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv

B[v ]: max. weight of an independent set in Tv

that does not contain v

Goal: determine A[r ] for the root r .
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Solving the Party Problem

Subproblems:
Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv

B[v ]: max. weight of an independent set in Tv

that does not contain v

Recurrence:
Assume v1, . . . , vk are the children of v . Use the recurrence relations

B[v ] =
∑k

i=1 A[vi ]

A[v ] = max{B[v ] , w(v) +
∑k

i=1 B[vi ]}

The values A[v ] and B[v ] can be calculated in a bottom-up order
(the leaves are trivial).
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Treewidth
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Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad

2 Removing a bounded number of vertices makes it acyclic.

good good bad bad

3 Bounded-size parts connected in a tree-like way.

bad bad good good
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h
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Each bag is a separator.
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.
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Treewidth
Fact: treewidth = 1 ⇐⇒ graph is a forest

aa

b

d

c

f ge

h

aa

b

d
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f ge

h

a,b a,c

b,d b,e c,g

e,h

⇒
c,f

Exercise: A cycle cannot have a tree decomposition of width 1.
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Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications

9



Finding tree decompositions

Hardness:

Theorem [Arnborg, Corneil, Proskurowski 1987]

It is NP-hard to determine the treewidth of a graph (given a graph G and an integer w ,
decide if the treewidth of G is at most w).

Fixed-parameter tractability:

Theorem [Bodlaender 1996]

There is a 2O(w3) · n time algorithm that finds a tree decomposition of width w (if
exists).

Consequence:
If we want an FPT algorithm parameterized by treewidth w of the input graph, then we
can assume that a tree decomposition of width w is available.
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Finding tree decompositions — approximately

Sometimes we can get better dependence on treewidth using approximation.

FPT approximation:

Theorem [Robertson and Seymour]

There is a O(33w · w · n2) time algorithm that finds a tree decomposition of width
4w + 1, if the treewidth of the graph is at most w .

Polynomial-time approximation:

Theorem [Feige, Hajiaghayi, Lee 2008]

There is a polynomial-time algorithm that finds a tree decomposition of width
O(w
√

logw), if the treewidth of the graph is at most w .
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Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max Independent Set can be
solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v ], B[v ] for each vertex of the
graph, we compute 2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S ]:
the max. weight of an independent set I ⊆ Vx with I∩Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S ] if all the values are known for the children of x?
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Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

Forget: 1 child y with Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w
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Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

Forget: 1 child y with Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Theorem
A tree decomposition of width w and n nodes can be turned into a nice tree
decomposition of width w and O(wn) nodes in time O(w2n).
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Weighted Max Independent Set
and nice tree decompositions

Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

m[x ,S ] =


M[y ,S ] if v 6∈ S ,

M[y ,S \ {v}] + w(v) if v ∈ S but v has no
neighbor in S ,

−∞ if S contains v and its neighbor.

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w
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Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x , S ] = max{M[y ,S ],M[y , S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x , S ] = M[y1,S ] + M[y2, S ]− w(S)

Forget JoinIntroduceLeaf
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Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x , S ] = max{M[y ,S ],M[y , S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x , S ] = M[y1,S ] + M[y2, S ]− w(S)

There are at most 2w+1 · n subproblems m[x ,S ] and each subproblem can be solved in
wO(1) time

(assuming the children are already solved).
⇓

Running time is O(2w · wO(1) · n).
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3-Coloring and tree decompositions
Theorem
Given a tree decomposition of width w , 3-Coloring can be solved in
O(3w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx → {1, 2, 3}, we
compute the Boolean value E [x , c], which is true if and
only if c can be extended to a proper 3-coloring of Vx .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
. . . . . .

How to determine E [x , c] if all the values are known for
the children of x?
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3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!

Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then E [x , c] = E [y , c ′], where c ′ is c
restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w
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3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then E [x , c] = E [y , c ′], where c ′ is c
restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

There are at most 3w+1 · n subproblems E [x , c] and each subproblem can be solved in
wO(1) time (assuming the children are already solved).

⇒ Running time is O(3w · wO(1) · n).

⇒ 3-Coloring is FPT parameterized by treewidth.
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Vertex coloring

More generally:

Theorem
Given a tree decomposition of width w , c-Coloring can be solved in time cw · nO(1).

Exercise: Every graph of treewidth at most w can be colored with w + 1 colors.

Theorem
Given a tree decomposition of width w , Vertex Coloring can be solved in time
O∗(ww ).

⇒ Vertex Coloring is FPT parameterized by treewidth.
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Dominating Set and treewidth

Dominating Set: Given G and k , find a set S of k vertices such
that every vertex of G is in S or has a neighbor in S .

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .
What would be the subproblems for Dominating Set at node x?

18
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Dominating Set and treewidth

Dominating Set: Given G and k , find a set S of k vertices such
that every vertex of G is in S or has a neighbor in S .

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .
What would be the subproblems for Dominating Set at node x?

Second try:

M[x ,S1, S2]: size of the smallest set D ⊆ Vx such that
Every vertex in Vx \ Bx is dominated by D.
D ∩ Bx = S1.
D dominates every vertex of S2.

⇒ 3w+1 subproblems at each node x .

g , hb, e, fa, b, c

d , f , gb, c , f

c , d , f
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Dominating Set and treewidth

M[x ,S1, S2]: size of the smallest set D ⊆ Vx such that
Every vertex in Vx \ Bx is dominated by D.
S ∩ Bx = S1.
D dominates every vertex of S2.

How can we solve subproblem M[x , S1, S2] when x is a join node?

Consider 3|S2| cases: each vertex of S2 is dominated from the left child, right child,
or both ⇒ O(9w · n) time.
Consider 5|Bx | subproblems: in the solution/not dominated/dominated from
left/dominated from right/dominated from both ⇒ O(5w · n) time.
Renaming “not dominated” to “don’t care” can improve to O(4w · n) time.
Fast subset convolution: O(3w · n) time.
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Hamiltonian cycle and treewidth
Theorem
Given a tree decomposition of width w , Hamiltonian cycle can be solved in time
wO(w) · n.
Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .
If H is a Hamiltonian cycle, then the subgraph H[Vx ] is a
set of paths with endpoints in Bx .

What are the important properties of H[Vx ] “seen from
outside”?

The subsets B0
x , B

1
x , B

2
x of Bx having degree 0, 1,

and 2.
The matching M of B1

x .

x

Vx

No. of subproblems (B0
x ,B

1
x ,B

2
x ,M) for node x : at most 3w · ww .

For each subproblem, we have to determine if there is a set of paths with this pattern.
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Other problems

There are other problems where the natural DP needs to keep track of wO(w)

possibilties of a partition.

Theorem
Given a tree decomposition of width w , there are wO(w) · n time algorithms for

Hamiltonian cycle

Steiner Tree

Cycle Packing

. . .

21



Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if . . .
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Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if G has a cycle.
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Courcelle’s Theorem

Courcelle’s Theorem
If a graph property can be expressed in EMSO, then for every fixed w ≥ 1, there is a
linear-time algorithm for testing this property on graphs having treewidth at most w .

If we can express a property in EMSO, then we immediately get that testing this
property is FPT parameterized by the treewidth w of the input graph.

Note: The constant depending on w can be very large (double, triple exponential etc.),
therefore a direct dynamic programming algorithm can be more efficient.
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Using Courcelle’s Theorem

Can we express 3-Coloring and Hamiltonian Cycle in EMSO?

3-Coloring
∃C1,C2,C3 ⊆ V

(
∀v ∈ V (v ∈ C1 ∨ v ∈ C2 ∨ v ∈ C3)

)
∧
(
∀u, v ∈ V adj(u, v)→ (¬(u ∈

C1 ∧ v ∈ C1) ∧ ¬(u ∈ C2 ∧ v ∈ C2) ∧ ¬(u ∈ C3 ∧ v ∈ C3))
)

Hamiltonian Cycle
∃H ⊆ E

(
spanning(H) ∧ (∀v ∈ V degree2(H, v))

)
degree2(H, v) := ∃e1, e2 ∈ H

(
(e1 6= e2) ∧ inc(e1, v) ∧ inc(e2, v) ∧ (∀e3 ∈ H inc(e3, v)→ (e1 =

e3 ∨ e2 = e3))
)

spanning(H) := ∀Z ⊆ V
(
((∃v ∈ V : v ∈ Z ) ∧ (∃v ∈ V : v 6∈ Z ))→ (∃e ∈ H∃x ∈ V∃y ∈ V :

(x ∈ Z ) ∧ (y 6∈ Z ) ∧ inc(e, x) ∧ inc(e, y))
)
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Using Courcelle’s Theorem

Three ways of using Courcelle’s Theorem:

1 The problem can be described by a single formula (e.g, 3-Coloring,
Hamiltonian Cycle).

⇒ Problem can be solved in time f (w) · n for graphs of treewidth at most w , i.e.,
FPT parameterized by treewidth.

2 The problem can be described by a formula for each value of the parameter k .

Example: For each k , having a cycle of length exactly k can be expressed as

∃v1, . . . , vk ∈ V ((v1 6= v2) ∧ (v1 6= v3) ∧ . . . (vk−1 6= vk))
∧adj(vk−1, vk) ∧ adj(vk , v1)).

⇒ Problem can be solved in time f (k ,w) · n for graphs of treewidth w , i.e., FPT
parameterized with combined parameter k and treewidth w .

3 Optimization version: find largest set X such that. . .
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Subgraph Isomorphism

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph of G isomorphic to H.
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Subgraph Isomorphism

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph of G isomorphic to H.

For each H, we can construct a formula φH that expresses “G has a subgraph isomorphic
to H” (similarly to the k-cycle on the previous slide).

⇒ By Courcelle’s Theorem, Subgraph Isomorphism can be solved in time f (H,w) ·n
if G has treewidth at most w .
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Subgraph Isomorphism

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph of G isomorphic to H.

Since there is only a finite number of simple graphs on k vertices, Subgraph Isomor-
phism can be solved in time f (k ,w) · n if H has k vertices and G has treewidth at most
w .

Theorem
Subgraph Isomorphism is FPT parameterized by combined parameter k := |V (H)|
and the treewidth w of G .
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MSO on words

Theorem [Büchi, Elgot, Trakhtenbrot 1960]

If a language L ⊆ Σ∗ can be defined by an MSO formula φ using the relation <, then L
is regular.

Example: a∗bc∗ is defined by

∃x : Pb(x) ∧ (∀y : (y < x)→ Pa(y)) ∧ (∀y : (x < y)→ Pc(y)).
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MSO on words

Theorem [Büchi, Elgot, Trakhtenbrot 1960]

If a language L ⊆ Σ∗ can be defined by an MSO formula φ using the relation <, then L
is regular.

Example: a∗bc∗ is defined by

∃x : Pb(x) ∧ (∀y : (y < x)→ Pa(y)) ∧ (∀y : (x < y)→ Pc(y)).

We prove a more general statement for formulas φ(w ,X1, . . . ,Xk) and words over Σ ∪
{0, 1}k , where Xi is a subset of positions of w .

Induction over the structure of φ:
FSM for ¬φ(w), given FSM for φ(w).
FSM for φ1(w) ∧ φ2(w), given FSMs for φ1(w) and φ2(w).
FSM for ∃Xφ(w ,X ), given FSM for φ(w ,X ).
etc. 28



MSO on words

Theorem [Büchi, Elgot, Trakhtenbrot 1960]

If a language L ⊆ Σ∗ can be defined by an MSO formula φ using the relation <, then L
is regular.

Proving Courcelle’s Theorem:
Generalize from words to trees.
A width-w tree decomposition can be interpreted as a tree over an alphabet of size
f (w).
Formula ⇒ tree automata.

28



Running times

We have seen:
Independent Set: 2w

Vertex Cover: 2w

Dominating Set: 3w

3-Coloring: 3w

Vertex Coloring: 2O(w logw)

Hamiltonian Cycle: 2O(w logw)

Can we improve on any of these running times?

Hamiltonian Cycle can be improved to 2O(w), but lower bounds show that the
other algorithms are essentially optimal.

29



Running times

We have seen:
Independent Set: 2w

Vertex Cover: 2w

Dominating Set: 3w

3-Coloring: 3w

Vertex Coloring: 2O(w logw)

Hamiltonian Cycle: 2O(w logw)

Can we improve on any of these running times?

Hamiltonian Cycle can be improved to 2O(w), but lower bounds show that the
other algorithms are essentially optimal.

29



Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

30
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The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

x̄1 ∨ x2 ∨ x̄3

formula is satisfiable ⇔ there is an independent set of size n + 2m
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Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4
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Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(n) algorithm for Independent Set on an n-vertex
graph.
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Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(w) · nO(1) algorithm for Independent Set on graphs
of treewidth w .

30



Lower bounds for treewidth

Similarly, assuming ETH, there is no 2o(w) · nO(1) time algorithm for
Independent Set

Dominating Set

Odd Cycle Transversal

Hamiltonian Cycle

. . .

It is possible to show that there is no 2o(w logw) · nO(1) time algorithms for Vertex
Coloring, Cycle Packing, and for some other problems.

But can we show that there is no (2− ε)w · nO(1) algorithm for Indpendent Set?

ETH seems to be too weak for this:
2w vs.

√
2
w
is just a polynomial difference!
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ETH and SETH

Let sd = inf{c : d-SAT has a 2cn algorithm}
Let s∞ = limd→∞ sd .

ETH: s3 > 0 SETH: s∞ = 1.

In other words:

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time (2− ε)n.

Consequence of SETH

There is no (2− ε)n ·mO(1) time algorithm for SAT (with clauses of aribtrary length).
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Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time (2− ε)n.
The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4
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Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time (2− ε)n.
The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

x̄1 ∨ x2 ∨ x̄3

Treewidth of the constructed graph is at most 2n + 3.
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Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time (2− ε)n.

3SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth 2n + 3
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d-SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth 2n + d
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Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time (2− ε)n.

d-SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth 2n + d

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming SETH, there is no (2− ε)w/2 · nO(1) algorithm for Independent Set for
any ε > 0.
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Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time (2− ε)n.

d-SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth 2n + d

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming SETH, there is no (1.41− ε)w · nO(1) algorithm for Independent Set for
any ε > 0.

33



Better lower bound

We need a reduction of the following form for every d :

d-SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth n + Od(1)

This would show:

Theorem
Assuming SETH, there is no (2− ε)w · nO(1) algorithm for Independent Set for any
ε > 0.

34



Better lower bound
d-Sat with n variables and m clauses ⇒ n paths of 2m vertices.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

35



Better lower bound
d-Sat with n variables and m clauses ⇒ n paths of 2m vertices.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

false

true
false

true

true

35



Better lower bound
d-Sat with n variables and m clauses ⇒ n paths of 2m vertices.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

false

true
false

true

true

x1

x2x̄3

(x1 ∨ x2 ∨ x̄3)

Independent set of size nm + m ⇐⇒ formula is satisfiable
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Better lower bound
d-Sat with n variables and m clauses ⇒ n paths of 2m vertices.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

false

true
false

true

true

x1

x2x̄3

(x1 ∨ x2 ∨ x̄3)

Not difficult to show: treewidth is at most n + d
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A problem

A path may start as “true” and switch to “false”.
Simple solution: repeat the instance n + 1 times.

x1
x2
x3
. . .
xn

C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2

1 2 n + 1

By the Pigeonhole Principle, there is a repetition where no switch occurs.
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Lower bound for Independent Set

We have shown: Reduction from n-variable d-SAT to Independent Set in a
graph with treewidth w = n + d .

(2− ε)w · nO(1) algorithm for Independent Set
⇓

(2− ε)n · nO(1) algorithm for d-SAT

As this is true for any d , having such an algorithm for Independent Set would
violate SETH.

Theorem
Assuming SETH, there is no (2− ε)w · nO(1) algorithm for Independent Set for any
ε > 0.
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Algorithms — overview

Algorithms exploit the fact that a subtree communicates with the rest of the graph
via a single bag.
Key point: defining the subproblems.
Courcelle’s Theorem makes this process automatic for many problems.
Lower bounds based on SETH can show the optimality of algorithms.
There are notable problems that are easy for trees, but hard for bounded-treewidth
graphs.
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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