
Treewidth: Vol. 2

Dániel Marx

Lecture #8
June 26, 2020

1

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

2

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

b, e, f

b, c, f

a, b, c

c, d , f

d , f , g

g , h

2

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , ha, b, c

b, c, f

c, d , f

d , f , g

b, e, f

2

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , ha, b, c

b, c, f

c, d , f

d , f , g

b, e, f

2

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

Each bag is a separator.

2

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

2

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max Independent Set can be
solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each vertex of the
graph, we compute 2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set I ⊆ Vx with I∩Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S] if all the values are known for the children of x?

3

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max Independent Set can be
solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each vertex of the
graph, we compute 2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set I ⊆ Vx with I∩Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S] if all the values are known for the children of x?
3

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if G has a cycle.

4

Courcelle’s Theorem

Courcelle’s Theorem
There exists an algorithm that, given a width-w tree decomposition of an n-vertex
graph G and an EMSO formula φ, decides whether G satisfies φ in time f (w , |φ|) · n.

If we can express a property in EMSO, then we immediately get that testing this
property is FPT parameterized by the treewidth w of the input graph.

⇒ The following problem are FPT parameterized by treewidth:
c-Coloring

Hamiltonian Cycle

Partition into Triangles

. . .

5

Subgraph Isomorphism

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph of G isomorphic to H.

6

Subgraph Isomorphism

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph of G isomorphic to H.

For each H, we can construct a formula φH that expresses “G has a subgraph isomorphic
to H”.

⇒ By Courcelle’s Theorem, Subgraph Isomorphism can be solved in time f (H,w) ·n
if G has treewidth at most w .

Theorem
Subgraph Isomorphism is FPT parameterized by combined parameter k := |V (H)|
and the treewidth w of G .

6

Finding tree decompositions

Fixed-parameter tractability:

Theorem [Bodlaender 1996]

There is a 2O(w3) · n time algorithm that finds a tree decomposition of width w (if
exists).

Sometimes we can get better dependence on treewidth using approximation.

FPT approximation:

Theorem
There is a O(33w · w · n2) time algorithm that finds a tree decomposition of width
4w + 1, if the treewidth of the graph is at most w .

7

Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications

But first a simple application. . .

8

Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications

But first a simple application. . .

8

Depth-first search (DFS)

Theorem
Finding a cycle of length at least k in a graph is FPT parameterized by k .

Let us start a depth-first search from an arbitrary vertex v . There are two types of
edges: tree edges and back edges.

If there is a back edge whose endpoints differ by at least
k − 1 levels ⇒ there is a cycle of length at least k .

Otherwise, the graph has treewidth at most k − 2 and we
can solve the problem by applying Courcelle’s Theorem.

In the second case, a tree decomposition can be easily found: the decomposition has
the same structure as the DFS spanning tree and each bag contains the vertex and its
k − 2 ancestors.

9

Depth-first search (DFS)

Theorem
Finding a cycle of length at least k in a graph is FPT parameterized by k .

Let us start a depth-first search from an arbitrary vertex v . There are two types of
edges: tree edges and back edges.

If there is a back edge whose endpoints differ by at least
k − 1 levels ⇒ there is a cycle of length at least k .

Otherwise, the graph has treewidth at most k − 2 and we
can solve the problem by applying Courcelle’s Theorem.

In the second case, a tree decomposition can be easily found: the decomposition has
the same structure as the DFS spanning tree and each bag contains the vertex and its
k − 2 ancestors.

9

Depth-first search (DFS)

Theorem
Finding a cycle of length at least k in a graph is FPT parameterized by k .

Let us start a depth-first search from an arbitrary vertex v . There are two types of
edges: tree edges and back edges.

If there is a back edge whose endpoints differ by at least
k − 1 levels ⇒ there is a cycle of length at least k .

Otherwise, the graph has treewidth at most k − 2 and we
can solve the problem by applying Courcelle’s Theorem.

In the second case, a tree decomposition can be easily found: the decomposition has
the same structure as the DFS spanning tree and each bag contains the vertex and its
k − 2 ancestors.

9

Depth-first search (DFS)

Theorem
Finding a cycle of length at least k in a graph is FPT parameterized by k .

Let us start a depth-first search from an arbitrary vertex v . There are two types of
edges: tree edges and back edges.

If there is a back edge whose endpoints differ by at least
k − 1 levels ⇒ there is a cycle of length at least k .
Otherwise, the graph has treewidth at most k − 2 and we
can solve the problem by applying Courcelle’s Theorem.

In the second case, a tree decomposition can be easily found: the decomposition has
the same structure as the DFS spanning tree and each bag contains the vertex and its
k − 2 ancestors.

9

Minor
An operation similar to taking subgraphs:

Definition
Graph H is a minor of G (H ≤ G) if H can be obtained from G by deleting edges,
deleting vertices, and contracting edges.

deleting uv

vu w

u v

contracting uv

10

A classical result

Theorem [Kuratowski 1930]

A graph G is planar if and only if G does not contain a subdivision of K5 or K3,3.

Theorem [Wagner 1937]

A graph G is planar if and only if G does not contain K5 or K3,3 as minor.

K5 K3,3

11

A classical result

Theorem [Kuratowski 1930]

A graph G is planar if and only if G does not contain a subdivision of K5 or K3,3.

Theorem [Wagner 1937]

A graph G is planar if and only if G does not contain K5 or K3,3 as minor.

K5 K3,3

11

Graph Minors Theory

Neil Robertson Paul Seymour

Theory of graph minors developed in the
monumental series

Graph Minors I–XXIII.
J. Combin. Theory, Ser. B
1983–2012

Structure theory of graphs excluding minors (and much
more).
Galactic combinatorial bounds and running times.
Important early influence for parameterized algorithms.

12

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .

Fact: The treewidth of the k-clique is k − 1.

Fact: For every k ≥ 2, the treewidth of the k × k
grid is exactly k .

13

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .

Fact: The treewidth of the k-clique is k − 1.

Fact: For every k ≥ 2, the treewidth of the k × k
grid is exactly k .

13

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .

Fact: The treewidth of the k-clique is k − 1.

Fact: For every k ≥ 2, the treewidth of the k × k
grid is exactly k .

13

The Cops and Robber game
Game: k cops try to capture a robber in the graph.

In each step, (a subset of) the cops can move from vertex to vertex arbitrarily with
helicopters.
The robber moves infinitely fast on the edges, cannot move through the cops
staying on the ground, and sees where the cops will land.

14

The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.

15

The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.

15

The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.

15

The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.

15

The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.

15

The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.

15

The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.

15

The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.

15

The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.

15

The Cops and Robber game

Theorem [Seymour and Thomas 1993]

k + 1 cops can win the game ⇐⇒ the treewidth of the graph is at
most k .

16

The Cops and Robber game

Theorem [Seymour and Thomas 1993]

k + 1 cops can win the game ⇐⇒ the treewidth of the graph is at
most k .

Consequence 1: Algorithms

The winner of the game can be determined in time nO(k) using standard techniques
(there are at most nk positions for the cops)

⇓
For every fixed k , it can be checked in polynomial time if treewidth is at most k .

(But f (k) · nO(1) algorithms are also known with different techniques!)

16

The Cops and Robber game

Theorem [Seymour and Thomas 1993]

k + 1 cops can win the game ⇐⇒ the treewidth of the graph is at
most k .

Consequence 2: Lower bounds

Exercise 1:
Show that the treewidth of the k × k grid is at least k − 1.
(E.g., robber can win against k − 1 cops.)

Exercise 2:
Show that the treewidth of the k × k grid is at least k .
(E.g., robber can win against k cops.)

16

Excluded Grid Theorem

Excluded Grid Theorem
If the treewidth of G is Ω(k9 log k), then G has a k × k grid minor.

17

Excluded Grid Theorem

Excluded Grid Theorem
If the treewidth of G is Ω(k9 log k), then G has a k × k grid minor.

A large grid minor is a “witness” that treewidth is large, but the relation is approximate:

No k × k grid minor =⇒ tree decomposition
of width O(k9 log k)

tree decomposition
of width < k

=⇒ no k × k grid minor

17

Excluded Grid Theorem

Excluded Grid Theorem
If the treewidth of G is Ω(k9 log k), then G has a k × k grid minor.

Observation: Every planar graph is the minor of a sufficiently large grid.

Consequence
If H is planar, then every H-minor free graph has treewidth at most f (H).

17

Planar Excluded Grid Theorem
For planar graphs, we get linear instead of exponential dependence:

Theorem
Every planar graph with treewidth at least 5k has a k × k grid minor.

No k × k grid minor =⇒ tree decomposition
of width O(k)

tree decomposition
of width < k

=⇒ no k × k grid minor

18

Planar Excluded Grid Theorem
For planar graphs, we get linear instead of exponential dependence:

Theorem
Every planar graph with treewidth at least 5k has a k × k grid minor.

Theorem
An n-vertex planar graph has treewidth O(

√
n).

18

Outerplanar graphs

Definition
A planar graph is outerplanar if it has a planar embedding where every vertex is on the
infinite face.

Fact
Every outerplanar graph has treewidth at most 2.

19

k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively removing the vertices on
the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

1 1 1

1
2

2

1

2

3

3

2

3

3

3

3

2

2

2

32

2

2

1

Fact
Every k-outerplanar graph has treewidth at most 3k + 1.

20

k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively removing the vertices on
the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

1 1 1

1
2

2

1

2

3

3

2

3

3

3

3

2

2

2

32

2

2

1

Fact
Every k-outerplanar graph has treewidth at most 3k + 1.

20

k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively removing the vertices on
the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

2

2

2 3

2

2

2

3

3

3

3

2

3

3

2

2

2

Fact
Every k-outerplanar graph has treewidth at most 3k + 1.

20

k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively removing the vertices on
the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

2

2

2

3

3

2

3

3

3

3

2

2

2

32

2

2

Fact
Every k-outerplanar graph has treewidth at most 3k + 1.

20

k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively removing the vertices on
the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

3

33

3

3

3

3

Fact
Every k-outerplanar graph has treewidth at most 3k + 1.

20

Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications

The shifting technique
Bidimensionality

21

Approximation schemes

Definition
A polynomial-time approximation scheme (PTAS) for a problem P is an algorithm
that takes an instance of P and a rational number ε > 0,

always finds a (1 + ε)-approximate solution,
the running time is polynomial in n for every fixed ε > 0.

Typical running times: 21/ε · n, n1/ε, (n/ε)2, n1/ε2 .

Some classical problems that have a PTAS:
Independent Set for planar graphs
TSP in the Euclidean plane
Steiner Tree in planar graphs
Knapsack

22

Approximation schemes

Definition
A polynomial-time approximation scheme (PTAS) for a problem P is an algorithm
that takes an instance of P and a rational number ε > 0,

always finds a (1 + ε)-approximate solution,
the running time is polynomial in n for every fixed ε > 0.

Typical running times: 21/ε · n, n1/ε, (n/ε)2, n1/ε2 .

Some classical problems that have a PTAS:
Independent Set for planar graphs
TSP in the Euclidean plane
Steiner Tree in planar graphs
Knapsack

22

Baker’s shifting strategy for PTAS
Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar graphs.

Let D := 1/ε. For a fixed 0 ≤ s < D, delete every layer Li with i = s (mod D)

The resulting graph is D-outerplanar, hence it has treewidth at most
3D + 1 = O(1/ε).
Using the 2O(tw) · n time algorithm for Independent Set, the problem on the
D-outerplanar graph can be solved in time 2O(1/ε) · n.

23

Baker’s shifting strategy for PTAS
Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar graphs.

Let D := 1/ε. For a fixed 0 ≤ s < D, delete every layer Li with i = s (mod D)

The resulting graph is D-outerplanar, hence it has treewidth at most
3D + 1 = O(1/ε).
Using the 2O(tw) · n time algorithm for Independent Set, the problem on the
D-outerplanar graph can be solved in time 2O(1/ε) · n.

23

Baker’s shifting strategy for PTAS
Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar graphs.

Let D := 1/ε. For a fixed 0 ≤ s < D, delete every layer Li with i = s (mod D)

The resulting graph is D-outerplanar, hence it has treewidth at most
3D + 1 = O(1/ε).
Using the 2O(tw) · n time algorithm for Independent Set, the problem on the
D-outerplanar graph can be solved in time 2O(1/ε) · n.

23

Baker’s shifting strategy for PTAS
Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar graphs.

Let D := 1/ε. For a fixed 0 ≤ s < D, delete every layer Li with i = s (mod D)

The resulting graph is D-outerplanar, hence it has treewidth at most
3D + 1 = O(1/ε).
Using the 2O(tw) · n time algorithm for Independent Set, the problem on the
D-outerplanar graph can be solved in time 2O(1/ε) · n.

23

Baker’s shifting strategy for PTAS
Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar graphs.

Let D := 1/ε. For a fixed 0 ≤ s < D, delete every layer Li with i = s (mod D)

The resulting graph is D-outerplanar, hence it has treewidth at most
3D + 1 = O(1/ε).
Using the 2O(tw) · n time algorithm for Independent Set, the problem on the
D-outerplanar graph can be solved in time 2O(1/ε) · n.

23

Baker’s shifting strategy for PTAS
Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar graphs.

Let D := 1/ε. For a fixed 0 ≤ s < D, delete every layer Li with i = s (mod D)

The resulting graph is D-outerplanar, hence it has treewidth at most
3D + 1 = O(1/ε).
Using the 2O(tw) · n time algorithm for Independent Set, the problem on the
D-outerplanar graph can be solved in time 2O(1/ε) · n.

23

Baker’s shifting strategy for PTAS
Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar graphs.

We do this for every 0 ≤ s < D:
for at least one value of s, we delete

at most 1/D = ε fraction of the solution

⇓

We get a (1 + ε)-approximate solution.
23

Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

24

Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s (mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
Using the f (k, tw) · n time algorithm for Subgraph Isomorphism, the problem
can be solved in time f (k , 3k + 1) · n.

24

Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s (mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
Using the f (k, tw) · n time algorithm for Subgraph Isomorphism, the problem
can be solved in time f (k , 3k + 1) · n.

24

Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s (mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
Using the f (k, tw) · n time algorithm for Subgraph Isomorphism, the problem
can be solved in time f (k , 3k + 1) · n.

24

Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s (mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
Using the f (k, tw) · n time algorithm for Subgraph Isomorphism, the problem
can be solved in time f (k , 3k + 1) · n.

24

Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

For a fixed 0 ≤ s < k + 1, delete every layer Li with i = s (mod k + 1)

The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
Using the f (k, tw) · n time algorithm for Subgraph Isomorphism, the problem
can be solved in time f (k , 3k + 1) · n.

24

Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

We do this for every 0 ≤ s < k + 1:
for at least one value of s, we do not delete

any of the k vertices of the solution

⇓

We find a copy of H in G if there is one. 24

Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

We do this for every 0 ≤ s < k + 1:
for at least one value of s, we do not delete

any of the k vertices of the solution

⇓

We find a copy of H in G if there is one. 24

Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

We do this for every 0 ≤ s < k + 1:
for at least one value of s, we do not delete

any of the k vertices of the solution

⇓

We find a copy of H in G if there is one. 24

Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

We do this for every 0 ≤ s < k + 1:
for at least one value of s, we do not delete

any of the k vertices of the solution

⇓

We find a copy of H in G if there is one. 24

Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

Theorem
Subgraph Isomorphism for planar graphs is FPT parameterized by k := |V (H)|.

24

Baker’s shifting strategy for FPT

The technique is very general, works for many problems on planar graphs:
Independent Set
Vertex Cover
Dominating Set
k-Path
. . .

More generally: First-Order Logic problems.
But for some of these problems, much better techniques are known (see the
following slides).

25

Square root phenomenon

Most NP-hard problems (e.g., 3-Coloring, Independent Set, Hamiltonian
Cycle, Steiner Tree, etc.) remain NP-hard on planar graphs.1

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

Example: A planar n-vertex graph has treewidth 2O(
√
n) ⇒ 3-Coloring can be

solved in time 2O(
√
n) in planar graphs.

1Notable exception: Max Cut is in P for planar graphs.
26

Square root phenomenon

Most NP-hard problems (e.g., 3-Coloring, Independent Set, Hamiltonian
Cycle, Steiner Tree, etc.) remain NP-hard on planar graphs.1

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

Example: A planar n-vertex graph has treewidth 2O(
√
n) ⇒ 3-Coloring can be

solved in time 2O(
√
n) in planar graphs.

1Notable exception: Max Cut is in P for planar graphs.
26

Vertex Cover

Theorem

Vertex Cover can be solved in time 2O(
√
k) · nO(1) in planar graphs.

We need two facts:
Removing an edge, removing a vertex, contracting an edge cannot increase the
vertex cover number.
Vertex Cover can be solved in time 2w · nO(1) if a tree decomposition of width
w is given.

27

Vertex Cover
Observation: If the treewidth of a planar graph G is at least 5

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ Vertex cover size is at least k in the grid.
⇒ Vertex cover size is at least k in G .

We use this observation to solve Vertex Cover on planar graphs:

28

Vertex Cover
Observation: If the treewidth of a planar graph G is at least 5

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ Vertex cover size is at least k in the grid.
⇒ Vertex cover size is at least k in G .

We use this observation to solve Vertex Cover on planar graphs:
If treewidth is at least 5

√
2k : we answer “vertex

cover is ≥ k .”
If treewidth is less than 5

√
2k , then we can

solve the problem in time
2O(5

√
2k) · nO(1) = 2O(

√
k) · nO(1).

28

Vertex Cover
Observation: If the treewidth of a planar graph G is at least 5

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ Vertex cover size is at least k in the grid.
⇒ Vertex cover size is at least k in G .

We use this observation to solve Vertex Cover on planar graphs:
Set w := 5

√
2k .

Find a 4-approximate tree decomposition.
If treewidth is at least w : we answer “vertex
cover is ≥ k .”
If we get a tree decomposition of width 4w ,
then we can solve the problem in time
2O(w) · nO(1) = 2O(

√
k) · nO(1).

28

Bidimensionality

A powerful framework for efficient algorithms on planar graphs.

Setup:
Let x(G) be some graph invariant (i.e., an integer associated with each graph).
Given G and k , we want to decide if x(G) ≤ k (or x(G) ≥ k).
Typical examples:

Maximum independent set size.
Minimum vertex cover size.
Length of the longest path.
Minimum dominating set size.
Minimum feedback vertex set size.

Bidimensionality

For many natural invariants, we can do this in time 2O(
√
k) · nO(1) on planar graphs.

29

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are
minor-bidimensional.

30

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are
minor-bidimensional.

30

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are
minor-bidimensional.

30

Bidimensionality (cont.)

We can answer “x(G) ≥ k?” for a minor-bidimensional invariant the following way:
Set w := c

√
k for an appropriate constant c .

Use the 4-approximation tree decomposition algorithm.
If treewidth is at least w : x(G) is at least k .
If we get a tree decomposition of width 4w , then we can solve the problem using
dynamic programming on the tree decomposition.

Running time:
If we can solve the problem on tree decomposition of width w in time
2O(w) · nO(1), then the running time is 2O(

√
k) · nO(1).

If we can solve the problem on tree decomposition of width w in time
wO(w) · nO(1), then the running time is 2O(

√
k log k) · nO(1).

31

Contraction bidimensionality

Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Exercise: Dominating Set is not minor-bidimensional.

We fix the problem by allowing only contractions but not edge/vertex deletions.

32

Contraction bidimensionality

Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Exercise: Dominating Set is not minor-bidimensional.

We fix the problem by allowing only contractions but not edge/vertex deletions.

32

Contraction bidimensionality

Theorem
Every planar graph with treewidth at least 5k can be contracted to a partially
triangulated k × k grid.

Example:

33

Contraction bidimensionality

Definition
A graph invariant x(G) is contraction-bidimensional if

x(G ′) ≤ x(G) for every contraction G ′ of G , and
If Gk is a k × k partially triangulated grid, then x(Gk) ≥ ck2 (for some c > 0).

Example:

33

Contraction bidimensionality

Definition
A graph invariant x(G) is contraction-bidimensional if

x(G ′) ≤ x(G) for every contraction G ′ of G , and
If Gk is a k × k partially triangulated grid, then x(Gk) ≥ ck2 (for some c > 0).

Example: minimum dominating set, maximum independent set are
contraction-bidimensional.

33

Contraction bidimensionality

Definition
A graph invariant x(G) is contraction-bidimensional if

x(G ′) ≤ x(G) for every contraction G ′ of G , and
If Gk is a k × k partially triangulated grid, then x(Gk) ≥ ck2 (for some c > 0).

Example: minimum dominating set, maximum independent set are
contraction-bidimensional.

33

Bidimensionality for Dominating Set

The size of a minimum dominating set is a contraction bidimensional invariant: we
need at least (k − 2)2/9 vertices to dominate all the internal vertices of a partially
triangulated k × k grid (since a vertex can dominate at most 9 internal vertices).

Theorem
Given a tree decomposition of width w , Dominating Set can be solved in time
3w · wO(1) · nO(1).

Solving Dominating Set on planar graphs:
Set w := 5(3

√
k + 2).

Use the 4-approximation tree decomposition algorithm.
If treewidth is at least w : we answer ’dominating set is ≥ k ’.
If we get a tree decomposition of width 4w , then we can solve the problem in time
3w · nO(1) = 2O(

√
k) · nO(1).

34

The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly
super-

exponential"

Tower of
exponentials

35

Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

36

Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:

formula is satisfiable ⇔ there is a vertex cover of size n + 2m

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

x̄1 ∨ x2 ∨ x̄3

36

Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:
3SAT formula φ

n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

36

Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:
3SAT formula φ

n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(n) algorithm for Vertex Cover on an n-vertex graph.
36

Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:
3SAT formula φ

n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(k) · nO(1) algorithm for Vertex Cover.
36

Other problems
There are polytime reductions from 3SAT to many problems such that the reduction
creates a graph with O(n + m) vertices/edges.

Consequence: Assuming ETH, the following problems cannot be solved in time 2o(n)

and hence in time 2o(k) · nO(1) (but 2O(k) · nO(1) time algorithms are known):
Vertex Cover

Longest Cycle

Feedback Vertex Set

Multiway Cut

Odd Cycle Transversal

Steiner Tree

. . .

37

Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar 3-Coloring uses a
“crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors have the same color.
Every coloring of the external connectors where the opposite vertices have the
same color can be extended to the whole gadget.
If two edges cross, replace them with a crossover gadget.

38

Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar 3-Coloring uses a
“crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors have the same color.
Every coloring of the external connectors where the opposite vertices have the
same color can be extended to the whole gadget.
If two edges cross, replace them with a crossover gadget.

38

Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar 3-Coloring uses a
“crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors have the same color.
Every coloring of the external connectors where the opposite vertices have the
same color can be extended to the whole gadget.
If two edges cross, replace them with a crossover gadget.

38

Lower bounds based on ETH

The reduction from 3-Coloring to Planar 3-Coloring introduces O(1) new
edges/vertices for each crossing.
A graph with m edges can be drawn with O(m2) crossings.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(m) vertices
O(m) edges

⇒
Planar graph G ′

O(m2) vertices
O(m2) edges

Corollary

Assuming ETH, there is no 2o(
√
n) algorithm for 3-Coloring on an n-vertex planar

graph G .

39

Lower bounds for planar problems
Consequence: Assuming ETH, there is no 2o(

√
n) time algorithm on n-vertex planar

graphs for
Independent Set

Dominating Set

Vertex Cover

Hamiltonian Path

Feedback Vertex Set

. . .

40

Lower bounds for planar problems
Consequence: Assuming ETH, there is no 2o(

√
k) · nO(1) time algorithm on planar

graphs for
Independent Set

Dominating Set

Vertex Cover

Path

Feedback Vertex Set

. . .

40

Treewidth — summary

Notion of treewidth: widely used in graph theory and parameterized algorithms.
Efficient algorithms parmeterized by treewidth.
Applications e.g. to planar graphs.

41

Treewidth
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

42

	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Weighted Max Independent Set and treewidth
	Weighted Max Independent Set and treewidth
	Monadic Second Order Logic
	Courcelle's Theorem
	Subgraph Isomorphism
	Subgraph Isomorphism
	Finding tree decompositions
	Treewidth — outline
	Treewidth — outline
	Depth-first search (DFS)
	Depth-first search (DFS)
	Depth-first search (DFS)
	Depth-first search (DFS)
	Minor
	A classical result
	A classical result
	Graph Minors Theory
	Properties of treewidth
	Properties of treewidth
	Properties of treewidth
	The Cops and Robber game
	The Cops and Robber game
	The Cops and Robber game
	The Cops and Robber game
	The Cops and Robber game
	The Cops and Robber game
	The Cops and Robber game
	The Cops and Robber game
	The Cops and Robber game
	The Cops and Robber game
	The Cops and Robber game
	The Cops and Robber game
	The Cops and Robber game
	Excluded Grid Theorem
	Excluded Grid Theorem
	Excluded Grid Theorem
	Planar Excluded Grid Theorem
	Planar Excluded Grid Theorem
	Outerplanar graphs
	k-outerplanar graphs
	k-outerplanar graphs
	k-outerplanar graphs
	k-outerplanar graphs
	k-outerplanar graphs
	Treewidth — outline
	Approximation schemes
	Approximation schemes
	Baker's shifting strategy for PTAS
	Baker's shifting strategy for PTAS
	Baker's shifting strategy for PTAS
	Baker's shifting strategy for PTAS
	Baker's shifting strategy for PTAS
	Baker's shifting strategy for PTAS
	Baker's shifting strategy for PTAS
	Baker's shifting strategy for FPT
	Baker's shifting strategy for FPT
	Baker's shifting strategy for FPT
	Baker's shifting strategy for FPT
	Baker's shifting strategy for FPT
	Baker's shifting strategy for FPT
	Baker's shifting strategy for FPT
	Baker's shifting strategy for FPT
	Baker's shifting strategy for FPT
	Baker's shifting strategy for FPT
	Baker's shifting strategy for FPT
	Baker's shifting strategy for FPT
	Square root phenomenon
	Square root phenomenon
	Vertex Cover
	Vertex Cover
	Vertex Cover
	Vertex Cover
	Bidimensionality
	Bidimensionality
	Bidimensionality
	Bidimensionality
	Bidimensionality (cont.)
	Contraction bidimensionality
	Contraction bidimensionality
	Contraction bidimensionality
	Contraction bidimensionality
	Contraction bidimensionality
	Contraction bidimensionality
	Bidimensionality for Dominating Set
	The race for better FPT algorithms
	Lower bounds based on ETH
	Lower bounds based on ETH
	Lower bounds based on ETH
	Lower bounds based on ETH
	Lower bounds based on ETH
	Other problems
	Lower bounds based on ETH
	Lower bounds based on ETH
	Lower bounds based on ETH
	Lower bounds based on ETH
	Lower bounds for planar problems
	Lower bounds for planar problems
	Treewidth — summary
	Treewidth

