
Important cuts

Dániel Marx

Lecture #9
July 3, 2020

1

Overview

Main message
Small cuts in graphs have interesting extremal properties that can be exploited in
combinatorial and algorithmic results.

Bounding the number of “important” cuts.
Edge/vertex versions, directed/undirected versions, undeletable edges/vertices
“directed edge” or “arc”
Algorithmic applications: FPT algorithm for

Multiway cut
Directed Feedback Vertex Set

2

Minimum cuts
Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y)-cut if there is no X −Y path in G \S
and no proper subset of S breaks every X − Y path.
Observation: Every minimal (X ,Y)-cut S can be expressed as S = δ(R) for some
X ⊆ R and R ∩ Y = ∅.

R

δ(R)

Y
X

3

Minimum cuts

Theorem
A minimum (X ,Y)-cut can be found in polynomial time.

Theorem
The size of a minimum (X ,Y)-cut equals the maximum size of a pairwise edge-disjoint
collection of X − Y paths.

R

δ(R)

Y
X

3

Finding minimum cuts
There is a long list of algorithms for finding disjoint paths and minimum cuts.

Edmonds-Karp: O(|V (G)| · |E (G)|2)
Dinitz: O(|V (G)|2 · |E (G)|)
Push-relabel: O(|V (G)|3)
Orlin-King-Rao-Tarjan: O(|V (G)| · |E (G)|)
. . .
Liu-Sidford: O(|E (G)|4/3U1/3)

But we need only the following result:

Theorem
An (X ,Y)-cut of size at most k (if exists) can be found in time
O(k · (|V (G)|+ |E (G)|)).

4

Finding minimum cuts

Theorem
An (X ,Y)-cut of size at most k (if exists) can be found in time
O(k · (|V (G)|+ |E (G)|)).

We try to grow a collection P of edge-disjoint X − Y paths.

Residual graph:
not used by P: bidirected,
used by P: directed in the opposite direction.

X Y X Y

original graph residual graph

If we cannot find an augmenting path, we can find a (minimum) cut of size |P|.

5

Finding minimum cuts

Theorem
An (X ,Y)-cut of size at most k (if exists) can be found in time
O(k · (|V (G)|+ |E (G)|)).

We try to grow a collection P of edge-disjoint X − Y paths.

Residual graph:
not used by P: bidirected,
used by P: directed in the opposite direction.

X Y X Y

original graph residual graph

If we cannot find an augmenting path, we can find a (minimum) cut of size |P|.

5

Finding minimum cuts

Theorem
An (X ,Y)-cut of size at most k (if exists) can be found in time
O(k · (|V (G)|+ |E (G)|)).

We try to grow a collection P of edge-disjoint X − Y paths.

Residual graph:
not used by P: bidirected,
used by P: directed in the opposite direction.

X Y X Y

original graph residual graph

If we cannot find an augmenting path, we can find a (minimum) cut of size |P|.

5

Finding minimum cuts

Theorem
An (X ,Y)-cut of size at most k (if exists) can be found in time
O(k · (|V (G)|+ |E (G)|)).

We try to grow a collection P of edge-disjoint X − Y paths.

Residual graph:
not used by P: bidirected,
used by P: directed in the opposite direction.

X Y X Y

original graph residual graph

If we cannot find an augmenting path, we can find a (minimum) cut of size |P|.
5

Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Proof: Determine separately the contribution of the different types of edges.

6

Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Proof: Determine separately the contribution of the different types of edges.

A B

6

Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
0 1 1 0

Proof: Determine separately the contribution of the different types of edges.

BA

6

Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 0 1 0

Proof: Determine separately the contribution of the different types of edges.

A B

6

Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
0 1 0 1

Proof: Determine separately the contribution of the different types of edges.

A B

6

Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 0 0 1

Proof: Determine separately the contribution of the different types of edges.

BA

6

Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 1 1 1

Proof: Determine separately the contribution of the different types of edges.

BA

6

Submodularity
Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 1 0 0

Proof: Determine separately the contribution of the different types of edges.

BA

6

Submodularity

Lemma
Let λ be the minimum (X ,Y)-cut size. There is a unique maximal Rmax ⊇ X such that
δ(Rmax) is an (X ,Y)-cut of size λ.

Proof: Let R1,R2 ⊇ X be two sets such that δ(R1), δ(R2) are (X ,Y)-cuts of size λ.

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|
λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ
R2R1

Y

X

Note: Analogous result holds for a unique minimal Rmin.

7

Submodularity

Lemma
Let λ be the minimum (X ,Y)-cut size. There is a unique maximal Rmax ⊇ X such that
δ(Rmax) is an (X ,Y)-cut of size λ.

Proof: Let R1,R2 ⊇ X be two sets such that δ(R1), δ(R2) are (X ,Y)-cuts of size λ.

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|
λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ
R2R1

Y

X

Note: Analogous result holds for a unique minimal Rmin.

7

Finding Rmin and Rmax

Lemma
Given a graph G and sets X ,Y ⊆ V (G), the sets Rmin and Rmax can be found in
polynomial time.

Proof: Iteratively add vertices to X if they do not increase the minimum X − Y cut
size. When the process stops, X = Rmax. Similar for Rmin.

But we can do better!

8

Finding Rmin and Rmax

Lemma
Given a graph G and sets X ,Y ⊆ V (G), the sets Rmin and Rmax can be found in
O(λ · (|V (G)|+ |E (G)|)) time, where λ is the minimum X − Y cut size.

Proof: Look at the residual graph.

X Y X Y

original graph residual graph

Rmin Rmax Rmin Rmax

Rmin: vertices reachable from X .
Rmax: vertices from which Y is not reachable.

9

Important cuts
Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y)-cut if there is no X −Y path in G \S
and no proper subset of S breaks every X − Y path.
Observation: Every minimal (X ,Y)-cut S can be expressed as S = δ(R) for some
X ⊆ R and R ∩ Y = ∅.

R

δ(R)

Y
X

Observation: There is a unique important (X ,Y)-cut of minimum size: δ(Rmax).

10

Important cuts

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut δ(R ′) with R ⊂ R ′

and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important.

R

δ(R)

Y
X

Observation: There is a unique important (X ,Y)-cut of minimum size: δ(Rmax).

10

Important cuts

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut δ(R ′) with R ⊂ R ′

and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important.

R ′

δ(R)

R

δ(R ′)
X

Y

Observation: There is a unique important (X ,Y)-cut of minimum size: δ(Rmax).

10

Important cuts

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut δ(R ′) with R ⊂ R ′

and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important.

R

δ(R)

X
Y

Observation: There is a unique important (X ,Y)-cut of minimum size: δ(Rmax).

10

Important cuts

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut δ(R ′) with R ⊂ R ′

and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important.

Rmax

δ(Rmax)

Y
X

Observation: There is a unique important (X ,Y)-cut of minimum size: δ(Rmax).
10

Important cuts
The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y)-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

11

Important cuts
The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y)-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k . 11

Important cuts

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y)-cut size and let δ(Rmax) be the unique important
cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:
|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|

λ ≥ λ
⇓

|δ(Rmax ∪ R)| ≤ |δ(R)|
⇓

If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y)- and (Rmax,Y)-cuts are the same.
⇒ We can assume X = Rmax.

12

Important cuts

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y)-cut size and let δ(Rmax) be the unique important
cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:
|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|

λ ≥ λ
⇓

|δ(Rmax ∪ R)| ≤ |δ(R)|
⇓

If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y)- and (Rmax,Y)-cuts are the same.
⇒ We can assume X = Rmax.

12

Important cuts

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y)-cut size and let δ(Rmax) be the unique important
cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:
|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|

λ ≥ λ
⇓

|δ(Rmax ∪ R)| ≤ |δ(R)|
⇓

If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y)- and (Rmax,Y)-cuts are the same.
⇒ We can assume X = Rmax. 12

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of size at most k − 1
in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

13

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of size at most k − 1
in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.

Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

13

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of size at most k − 1
in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

13

Important cuts
(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of size at most k − 1
in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

13

Important cuts — some details
We are using the following two statements:

Branch 1: If uv ∈ S , then

S is an important (X ,Y)-cut in G
S \ uv is an important (X ,Y)-cut in
G \ uv

Converse is not true:
Set {ab, ay} is important (X ,Y)-cut in G \ xb, but
{xb, ab, ay} is not an important (X ,Y)-cut in G .

Branch 2: If S is an (X ∪ v ,Y)-cut, then

S is an important (X ,Y)-cut in G S is an important (X ∪ v ,Y)-cut in
G

Converse is true!

14

Important cuts — some details
We are using the following two statements:

Branch 1: If uv ∈ S , then

S is an important (X ,Y)-cut in G
S \ uv is an important (X ,Y)-cut in
G \ uv

Converse is not true:
Set {ab, ay} is important (X ,Y)-cut in G \ xb, but
{xb, ab, ay} is not an important (X ,Y)-cut in G . X Y

a

c

bx y

Branch 2: If S is an (X ∪ v ,Y)-cut, then

S is an important (X ,Y)-cut in G S is an important (X ∪ v ,Y)-cut in
G

Converse is true! 14

Important cuts — some details
We are using the following two statements:

Branch 1: If uv ∈ S , then

S is an important (X ,Y)-cut in G
S \ uv is an important (X ,Y)-cut in
G \ uv

Converse is not true:
Set {ab, ay} is important (X ,Y)-cut in G \ xb, but
{xb, ab, ay} is not an important (X ,Y)-cut in G . X Y

a

c

bx y

Branch 2: If S is an (X ∪ v ,Y)-cut, then

S is an important (X ,Y)-cut in G S is an important (X ∪ v ,Y)-cut in
G

Converse is true! 14

Important cuts — algorithm

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k and they can be
enumerated in time O(4k · k · (|V (G)|+ |E (G)|)).

Algorithm for enumerating important cuts:
1 Handle trivial cases (k = 0, λ = 0, k < λ)
2 Find Rmax.
3 Choose an edge uv of δ(Rmax).

Recurse on (G − uv ,Rmax,Y , k − 1).
Recurse on (G ,Rmax ∪ v ,Y , k).

4 Check if the returned cuts are important and throw away those that are not.

15

Important cuts

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y)-cut of size k .
The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

16

Important cuts

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

X

Y

Any subtree with k leaves gives an important (X ,Y)-cut of size k .

The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

16

Important cuts

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y)-cut of size k .

The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

16

Important cuts

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y)-cut of size k .
The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

16

Multiway Cut
Definition: A multiway cut of a set of terminals T is a set S of edges such that each
component of G \ S contains at most one vertex of T .

Multiway Cut
Input: Graph G , set T of vertices, integer k
Find: A multiway cut S of at most k edges.

t4

t5

t4

t3

t2t1

Polynomial for |T | = 2, but NP-hard for any fixed |T | ≥ 3.
⇒ Cannot be FPT parameterized by |T | assuming P 6= NP.

17

Multiway Cut
Definition: A multiway cut of a set of terminals T is a set S of edges such that each
component of G \ S contains at most one vertex of T .

Multiway Cut
Input: Graph G , set T of vertices, integer k
Find: A multiway cut S of at most k edges.

t4

t5

t4

t3

t2t1

Trivial to solve in polynomial time for fixed k (in time nO(k)).

Theorem
Multiway cut can be solved in time 4k · k3 · (|V (G)|+ |E (G)|).

17

Multiway Cut
Intuition: Consider a t ∈ T . A subset of the solution S is a (t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more useful.

18

Multiway Cut
Intuition: Consider a t ∈ T . A subset of the solution S is a (t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more useful.

18

Multiway Cut
Intuition: Consider a t ∈ T . A subset of the solution S is a (t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more useful.

18

Multiway Cut
Intuition: Consider a t ∈ T . A subset of the solution S is a (t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more useful.

18

Multiway Cut and important cuts

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that contains an important
(t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .

δ(R) is not important, then there is an important cut δ(R ′) with R ⊂ R ′ and
|δ(R ′)| ≤ |δ(R)|. Replace S with S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a u-v path in G \ S ′
implies a t-u path, a contradiction.

19

Multiway Cut and important cuts

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that contains an important
(t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .

R

t

δ(R) is not important, then there is an important cut δ(R ′) with R ⊂ R ′ and
|δ(R ′)| ≤ |δ(R)|. Replace S with S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a u-v path in G \ S ′
implies a t-u path, a contradiction.

19

Multiway Cut and important cuts

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that contains an important
(t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .

R ′

R

t

δ(R) is not important, then there is an important cut δ(R ′) with R ⊂ R ′ and
|δ(R ′)| ≤ |δ(R)|. Replace S with S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a u-v path in G \ S ′
implies a t-u path, a contradiction.

19

Multiway Cut and important cuts

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that contains an important
(t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .

R ′

R

t
u

v

δ(R) is not important, then there is an important cut δ(R ′) with R ⊂ R ′ and
|δ(R ′)| ≤ |δ(R)|. Replace S with S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a u-v path in G \ S ′
implies a t-u path, a contradiction.

19

Multiway Cut and important cuts

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that contains an important
(t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .

t
u

vR

R ′

δ(R) is not important, then there is an important cut δ(R ′) with R ⊂ R ′ and
|δ(R ′)| ≤ |δ(R)|. Replace S with S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a u-v path in G \ S ′
implies a t-u path, a contradiction.

19

Algorithm for Multiway Cut

1 If every vertex of T is in a different component, then we are done.
2 Let t ∈ T be a vertex that is not separated from every T \ t.
3 Enumerate every imporant (t,T \ t) cut of size at most k and branch on choosing

one such cut S .
4 Set G := G \ S and k := k − |S |.
5 Go to step 1.

We branch into at most 4k directions at most k times: 4k
2 · nO(1) running time.

Next: Better analysis gives 4k bound on the size of the search tree.

20

A refined bound
We have seen: at most 4k important cut of size at most k .

Better bound:

Lemma
If S is the set of all important (X ,Y)-cuts, then

∑
S∈S 4

−|S| ≤ 1 holds.

Better algorithm:

Lemma
We can enumerate the set Sk of every important (X ,Y)-cut of size at most k in time
O(|Sk | · k2 · (|V (G)|+ |E (G)|)).

21

A refined bound
We have seen: at most 4k important cut of size at most k .

Better bound:

Lemma
If S is the set of all important (X ,Y)-cuts, then

∑
S∈S 4

−|S| ≤ 1 holds.

Better algorithm:

Lemma
We can enumerate the set Sk of every important (X ,Y)-cut of size at most k in time
O(|Sk | · k2 · (|V (G)|+ |E (G)|)).

21

Refined analysis for Multiway Cut

Lemma
If S is the set of all important (X ,Y)-cuts, then

∑
S∈S 4

−|S| ≤ 1 holds.

Lemma
The search tree for the Multiway Cut algorithm has 4k leaves.

Proof: Let Lk be the maximum number of leaves with parameter k . We prove Lk ≤ 4k

by induction. After enumerating the set Sk of important cuts of size ≤ k , we branch
into |Sk | directions. ∑

S∈Sk

4k−|S | = 4k ·
∑
S∈Sk

4−|S | ≤ 4k

22

Algorithm for Multiway Cut

Theorem
Multiway Cut can be solved in time O(4k · k3 · (|V (G)|+ |E (G)|)).

1 If every vertex of T is in a different component, then we are done.
2 Let t ∈ T be a vertex that is not separated from every T \ t.
3 Enumerate every imporant (t,T \ t) cut of size at most k and branch on choosing

one such cut S .
4 Set G := G \ S and k := k − |S |.
5 Go to step 1.

23

Multicut

Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k
Find: A set S of edges such that G \ S has no si -ti path for any i .

Theorem
Multicut can be solved in time f (k , `) · nO(1) (FPT parameterized by combined
parameters k and `).

Proof: The solution partitions {s1, t1, . . . , s`, t`} into components. Guess this partition,
contract the vertices in a class, and solve Multiway Cut.

Theorem
Multicut is FPT parameterized by the size k of the solution.

24

Multicut

Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k
Find: A set S of edges such that G \ S has no si -ti path for any i .

Theorem
Multicut can be solved in time f (k , `) · nO(1) (FPT parameterized by combined
parameters k and `).

Proof: The solution partitions {s1, t1, . . . , s`, t`} into components. Guess this partition,
contract the vertices in a class, and solve Multiway Cut.

Theorem
Multicut is FPT parameterized by the size k of the solution.

24

Important cuts

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut δ(R ′) with R ⊂ R ′

and |δ(R ′)| ≤ |δ(R)|.

R ′

δ(R)

R

δ(R ′)
X

Y

25

Simple combinatorial bound

Lemma:
At most k · 4k edges incident to t can be part of an inclusionwise minimal s − t cut of
size at most k .

Proof: We show that every such edge is contained in an important (s, t)-cut of size at
most k .

Suppose that vt ∈ δ(R) and |δ(R)| = k .
There is an important (s, t)-cut δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .
Clearly, vt ∈ δ(R ′): v ∈ R , hence v ∈ R ′.

26

Simple combinatorial bound

Lemma:
At most k · 4k edges incident to t can be part of an inclusionwise minimal s − t cut of
size at most k .

Proof: We show that every such edge is contained in an important (s, t)-cut of size at
most k .

v

R
ts

Suppose that vt ∈ δ(R) and |δ(R)| = k .

There is an important (s, t)-cut δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .
Clearly, vt ∈ δ(R ′): v ∈ R , hence v ∈ R ′.

26

Simple combinatorial bound

Lemma:
At most k · 4k edges incident to t can be part of an inclusionwise minimal s − t cut of
size at most k .

Proof: We show that every such edge is contained in an important (s, t)-cut of size at
most k .

v

R

R ′

s t

Suppose that vt ∈ δ(R) and |δ(R)| = k .
There is an important (s, t)-cut δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .
Clearly, vt ∈ δ(R ′): v ∈ R , hence v ∈ R ′.

26

Anti isolation
Let s, t1, . . . , tn be vertices and S1, . . . ,Sn be sets of at most k edges such that Si
separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at most k , then
n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)
(s, t)-cut of size at most k + 1. Use the previous lemma.

27

Anti isolation
Let s, t1, . . . , tn be vertices and S1, . . . ,Sn be sets of at most k edges such that Si
separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at most k , then
n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)
(s, t)-cut of size at most k + 1. Use the previous lemma.

27

Anti isolation
Let s, t1, . . . , tn be vertices and S1, . . . ,Sn be sets of at most k edges such that Si
separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S2

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at most k , then
n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)
(s, t)-cut of size at most k + 1. Use the previous lemma.

27

Anti isolation
Let s, t1, . . . , tn be vertices and S1, . . . ,Sn be sets of at most k edges such that Si
separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at most k , then
n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)
(s, t)-cut of size at most k + 1. Use the previous lemma.

27

Anti isolation
Let s, t1, . . . , tn be vertices and S1, . . . ,Sn be sets of at most k edges such that Si
separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at most k , then
n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)
(s, t)-cut of size at most k + 1. Use the previous lemma.

27

Anti isolation
Let s, t1, . . . , tn be vertices and S1, . . . ,Sn be sets of at most k edges such that Si
separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S2

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at most k , then
n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)
(s, t)-cut of size at most k + 1. Use the previous lemma.

27

Anti isolation
Let s, t1, . . . , tn be vertices and S1, . . . ,Sn be sets of at most k edges such that Si
separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at most k , then
n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)
(s, t)-cut of size at most k + 1. Use the previous lemma.

27

Anti isolation
Let s, t1, . . . , tn be vertices and S1, . . . ,Sn be sets of at most k edges such that Si
separates ti from s, but Si does not separate tj from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at most k , then
n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)
(s, t)-cut of size at most k + 1. Use the previous lemma.

27

Anti isolation

t1 t2 t3 t4 t5 t6

s

t

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at most k , then
n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)
(s, t)-cut of size at most k + 1. Use the previous lemma.

27

Anti isolation

s

t6t5t4t3t2t1

t

S2

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at most k , then
n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)
(s, t)-cut of size at most k + 1. Use the previous lemma.

27

Anti isolation

s

t6t5t4t3t2t1

t

S1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at most k , then
n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an (inclusionwise minimal)
(s, t)-cut of size at most k + 1. Use the previous lemma.

27

Directed graphs
Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y)-cut S can be expressed as
S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y)-cut ~δ(R) is important if there is no (X ,Y)-cut ~δ(R ′)
with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

R

~δ(R)

YX

28

Directed graphs
Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y)-cut S can be expressed as
S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y)-cut ~δ(R) is important if there is no (X ,Y)-cut ~δ(R ′)
with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

R ′

~δ(R ′)

R

~δ(R)

YX

28

Directed graphs
Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y)-cut S can be expressed as
S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y)-cut ~δ(R) is important if there is no (X ,Y)-cut ~δ(R ′)
with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.
The proof for the undirected case goes through for the directed case:

Theorem
There are at most 4k important directed (X ,Y)-cuts of size at most k .

28

Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that contains an important
(t,T \ t)-cut.

Directed counterexample:

s t
a

b

Unique solution with k = 1 edges, but it is not an important cut (boundary of {s, a},
but the boundary of {s, a, b} has same size).

29

Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that contains an important
(t,T \ t)-cut.

Directed counterexample:

s t
a

b

Unique solution with k = 1 edges, but it is not an important cut (boundary of {s, a},
but the boundary of {s, a, b} has same size).

29

Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that contains an important
(t,T \ t)-cut.

Directed counterexample:

b

a
ts

Unique solution with k = 1 edges, but it is not an important cut (boundary of {s, a},
but the boundary of {s, a, b} has same size).

29

Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that contains an important
(t,T \ t)-cut.

Problem in the undirected proof:

v

u
t

R

R ′

Replacing R by R ′ cannot create a t → u path, but can create a u → t path.
29

Directed Multiway Cut
The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that contains an important
(t,T \ t)-cut.

Using additional techniques, one can show:

Theorem
Directed Multiway Cut is FPT parameterized by the size k of the solution.

29

Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k
Find: A set S of edges such that G \ S has no si → ti path for any i .

Theorem
Directed Multicut with ` = 4 is W[1]-hard parameterized by k .

30

Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k
Find: A set S of edges such that G \ S has no si → ti path for any i .

Theorem
Directed Multicut with ` = 4 is W[1]-hard parameterized by k .

But the case ` = 2 can be reduced to Directed Multiway Cut:

t1s1

t2 s2

30

Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k
Find: A set S of edges such that G \ S has no si → ti path for any i .

Theorem
Directed Multicut with ` = 4 is W[1]-hard parameterized by k .

But the case ` = 2 can be reduced to Directed Multiway Cut:

x y

s2t2

s1 t1

30

Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k
Find: A set S of edges such that G \ S has no si → ti path for any i .

Theorem
Directed Multicut with ` = 4 is W[1]-hard parameterized by k .

But the case ` = 2 can be reduced to Directed Multiway Cut:

x y

s2t2

s1 t1

30

Directed Multicut

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k
Find: A set S of edges such that G \ S has no si → ti path for any i .

Theorem
Directed Multicut with ` = 4 is W[1]-hard parameterized by k .

Corollary
Directed Multicut with ` = 2 is FPT parameterized by the size k of the solution.

? Open: Is Directed Multicut with ` = 3 FPT?

30

Skew Multicut

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S contains no si → tj
path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

31

Skew Multicut

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S contains no si → tj
path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Pushing Lemma
Skew Multcut problem has a solution S that contains an important
(s`, {t1, . . . , t`})-cut.

31

Skew Multicut

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S contains no si → tj
path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Theorem
Skew Multicut can be solved in time 4k · nO(1).

31

Directed Feedback Vertex Set

Directed Feedback Vertex/Edge Set
Input: Directed graph G , integer k
Find: A set S of k vertices/edges such that G \ S is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the edge version here.

Note: It is not a generalization of (Undirected) Feedback Vertex Set!

Theorem
Directed Feedback Edge Set is FPT parameterized by the size k of the solution.

Solution uses the technique of iterative compression.

32

The compression problem

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 edges such that G \W is acyclic
Find: A set S of k edges such that G \ S is acyclic.

Easier than the original problem, as the extra input W gives us useful structural
information about G .

Lemma
The compression problem is FPT parameterized by k .

A useful trick for edge deletion problems: we define the compression problem in a way
that a solution of k + 1 vertices are given and we have to find a solution of k edges.

33

The compression problem

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W is acyclic
Find: A set S of k edges such that G \ S is acyclic.

Easier than the original problem, as the extra input W gives us useful structural
information about G .

Lemma
The compression problem is FPT parameterized by k .

A useful trick for edge deletion problems: we define the compression problem in a way
that a solution of k + 1 vertices are given and we have to find a solution of k edges.

33

The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

t4s1t1 s2t2 s3t3 s4
By guessing the order of {w1, . . . ,wk+1} in the acyclic ordering of G \ S , we can
assume that w1 < w2 < · · · < wk+1 in G \ S [(k + 1)! possibilities].

⇒ We can solve the compression problem by (k + 1)! applications of Skew
Multicut.

34

The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

t4s1t1 s2t2 s3t3 s4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications of Skew
Multicut.

34

The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

s4t3 s3t2 s2t1 s1 t4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications of Skew
Multicut.

34

The compression problem
Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

s4t3 s3t2 s2t1 s1 t4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications of Skew
Multicut.

34

Iterative compression
We have given a f (k)nO(1) algorithm for the following problem:

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W is acyclic
Find: A set S of k edges such that G \ S is acyclic.

Nice, but how do we get a solution W of size k + 1?

We get it for free!
Powerful technique: iterative compression.

35

Iterative compression
We have given a f (k)nO(1) algorithm for the following problem:

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W is acyclic
Find: A set S of k edges such that G \ S is acyclic.

Nice, but how do we get a solution W of size k + 1?

We get it for free!
Powerful technique: iterative compression.

35

Iterative compression
Let v1, . . . , vn be the vertices of G and let Gi be the subgraph induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such that Gi \ Si is acyclic.

For i = 1, we have the trivial solution Si = ∅.

Suppose we have a solution Si for Gi . Let Wi contain the head of each edge in Si .
Then Wi ∪ {vi+1} is a set of at most k + 1 vertices whose removal makes Gi+1
acyclic.
Use the compression algorithm for Gi+1 with the set Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of size k for Gi+1.

Running time: We call the compression algorithm n times, everything else is
polynomial.

Theorem
Directed Feedback Edge Set is FPT parameterized by the size k of the solution.

36

Iterative compression
Let v1, . . . , vn be the vertices of G and let Gi be the subgraph induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such that Gi \ Si is acyclic.
For i = 1, we have the trivial solution Si = ∅.

Suppose we have a solution Si for Gi . Let Wi contain the head of each edge in Si .
Then Wi ∪ {vi+1} is a set of at most k + 1 vertices whose removal makes Gi+1
acyclic.
Use the compression algorithm for Gi+1 with the set Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of size k for Gi+1.

Running time: We call the compression algorithm n times, everything else is
polynomial.

Theorem
Directed Feedback Edge Set is FPT parameterized by the size k of the solution.

36

Iterative compression
Let v1, . . . , vn be the vertices of G and let Gi be the subgraph induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such that Gi \ Si is acyclic.
For i = 1, we have the trivial solution Si = ∅.
Suppose we have a solution Si for Gi . Let Wi contain the head of each edge in Si .
Then Wi ∪ {vi+1} is a set of at most k + 1 vertices whose removal makes Gi+1
acyclic.

Use the compression algorithm for Gi+1 with the set Wi ∪ {vi+1}.
If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of size k for Gi+1.

Running time: We call the compression algorithm n times, everything else is
polynomial.

Theorem
Directed Feedback Edge Set is FPT parameterized by the size k of the solution.

36

Iterative compression
Let v1, . . . , vn be the vertices of G and let Gi be the subgraph induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such that Gi \ Si is acyclic.
For i = 1, we have the trivial solution Si = ∅.
Suppose we have a solution Si for Gi . Let Wi contain the head of each edge in Si .
Then Wi ∪ {vi+1} is a set of at most k + 1 vertices whose removal makes Gi+1
acyclic.
Use the compression algorithm for Gi+1 with the set Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of size k for Gi+1.

Running time: We call the compression algorithm n times, everything else is
polynomial.

Theorem
Directed Feedback Edge Set is FPT parameterized by the size k of the solution.

36

Iterative compression
Let v1, . . . , vn be the vertices of G and let Gi be the subgraph induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such that Gi \ Si is acyclic.
For i = 1, we have the trivial solution Si = ∅.
Suppose we have a solution Si for Gi . Let Wi contain the head of each edge in Si .
Then Wi ∪ {vi+1} is a set of at most k + 1 vertices whose removal makes Gi+1
acyclic.
Use the compression algorithm for Gi+1 with the set Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of size k for Gi+1.

Running time: We call the compression algorithm n times, everything else is
polynomial.

Theorem
Directed Feedback Edge Set is FPT parameterized by the size k of the solution.

36

Summary

Definition of important cuts.
Simple but essentially tight combinatorial bound on the number of important cuts.
Pushing argument: we can assume that the solution contains an important cut.
Solves Multiway Cut, Skew Multicut.
Iterative compression reduces Directed Feedback Edge Set to Skew
Multicut.

37

