Dániel Marx

Lecture #9 July 3, 2020

1

Werview

Main message

Small cuts in graphs have interesting extremal properties that can be exploited in combinatorial and algorithmic results.

- Bounding the number of "important" cuts.
- Edge/vertex versions, directed/undirected versions, undeletable edges/vertices
- "directed edge" or "arc"
- Algorithmic applications: FPT algorithm for
	- **MULTIWAY CUT**
	- **DIRECTED FEEDBACK VERTEX SET**

Minimum cuts

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R. **Definition:** A set S of edges is a minimal (X, Y) -cut if there is no $X - Y$ path in $G \setminus S$ and no proper subset of S breaks every $X - Y$ path.

Observation: Every minimal (X, Y) -cut S can be expressed as $S = \delta(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Minimum cuts

Theorem

A minimum (X, Y) -cut can be found in polynomial time.

Theorem

The size of a minimum (X, Y) -cut equals the maximum size of a pairwise edge-disjoint collection of $X - Y$ paths.

There is a long list of algorithms for finding disjoint paths and minimum cuts.

- Edmonds-Karp: $O(|V(G)| \cdot |E(G)|^2)$
- Dinitz: $O(|V(G)|^2 \cdot |E(G)|)$
- Push-relabel: $O(|V(G)|^3)$
- \bullet Orlin-King-Rao-Tarjan: $O(|V(G)| \cdot |E(G)|)$
- \bullet . . .
- Liu-Sidford: $O(|E(G)|^{4/3}U^{1/3})$

But we need only the following result:

Theorem

An (X, Y) -cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|)).$

Theorem

An (X, Y) -cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|)).$

We try to grow a collection P of edge-disjoint $X - Y$ paths.

Residual graph:

- not used by \mathcal{P} : bidirected,
- used by \mathcal{P} : directed in the opposite direction.
original graph residual graph

Theorem

An (X, Y) -cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|)).$

We try to grow a collection P of edge-disjoint $X - Y$ paths.

Residual graph:

- not used by \mathcal{P} : bidirected,
- used by \mathcal{P} : directed in the opposite direction.
original graph residual graph

Theorem

An (X, Y) -cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|)).$

We try to grow a collection P of edge-disjoint $X - Y$ paths.

Residual graph:

- not used by \mathcal{P} : bidirected,
- used by \mathcal{P} : directed in the opposite direction.
original graph residual graph

Theorem

An (X, Y) -cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|)).$

We try to grow a collection P of edge-disjoint $X - Y$ paths.

Residual graph:

• not used by \mathcal{P} : bidirected,

 \bullet used by \mathcal{P} : directed in the opposite direction. original graph residual graph

 X and Y X and Y

If we cannot find an augmenting path, we can find a (minimum) cut of size $|\mathcal{P}|$.

Fact: The function δ is submodular: for arbitrary sets A, B , $|\delta(A)|$ + $|\delta(B)|$ ≥ $|\delta(A \cap B)|$ + $|\delta(A \cup B)|$

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)|$ + $|\delta(B)|$ ≥ $|\delta(A \cap B)|$ + $|\delta(A \cup B)|$

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)|$ + $|\delta(B)|$ \geq $|\delta(A \cap B)|$ + $|\delta(A \cup B)|$ 0 1 1 0

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)|$ + $|\delta(B)|$ \geq $|\delta(A \cap B)|$ + $|\delta(A \cup B)|$ 1 0 1 0

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)|$ + $|\delta(B)|$ \geq $|\delta(A \cap B)|$ + $|\delta(A \cup B)|$ 0 1 0 1

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)|$ + $|\delta(B)|$ \geq $|\delta(A \cap B)|$ + $|\delta(A \cup B)|$ 1 0 0 1

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)|$ + $|\delta(B)|$ \geq $|\delta(A \cap B)|$ + $|\delta(A \cup B)|$ $1 \hspace{1.5cm} 1 \hspace{1.5cm} 1 \hspace{1.5cm} 1$

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)|$ + $|\delta(B)|$ \geq $|\delta(A \cap B)|$ + $|\delta(A \cup B)|$ 1 0 0

Lemma

Let λ be the minimum (X, Y) -cut size. There is a unique maximal $R_{\text{max}} \supseteq X$ such that $\delta(R_{\text{max}})$ is an (X, Y) -cut of size λ .

Lemma

Let λ be the minimum (X, Y) -cut size. There is a unique maximal $R_{\text{max}} \supseteq X$ such that $\delta(R_{\text{max}})$ is an (X, Y) -cut of size λ .

Proof: Let $R_1, R_2 \supseteq X$ be two sets such that $\delta(R_1), \delta(R_2)$ are (X, Y) -cuts of size λ .

```
|\delta(R_1)| + |\delta(R_2)| \geq |\delta(R_1 \cap R_2)| + |\delta(R_1 \cup R_2)|\lambda \qquad \lambda \qquad \Rightarrow \lambda\Rightarrow |\delta(R_1 \cup R_2)| \leq \lambda
```


Note: Analogous result holds for a unique minimal R_{min} .

Finding R_{min} and R_{max}

Lemma

Given a graph G and sets $X, Y \subseteq V(G)$, the sets R_{min} and R_{max} can be found in polynomial time.

Proof: Iteratively add vertices to X if they do not increase the minimum $X - Y$ cut size. When the process stops, $X = R_{\text{max}}$. Similar for R_{min} .

But we can do better!

Finding R_{min} and R_{max}

Lemma

Given a graph G and sets $X, Y \subseteq V(G)$, the sets R_{min} and R_{max} can be found in $O(\lambda \cdot (|V(G)| + |E(G)|))$ time, where λ is the minimum $X - Y$ cut size.

Proof: Look at the residual graph.

 R_{min} vertices reachable from X. R_{max} : vertices from which Y is not reachable.

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R. **Definition:** A set S of edges is a minimal (X, Y) -cut if there is no $X - Y$ path in $G \setminus S$ and no proper subset of S breaks every $X - Y$ path.

Observation: Every minimal (X, Y) -cut S can be expressed as $S = \delta(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition

A minimal (X, Y) -cut $\delta(R)$ is **important** if there is no (X, Y) -cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important.

Definition

A minimal (X, Y) -cut $\delta(R)$ is **important** if there is no (X, Y) -cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important.

Definition

A minimal (X, Y) -cut $\delta(R)$ is **important** if there is no (X, Y) -cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important.

Definition

A minimal (X, Y) -cut $\delta(R)$ is **important** if there is no (X, Y) -cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important.

Observation: There is a unique important (X, Y) -cut of minimum size: $\delta(R_{\text{max}})$.

The number of important cuts can be exponentially large. Example:

This graph has $2^{k/2}$ important (X, Y) -cuts of size at most k .

The number of important cuts can be exponentially large. Example:

This graph has $2^{k/2}$ important (X, Y) -cuts of size at most k .

Theorem

There are at most 4^k important (X, Y) -cuts of size at most k.

Theorem

There are at most 4^k important (X, Y) -cuts of size at most k .

Proof: Let λ be the minimum (X, Y) -cut size and let $\delta(R_{\text{max}})$ be the unique important cut of size λ such that R_{max} is maximal.

(1) We show that $R_{\text{max}} \subset R$ for every important cut $\delta(R)$.

Theorem

There are at most 4^k important (X, Y) -cuts of size at most k .

Proof: Let λ be the minimum (X, Y) -cut size and let $\delta(R_{\text{max}})$ be the unique important cut of size λ such that R_{max} is maximal.

(1) We show that $R_{\text{max}} \subset R$ for every important cut $\delta(R)$.

By the submodularity of δ :

```
|\delta(R_{\text{max}})| + |\delta(R)| \geq |\delta(R_{\text{max}} \cap R)| + |\delta(R_{\text{max}} \cup R)|\lambda \geq \lambda \downarrow|\delta(R_\mathsf{max} \cup R)| \leq |\delta(R)|⇓
                  If R \neq R_{\text{max}} \cup R, then \delta(R) is not important.
```
Theorem

There are at most 4^k important (X, Y) -cuts of size at most k .

Proof: Let λ be the minimum (X, Y) -cut size and let $\delta(R_{\text{max}})$ be the unique important cut of size λ such that R_{max} is maximal.

(1) We show that $R_{\text{max}} \subseteq R$ for every important cut $\delta(R)$.

By the submodularity of δ :

```
|\delta(R_{\text{max}})| + |\delta(R)| \geq |\delta(R_{\text{max}} \cap R)| + |\delta(R_{\text{max}} \cup R)|\lambda \geq \lambda \downarrow|\delta(R_\mathsf{max} \cup R)| \leq |\delta(R)|⇓
                  If R \neq R_{\text{max}} \cup R, then \delta(R) is not important.
```
Thus the important (X, Y) - and (R_{max}, Y) -cuts are the same. \Rightarrow We can assume $X = R_{\text{max}}$. 12

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{\text{max}}$ is either in the cut or not.

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{\text{max}}$ is either in the cut or not.

Branch 1: If $uv \in S$, then $S \ uv$ is an important (X, Y) -cut of size at most $k - 1$ in $G \setminus uv$.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G.

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{\text{max}}$ is either in the cut or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y) -cut of size at most $k - 1$ in $G \setminus uv$.

 \Rightarrow k decreases by one, λ decreases by at most 1. Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G.

 \Rightarrow k remains the same, λ increases by 1.

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{\text{max}}$ is either in the cut or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y) -cut of size at most $k - 1$ in $G \setminus uv$.

 \Rightarrow k decreases by one, λ decreases by at most 1. Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G.

 \Rightarrow k remains the same, λ increases by 1.

The measure $2k - \lambda$ decreases in each step. \Rightarrow Height of the search tree $\leq 2k$ \Rightarrow \leq 2 2k $=$ 4 k important cuts of size at most $k.$

Important cuts — some details

We are using the following two statements:

Branch 1: If $uv \in S$, then

S is an important (X, Y) -cut in G

Branch 2: If S is an $(X \cup v, Y)$ -cut, then

S is an important (X, Y) -cut in G

S is an important $(X \cup v, Y)$ -cut in G
Important cuts — some details

We are using the following two statements: Branch 1: If $uv \in S$, then

Converse is true! 14

Important cuts — some details

We are using the following two statements: Branch 1: If $uv \in S$, then

S is an important (X, Y) -cut in G

S is an important $(X \cup v, Y)$ -cut in G

Converse is true! 14

Important cuts — algorithm

Theorem

There are at most 4^k important (X,Y) -cuts of size at most k and they can be enumerated in time $O(4^k \cdot k \cdot (|V(G)| + |E(G)|)).$

Algorithm for enumerating important cuts:

- **1** Handle trivial cases ($k = 0$, $\lambda = 0$, $k < \lambda$)
- \bullet Find R_{max} .
- **3** Choose an edge uv of $\delta(R_{\text{max}})$.
	- Recurse on $(G uv, R_{\text{max}}, Y, k 1)$.
	- Recurse on $(G, R_{\text{max}} \cup v, Y, k)$.
- ⁴ Check if the returned cuts are important and throw away those that are not.

Theorem

There are at most 4^k important (X, Y) -cuts of size at most k .

Example: The bound 4^k is essentially tight.

Theorem

There are at most 4^k important (X, Y) -cuts of size at most k .

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y) -cut of size k.

Theorem

There are at most 4^k important (X, Y) -cuts of size at most k .

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y) -cut of size k.

Theorem

There are at most 4^k important (X, Y) -cuts of size at most k .

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y) -cut of size k. The number of subtrees with k leaves is the Catalan number

$$
C_{k-1}=\frac{1}{k}\binom{2k-2}{k-1}\geq 4^k/\mathsf{poly}(k).
$$

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

MULTIWAY CUT **Input:** Graph G , set T of vertices, integer k Find: A multiway cut S of at most k edges.

Polynomial for $|T| = 2$, but NP-hard for any fixed $|T| \ge 3$. \Rightarrow Cannot be FPT parameterized by $|T|$ assuming P \neq NP.

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

MULTIWAY CUT **Input:** Graph G , set T of vertices, integer k Find: A multiway cut S of at most k edges.

Trivial to solve in polynomial time for fixed k (in time $n^{O(k)}$).

Theorem

MULTIWAY CUT can be solved in time $4^k \cdot k^3 \cdot (|V(G)| + |E(G)|)$.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -cut.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -cut.

There are many such cuts.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -cut.

There are many such cuts.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -cut.

There are many such cuts.

But a cut farther from t and closer to $T \setminus t$ seems to be more useful.

Pushing Lemma

Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -cut.

Pushing Lemma Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -cut.

Proof: Let R be the vertices reachable from t in $G \setminus S$ for a solution S.

Pushing Lemma Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -cut.

Proof: Let R be the vertices reachable from t in $G \setminus S$ for a solution S.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R\subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace S with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

Pushing Lemma

Let $t \in \mathcal{T}$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -cut.

Proof: Let R be the vertices reachable from t in $G \setminus S$ for a solution S.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R\subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace S with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$ S' is a multiway cut: (1) There is no t-u path in $G \setminus S'$ and (2) a u-v path in $G \setminus S'$ implies a $t-u$ path, a contradiction.

Pushing Lemma

Let $t \in \mathcal{T}$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -cut.

Proof: Let R be the vertices reachable from t in $G \setminus S$ for a solution S.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R\subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace S with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$ S' is a multiway cut: (1) There is no t-u path in $G \setminus S'$ and (2) a u-v path in $G \setminus S'$ implies a $t-u$ path, a contradiction.

Algorithm for MULTIWAY CUT

- **1** If every vertex of \overline{T} is in a different component, then we are done.
- 2 Let $t \in T$ be a vertex that is not separated from every $T \setminus t$.
- **3** Enumerate every imporant $(t, T \setminus t)$ cut of size at most k and branch on choosing one such cut S.
- \bullet Set $G := G \setminus S$ and $k := k |S|$.
- **6** Go to step 1.

We branch into at most 4^k directions at most k times: $4^{k^2} \cdot n^{O(1)}$ running time.

Next: Better analysis gives 4^k bound on the size of the search tree.

A refined bound

We have seen: at most 4^k important cut of size at most $k.$

Better bound:

Lemma

If ${\mathcal S}$ is the set of all important $({\mathcal X}, {\mathcal Y})$ -cuts, then $\sum_{{\mathcal S} \in {\mathcal S}} 4^{-|{\mathcal S}|} \leq 1$ holds.

A refined bound

We have seen: at most 4^k important cut of size at most $k.$

Better bound:

Lemma

If ${\mathcal S}$ is the set of all important $({\mathcal X}, {\mathcal Y})$ -cuts, then $\sum_{{\mathcal S} \in {\mathcal S}} 4^{-|{\mathcal S}|} \leq 1$ holds.

Better algorithm:

Lemma

We can enumerate the set S_k of every important (X, Y) -cut of size at most k in time $O(|S_k| \cdot k^2 \cdot (|V(G)| + |E(G)|)).$

Refined analysis for MULTIWAY CUT

Lemma

If ${\cal S}$ is the set of all important $({\cal X},{\cal Y})$ -cuts, then $\sum_{{\cal S} \in {\cal S}} 4^{-|{\cal S}|} \leq 1$ holds.

Lemma

The search tree for the MULTIWAY CUT algorithm has 4^k leaves.

Proof: Let L_k be the maximum number of leaves with parameter k . We prove $L_k \leq 4^k$ by induction. After enumerating the set S_k of important cuts of size $\leq k$, we branch into $|S_k|$ directions.

$$
\sum_{S \in \mathcal{S}_k} 4^{k-|S|} = 4^k \cdot \sum_{S \in \mathcal{S}_k} 4^{-|S|} \le 4^k
$$

Algorithm for MULTIWAY CUT

Theorem

MULTIWAY CUT can be solved in time $O(4^k \cdot k^3 \cdot (|V(G)| + |E(G)|)).$

- **1** If every vertex of \overline{T} is in a different component, then we are done.
- 2 Let $t \in T$ be a vertex that is not separated from every $T \setminus t$.
- **3** Enumerate every imporant $(t, T \setminus t)$ cut of size at most k and branch on choosing one such cut S.
- \bullet Set $G := G \setminus S$ and $k := k |S|$.
- **6** Go to step 1.

MULTICUT

MULTICUT **Input:** Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k **Find:** A set S of edges such that $G \setminus S$ has no s_i -t_i path for any *i*.

Theorem

 $\mathrm{MULTI CUT}$ can be solved in time $f(k,\ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

MULTICUT

MULTICUT **Input:** Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k Find: A set S of edges such that $G \setminus S$ has no s_i-t_i path for any i.

Theorem

 $\mathrm{MULTI CUT}$ can be solved in time $f(k,\ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Proof: The solution partitions $\{s_1, t_1, \ldots, s_\ell, t_\ell\}$ into components. Guess this partition, contract the vertices in a class, and solve $MULTIWAY$ CUT .

Theorem

MULTICUT is FPT parameterized by the size k of the solution.

Definition

A minimal (X,Y) -cut $\delta(R)$ is $\bm{1}$ important if there is no (X,Y) -cut $\delta(R')$ with $R\subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Simple combinatorial bound

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal $s-t$ cut of size at most k .

Simple combinatorial bound

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal $s-t$ cut of size at most k .

Proof: We show that every such edge is contained in an important (s, t) -cut of size at most k .

Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$.

Simple combinatorial bound

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal $s-t$ cut of size at most k.

Proof: We show that every such edge is contained in an important (s, t) -cut of size at most k

Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$. There is an important (s, t) -cut $\delta(R')$ with $R \subseteq R'$ and $|\delta(R')| \leq k$. Clearly, $vt \in \delta(R')$: $v \in R$, hence $v \in R'$.

Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s , but S_i does not separate t_j from s for any $j\neq i.$ It is possible that *n* is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_i except t_i ?

Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s , but S_i does not separate t_j from s for any $j\neq i.$ It is possible that *n* is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_i except t_i ?

Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s , but S_i does not separate t_j from s for any $j\neq i.$ It is possible that *n* is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_i except t_i ?
Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s , but S_i does not separate t_j from s for any $j\neq i.$ It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_i except t_i ?

Lemma

If S_i separates t_j from s if and only $j\neq i$ and every S_i has size at most k , then $n \leq (k+1) \cdot 4^{k+1}$

Is the opposite possible, i.e., S_i separates every t_i except t_i ?

Lemma

If S_i separates t_j from s if and only $j\neq i$ and every S_i has size at most k , then $n \leq (k+1) \cdot 4^{k+1}$

Proof: Add a new vertex t . Every edge tt_i is part of an (inclusionwise minimal) (s, t) -cut of size at most $k + 1$. Use the previous lemma.

Is the opposite possible, i.e., S_i separates every t_i except t_i ?

Lemma

If S_i separates t_j from s if and only $j\neq i$ and every S_i has size at most k , then $n \leq (k+1) \cdot 4^{k+1}$

Proof: Add a new vertex t . Every edge tt_i is part of an (inclusionwise minimal) (s, t) -cut of size at most $k + 1$. Use the previous lemma.

Is the opposite possible, i.e., S_i separates every t_i except t_i ?

Lemma

If S_i separates t_j from s if and only $j\neq i$ and every S_i has size at most k , then $n \leq (k+1) \cdot 4^{k+1}$

Proof: Add a new vertex t . Every edge tt_i is part of an (inclusionwise minimal) (s, t) -cut of size at most $k + 1$. Use the previous lemma.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R. **Observation:** Every inclusionwise-minimal directed (X, Y) -cut S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$. Definition: A minimal (X, Y) -cut $\vec{\delta}(R)$ is important if there is no (X, Y) -cut $\vec{\delta}(R')$

with $R\subset R'$ and $|\vec{\delta}(R')|\leq |\vec{\delta}(R)|.$

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R. **Observation:** Every inclusionwise-minimal directed (X, Y) -cut S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$. Definition: A minimal (X, Y) -cut $\vec{\delta}(R)$ is important if there is no (X, Y) -cut $\vec{\delta}(R')$

with $R\subset R'$ and $|\vec{\delta}(R')|\leq |\vec{\delta}(R)|.$

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R. **Observation:** Every inclusionwise-minimal directed (X, Y) -cut S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: A minimal (X, Y) -cut $\vec{\delta}(R)$ is important if there is no (X, Y) -cut $\vec{\delta}(R')$ with $R\subset R'$ and $|\vec{\delta}(R')|\leq |\vec{\delta}(R)|.$

The proof for the undirected case goes through for the directed case:

Theorem

There are at most 4^k important directed (X, Y) -cuts of size at most k .

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs) Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with $k = 1$ edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs) Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with $k = 1$ edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs) Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with $k = 1$ edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs) Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -cut.

Problem in the undirected proof:

Replacing R by R' cannot create a $t \to u$ path, but can create a $u \to t$ path.

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -cut.

Using additional techniques, one can show:

Theorem

DIRECTED MULTIWAY CUT is FPT parameterized by the size k of the solution.

DIRECTED MULTICUT **Input:** Graph G, pairs (s_1, t_1) , ..., (s_ℓ, t_ℓ) , integer k **Find:** A set S of edges such that $G \setminus S$ has no $s_i \rightarrow t_i$ path for any *i*.

Theorem

DIRECTED MULTICUT with $\ell = 4$ is W[1]-hard parameterized by k.

DIRECTED MULTICUT **Input:** Graph G, pairs (s_1, t_1) , ..., (s_ℓ, t_ℓ) , integer k **Find:** A set S of edges such that $G \setminus S$ has no $s_i \rightarrow t_i$ path for any *i*.

Theorem

DIRECTED MULTICUT with $\ell = 4$ is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

DIRECTED MULTICUT **Input:** Graph G, pairs (s_1, t_1) , ..., (s_ℓ, t_ℓ) , integer k **Find:** A set S of edges such that $G \setminus S$ has no $s_i \rightarrow t_i$ path for any *i*.

Theorem

DIRECTED MULTICUT with $\ell = 4$ is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

DIRECTED MULTICUT **Input:** Graph G, pairs (s_1, t_1) , ..., (s_ℓ, t_ℓ) , integer k **Find:** A set S of edges such that $G \setminus S$ has no $s_i \rightarrow t_i$ path for any *i*.

Theorem

DIRECTED MULTICUT with $\ell = 4$ is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

DIRECTED MULTICUT **Input:** Graph G, pairs (s_1, t_1) , ..., (s_ℓ, t_ℓ) , integer k **Find:** A set S of edges such that $G \setminus S$ has no $s_i \rightarrow t_i$ path for any *i*.

Theorem

DIRECTED MULTICUT with $\ell = 4$ is W[1]-hard parameterized by k.

Corollary

DIRECTED MULTICUT with $\ell = 2$ is FPT parameterized by the size k of the solution.

Open: Is DIRECTED MULTICUT with $\ell = 3$ FPT?

SKEW MULTICUT

SKEW MULTICUT

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an important $(\mathsf{s}_{\ell}, \{t_1, \ldots, t_{\ell}\})$ -cut.

SKEW MULTICUT

Theorem

SKEW MULTICUT can be solved in time $4^k \cdot n^{O(1)}$.

DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK VERTEX/EDGE SET **Input:** Directed graph G , integer k Find: A set S of k vertices/edges such that $G \setminus S$ is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the edge version here. Note: It is not a generalization of (UNDIRECTED) FEEDBACK VERTEX SET!

Theorem

DIRECTED FEEDBACK EDGE SET is FPT parameterized by the size k of the solution.

Solution uses the technique of **Iterative compression.**

DIRECTED FEEDBACK EDGE SET COMPRESSION **Input:** Directed graph G , integer k , a set W of $k + 1$ edges such that $G \setminus W$ is acyclic Find: A set S of k edges such that $G \setminus S$ is acyclic.

Easier than the original problem, as the extra input W gives us useful structural information about G.

Lemma

The compression problem is FPT parameterized by k .

DIRECTED FEEDBACK EDGE SET COMPRESSION **Input:** Directed graph G , integer k , a set W of $k + 1$ vertices such that $G \setminus W$ is acyclic **Find:** A set S of k edges such that $G \setminus S$ is acyclic.

Easier than the original problem, as the extra input W gives us useful structural information about G.

Lemma

The compression problem is FPT parameterized by k .

A useful trick for edge deletion problems: we define the compression problem in a way that a solution of $k + 1$ vertices are given and we have to find a solution of k edges.

Proof: Let $W = \{w_1, ..., w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

• By guessing the order of $\{w_1, \ldots, w_{k+1}\}$ in the acyclic ordering of $G \setminus S$, we can assume that $w_1 < w_2 < \cdots < w_{k+1}$ in $G \setminus S$ $[(k+1)!]$ possibilities].

Proof: Let $W = \{w_1, ..., w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

Claim:

$$
G \setminus S \text{ is acyclic and has an ordering with } w_1 < w_2 < \cdots < w_{k+1}
$$
\n
$$
\Downarrow
$$
\n
$$
S \text{ covers every } s_i \to t_j \text{ path for every } i \geq j
$$
\n
$$
\Downarrow
$$
\n
$$
G \setminus S \text{ is acyclic}
$$

Proof: Let $W = \{w_1, ..., w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

Claim:

$$
G \setminus S \text{ is acyclic and has an ordering with } w_1 < w_2 < \cdots < w_{k+1}
$$
\n
$$
\Downarrow
$$
\n
$$
S \text{ covers every } s_i \to t_j \text{ path for every } i \geq j
$$
\n
$$
\Downarrow
$$
\n
$$
G \setminus S \text{ is acyclic}
$$

Proof: Let $W = \{w_1, ..., w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

Claim:

$$
G \setminus S \text{ is acyclic and has an ordering with } w_1 < w_2 < \cdots < w_{k+1}
$$
\n
$$
\Downarrow
$$
\n
$$
S \text{ covers every } s_i \to t_j \text{ path for every } i \geq j
$$
\n
$$
\Downarrow
$$
\n
$$
G \setminus S \text{ is acyclic}
$$

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

Directed Feedback Edge Set Compression **Input:** Directed graph G , integer k , a set W of $k + 1$ vertices such that $G \setminus W$ is acyclic Find: A set S of k edges such that $G \setminus S$ is acyclic.

Nice, but how do we get a solution W of size $k + 1$?

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

Directed Feedback Edge Set Compression **Input:** Directed graph G , integer k , a set W of $k + 1$ vertices such that $G \setminus W$ is acyclic Find: A set S of k edges such that $G \setminus S$ is acyclic.

Nice, but how do we get a solution W of size $k + 1$?

We get it for free!

Powerful technique: *iterative compression*.

Let v_1, \ldots, v_n be the vertices of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$. For every $i=1,\ldots,n$, we find a set \mathcal{S}_i of at most k edges such that $\mathcal{G}_i \setminus \mathcal{S}_i$ is acyclic.

Let v_1, \ldots, v_n be the vertices of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$. For every $i=1,\ldots,n$, we find a set \mathcal{S}_i of at most k edges such that $\mathcal{G}_i \setminus \mathcal{S}_i$ is acyclic. • For $i = 1$, we have the trivial solution $S_i = \emptyset$.

Let v_1, \ldots, v_n be the vertices of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$.

For every $i=1,\ldots,n$, we find a set \mathcal{S}_i of at most k edges such that $\mathcal{G}_i \setminus \mathcal{S}_i$ is acyclic.

- For $i = 1$, we have the trivial solution $S_i = \emptyset$.
- Suppose we have a solution S_i for G_i . Let W_i contain the head of each edge in S_i . Then $W_i \cup \{v_{i+1}\}\$ is a set of at most $k+1$ vertices whose removal makes G_{i+1} acyclic.

Let v_1, \ldots, v_n be the vertices of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$.

For every $i=1,\ldots,n$, we find a set \mathcal{S}_i of at most k edges such that $\mathcal{G}_i \setminus \mathcal{S}_i$ is acyclic.

- For $i = 1$, we have the trivial solution $S_i = \emptyset$.
- Suppose we have a solution S_i for G_i . Let W_i contain the head of each edge in S_i . Then $W_i \cup \{v_{i+1}\}\$ is a set of at most $k+1$ vertices whose removal makes G_{i+1} acyclic.
- Use the compression algorithm for G_{i+1} with the set $W_i \cup \{v_{i+1}\}\.$
	- If there is no solution of size k for G_{i+1} , then we can stop.
	- Otherwise the compression algorithm gives a solution S_{i+1} of size k for G_{i+1} .

Let v_1, \ldots, v_n be the vertices of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$.

For every $i=1,\ldots,n$, we find a set \mathcal{S}_i of at most k edges such that $\mathcal{G}_i \setminus \mathcal{S}_i$ is acyclic.

- For $i = 1$, we have the trivial solution $S_i = \emptyset$.
- Suppose we have a solution S_i for G_i . Let W_i contain the head of each edge in S_i . Then $W_i \cup \{v_{i+1}\}\;$ is a set of at most $k+1$ vertices whose removal makes G_{i+1} acyclic.
- Use the compression algorithm for G_{i+1} with the set $W_i \cup \{v_{i+1}\}\$.
	- If there is no solution of size k for G_{i+1} , then we can stop.
	- Otherwise the compression algorithm gives a solution S_{i+1} of size k for G_{i+1} .

Running time: We call the compression algorithm n times, everything else is polynomial.

Theorem

DIRECTED FEEDBACK EDGE SET is FPT parameterized by the size k of the solution.

Summary

- Definition of important cuts.
- Simple but essentially tight combinatorial bound on the number of important cuts.
- Pushing argument: we can assume that the solution contains an important cut. Solves MULTIWAY CUT, SKEW MULTICUT.
- \bullet Iterative compression reduces DIRECTED FEEDBACK EDGE SET to SKEW MULTICUT