
Karl Bringmann and Vasileios Nakos Summer 2020

Sublinear Algorithms, Exercise Sheet 2
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer20/sublinear-algorithms/

Total Points: 40 Due: 12:00 (noon), Monday, June 15, 2020

You are allowed to collaborate on the exercise sheets, but you have to write down a solution on your own, using
your own words. Please indicate the names of your collaborators for each exercise you solve. Further, cite
all external sources that you use (books, websites, research papers, etc.).

You need to collect at least 50% of all points on exercise sheets to be admitted to the exam.

Exercise 1 10 points
In this exercise we shall see a variant of the Heavy Hitters problem, to which we refer as the List-
Heavy Hitters problem: Given a stream of m elements over the universe [n], the task is to compute a
set of size O(ε−1) which is guaranteed to contain all elements occuring at least εm many times in the
stream. The Misra-Gries algorithm is a deterministic algorithm for the List-Heavy Hitters problem:

Initialization: Maintain a set S of at most k index/counter pairs, initialized to S = ∅.
Update(i): There are three cases:

� If (i, c) ∈ S for some counter c, then increment c: S ← (S \ {(i, c)}) ∪ {(i, c + 1)}.
� Otherwise, if |S| < k, add (i, 1) to the set: S ← S ∪ {(i, 1)}.
� Otherwise, decrement all counters and remove zeros: S ← {(i, c− 1) : (i, c) ∈ S, c > 1}.

Query: Return {i : (i, c) ∈ S} as the set containing all heavy hitters.

What’s the (asymptotically) minimal choice of k for which the Misra-Gries algorithm works correctly?
Give a correctness proof for that choice and analyze the space complexity of the algorithm.

Exercise 2 4 + 6 points
The goal of this exercise is to derive a streaming algorithm for counting triangles in a graph. More
formally: Let G be an undirected graph with vertex set [n] and edge set E. A triangle in G is a set of
three distinct vertices v1, v2, v3 ∈ [n], which are pairwise connected: {v1, v2}, {v2, v3}, {v3, v1} ∈ E.

1. Let x ∈ Z(n3) be the vector indexed by size-3 subsets of vertices, where xS equals the number of
edges in S: xS = |{e ∈ E : e ⊆ S}|. Recall that the p-th frequency moment of x is Fp =

∑
S |xS |p

for p > 0 and F0 = limp→0 Fp = |{S : xS 6= 0}|. Prove that

F0 −
3

2
F1 +

1

2
F2

equals the number of triangles in G.

2. In the usual streaming setup for graphs, the stream consists of the edges in an arbitrary order,
but without repetitions. Design a streaming algorithm in that setting which counts the number
of triangles in the streamed graph G with an absolute error of εn3, e.g. using the first part of this
exercise. Your algorithm is supposed to be correct with probability 2

3 and the space usage should
be bounded by O(ε−2 log n) bits.

1

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer20/sublinear-algorithms/

For the following two exercises, recall the setup of combinatorial group testing from the lecture (or
equivalently, the CountMin sketch framework):

Measurements: For each r = 1, . . . , R, we execute the following steps:

� Pick a random hash function hr : [n]→ [2k].
� Perform a measurement on each of the 2k groups h−1r (b) = {i ∈ [n] : hr(i) = b} for b =

1, . . . , 2k. We say that a group is infected if the measurement detected at least one infected
individual in the group.

Find: Classify each i ∈ [n] as infected if and only if it occured in infected groups only.

Exercise 3 10 points
In real world applications of combinatorial group testing, for various reasons it is often necessary
to cap the group size at, say, ≤ d. That restricted problem is called d-sparse combinatorial group
testing. In this exercise, we examine how to deal with that restriction algorithmically: Prove that
if d ≥ 50 log n, then O(max{k, n/d} · log n) measurements suffice to solve the non-uniform d-sparse
combinatorial group testing problem – that is, any fixed set of k infected individuals can be recovered
after O(max{k, n/d} · log n) measurements on groups of size ≤ d, with probability 2

3 .

Hint: Use the same setup as in the lecture with R = Θ(log n) rounds, but pick random hash functions
hr : [n] → [2 max{k, n/d}]. For the analysis, you might find the multiplicative Chernoff bound (as
stated e.g. in Exercise 1 on the previous sheet) useful.

Exercise 4 5 + 5 points
In the lecture, we proved that setting R = Θ(k log n) we obtain a disjunct matrix, i.e. a set of
measurements which allows uniform recovery for the combinatorial group testing problem. The goal
of this exercise is to prove that the algorithm remains sound if instead of truly random functions, we
pick hr to be pairwise independent.

1. Fix distinct i, i′ ∈ [n]. We shall refer to the number |{r : hr(i) = hr(i
′)}| as the common

participation of i and i′. Prove that with probability 1− 2
3n2 , the common participation of i and

i′ is bounded by (R− 1)/k from above, for R = Θ(k log n).

2. Prove that with probability 2
3 , if hr is a pairwise independent hash function for each r (and

independent across r) the set of measurements forms a disjunct matrix with probability 2
3 , allowing

any set of k infected individuals to be correctly recovered.

2

