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Sublinear Algorithms
Lecture 01: Introduction & Streaming I



Etiquette

- We start every meeting with everyone’s (but mine) mics and videos off, 
to avoid noise and save bandwidth

Questions: - can always be asked in the chat, I will keep an eye on the chat window

- during breaks the recording is paused, so it is safe to turn on your video
and ask questions

- The lecture is recorded and a video will be made available to all participants

- during recording, you can also unmute and ask questions, but be aware that
you are recorded and the video will be made available to all participants

- These slides will be available on the course website



Organization
Advanced Lecture, 2+1, 5CP

Karl Bringmann and Vasileios Nakos
every Thursday 16-18  (on holidays: move to Monday 16-18)
via Zoom + video download

Nick Fischer
every second Monday 16-18
via Zoom

Requirements: basic algorithms lecture, e.g., Grundzüge von Algorithmen und Datenstrukturen

https://lists.mpi-inf.mpg.de/listinfo/sublinear

Exam: oral exam
admittance by ≥50% of points on 4 exercise sheets

Lecture:

Tutorial:

https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer20/sublinear-algorithms/
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Streaming Algorithms:

Data stream 𝑥!, 𝑥", … , 𝑥#
Make one pass over the stream

Working memory 𝑜 𝑛 /𝑂 log 𝑛

Typical problems:

Compute number of distinct 𝑥$’s

Compute the majority element (if exists)

Compute all numbers that appear ≥ 𝜀𝑛 times

©Stefan Funke / Wikipedia≈ low-space data structures
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Randomized Trials:

Estimate the infected population
by testing random individuals

Combinatorial Group Testing:

Mix samples of a group of individuals → test tells
us whether at least one individual is positive

Medical Imaging:

Reconstruct a sparse vector
from few Fourier measurements

©Geoff B Hall / Wikipedia

Find all positive individuals using 𝑜(𝑛) group tests
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Property Testing:

Really sublinear time 𝑜(𝑛)!

“What can we find out about 𝑥!, 𝑥", … , 𝑥#
using 𝑜 𝑛 random accesses?”

Typical problems:

Is 𝑥!, 𝑥", … , 𝑥# monotone or far from monotone? 

Is a graph 2-colorable or far from 2-colorable?
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Course Outline:

3x Streaming (Space)

4x Vector Reconstruction (Measurements)

2x Property Testing (Time)

2x Applications
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Basic Probability Theory
Course Website → Material → A Primer to Randomness

𝑋 is a random coin flipRandom 
Variable:

𝑋 = 𝑋# + 𝑋!, where
𝑋#, 𝑋! are random coin flips

ℙ 𝑋 = 0 = ℙ 𝑋 = 1 = !
"

ℙ 𝑋 = 0 = ℙ 𝑋 = 2 = !
#

and  ℙ 𝑋 = 1 = !
"

Expectation: 𝔼[𝑋] =2
"

𝑛 ⋅ ℙ 𝑋 = 𝑛

𝔼[𝑋] = !
"

𝔼[𝑋] = 1

Linearity of
Expectation:

𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌]

𝑋 = 0Event:

Union Bound: ℙ 𝐴 or 𝐵 ≤ ℙ 𝐴 + ℙ 𝐵

𝑋 ≤ 1

𝑋 is even
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Concentration Inequalities

Markov: For any 𝑡 > 0, assuming 𝑋 ≥ 0ℙ 𝑋 ≥ 𝑡 ≤
𝔼[𝑋]
𝑡

Chebyshev:
For any 𝑡 > 0

ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡! Variance Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"

Chernoff:
For any 𝑡 > 0, assuming 𝑋 = 𝑋! +⋯+ 𝑋$ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤ 2 exp −!%!" with independent 𝑋!, … , 𝑋$ ∈ 0,1

for any values 𝑥!, … , 𝑥$:
ℙ 𝑋! = 𝑥! 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑋$ = 𝑥$
= ℙ 𝑋! = 𝑥! ⋅ … ⋅ ℙ 𝑋$ = 𝑥$
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Counting
monitor a sequence of events, maintain a counter of the number of events

Data structure problem:

maintain a number 𝑛

update(): increment 𝑛 by 1

query(): output 𝑛

initially 𝑛 = 0

Solution:    Standard Counter

store 𝑛 using log 𝑛 = 𝑂 log 𝑛 bits

This is optimal:   with < log 𝑛 bits... 

... we must make an error

→ need approximation

... we run into infinite loops

→ need randomization

Most simple streaming problem



Approximate Counting
monitor a sequence of events, maintain an approximate counter of the number of events

Data structure problem:

maintain a number 𝑛

update(): increment 𝑛 by 1

query(): output E𝑛 with

Solution:    Morris‘ Counter (1978)

1) Initialize 𝑋 = 0

ℙ F𝑛 − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

𝜀, 𝛿 ∈ (0,1) are parameters given to the
algorithm upfront

In other words:  1 − 𝜀 𝑛 < C𝑛 < 1 + 𝜀 𝑛
with probability at least 1 − 𝛿

2) On update():  Increment 𝑋 with probability 2&'

3) On query():  output E𝑛 = 2' − 1

Intuition:  store integer 𝑋 ≈ log 𝑛

When to increment?

Increment with probability #
"
≈ 2&'

Goal:  𝑂 log log 𝑛 space



Approximate Counting

Lem: Morris‘ Counter

1) Initialize 𝑋 = 0

2) On update():  Increment 𝑋 with probability 2%&

3) On query():  output C𝑛 = 2& − 1

Morris‘ Counter is an unbiased
estimator of 𝑛, that is, 𝔼 E𝑛 = 𝑛.

Proof:

Let 𝑋, 𝑋' be the counter before/after the update

𝔼 2%! 𝑋

Consider one update in isolation

express expectation of 2"! in terms of 𝑋

= 2% + 1

=
1
2%

⋅ 2%(! + 1 −
1
2%

⋅ 2%

Thus, inductively after 𝑛 updates we have:  𝔼 2% = 𝑛 + 1

𝔼 2'# = 𝔼 2'#$% + 1



Approximate Counting

Lem: Morris‘ Counter

1) Initialize 𝑋 = 0

2) On update():  Increment 𝑋 with probability 2%&

3) On query():  output C𝑛 = 2& − 1

Morris‘ Counter is an unbiased
estimator of 𝑛, that is, 𝔼 E𝑛 = 𝑛.

Chebyshev: ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡"

Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"

ℙ |F𝑛 − 𝑛| ≥ 𝜀𝑛 ≤
𝔼 9𝑛" − 𝑛"

𝜀!𝑛!

Lem: We have 𝔼 E𝑛! = (
!
𝑛! − #

!
𝑛.

𝔼 4'& 𝑋

= 4' + 3 ⋅ 2'

=
1
2' ⋅ 4

')# + 1 −
1
2' ⋅ 4'

𝔼 4'# = 𝔼 4'#$% + 3 ⋅ 𝔼 2'#$%

𝔼 E𝑛! = 𝔼 2' − 1 ! = 𝔼 4' − 2𝔼 2' + 1

= 3 ⋅ 𝑛 + 1
2= 𝔼 4'#$% + 3𝑛



Approximate Counting

Lem: Morris‘ Counter

1) Initialize 𝑋 = 0

2) On update():  Increment 𝑋 with probability 2%&

3) On query():  output C𝑛 = 2& − 1

Morris‘ Counter is an unbiased
estimator of 𝑛, that is, 𝔼 E𝑛 = 𝑛.

Chebyshev: ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡"

Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"
ℙ |F𝑛 − 𝑛| ≥ 𝜀𝑛 ≤

(
!𝑛! − 𝑛"
𝜀!𝑛! ≤

1
2𝜀!

Lem: We have 𝔼 E𝑛! = (
!
𝑛! − #

!
𝑛.

No approximation guarantee for 𝜀 ≤ 0.7 !
Questions?

5min Break?



Boosting via Chebyshev

Morris‘ Counter computes estimate C𝑛 s.t.  

𝔼 C𝑛 = 𝑛 (unbiased estimator)

ℙ | C𝑛 − 𝑛| ≥ 𝜀𝑛 ≤
Var C𝑛
𝜀"𝑛"

≤
1
2𝜀"

Chebyshev: ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡"

Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"

Morris+:

1) Run 𝑠 independent copies of Morris‘ Counter

2) Let E𝑛#, … , E𝑛* be their estimates

average over 𝑠 runs of Morris

3) output E𝑛) = #
*
⋅ E𝑛# +⋯+ E𝑛*

Lem: For 𝑠 ≥ 1/(2𝜀!𝛿) we have

ℙ F𝑛) − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

𝔼 E𝑛) =
1
𝑠 ⋅ 𝔼 E𝑛# +⋯+ 𝔼 E𝑛* = 𝑛

by linearity of expectation

Proof: Morris+ is an unbiased estimator:



Boosting via Chebyshev

Morris‘ Counter computes estimate C𝑛 s.t.  

𝔼 C𝑛 = 𝑛 (unbiased estimator)

ℙ | C𝑛 − 𝑛| ≥ 𝜀𝑛 ≤
Var C𝑛
𝜀"𝑛"

≤
1
2𝜀"

Chebyshev: ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡"

Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"

Morris+:

1) Run 𝑠 independent copies of Morris‘ Counter

2) Let E𝑛#, … , E𝑛* be their estimates

average over 𝑠 runs of Morris

3) output E𝑛) = #
*
⋅ E𝑛# +⋯+ E𝑛*

Lem: For 𝑠 ≥ 1/(2𝜀!𝛿) we have

ℙ F𝑛) − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

Var E𝑛) =
1
𝑠!
⋅ Var E𝑛# +⋯+ Var E𝑛* =

Var E𝑛
𝑠

Proof: Morris+ is an unbiased estimator

Variance of Morris+ is +,- ."
*

:

1)  Var 𝛼𝑋 = 𝛼'Var[𝑋] 2)  Var 𝑋 + 𝑌 = Var 𝑋 + Var[𝑌] for independent 𝑋, 𝑌



Boosting via Chebyshev

Morris‘ Counter computes estimate C𝑛 s.t.  

𝔼 C𝑛 = 𝑛 (unbiased estimator)
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1) Run 𝑠 independent copies of Morris‘ Counter
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average over 𝑠 runs of Morris

3) output E𝑛) = #
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Lem: For 𝑠 ≥ 1/(2𝜀!𝛿) we have

ℙ F𝑛) − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

Proof: Morris+ is an unbiased estimator

Variance of Morris+ is +,- ."
*

So by Chebyshev:

ℙ | C𝑛 − 𝑛| ≥ 𝜀𝑛 ≤
Var C𝑛(

𝜀"𝑛" ≤
1

2𝑠𝜀" ≤ 𝛿



Approximate Counting
monitor a sequence of events, maintain an approximate counter of the number of events

Data structure problem:

maintain a number 𝑛

update(): increment 𝑛 by 1

query(): output E𝑛 with

Solution:    Morris‘ Counter (1978)

1) Initialize 𝑋 = 0

ℙ F𝑛 − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

2) On update():  Increment 𝑋 with probability 2&'

3) On query():  output E𝑛 = 2' − 1

Goal:  𝑂 log log 𝑛 space

Morris+: average over 𝑠 = 1/(2𝜀!𝛿) runs of Morris

Space usage:

with probability at least 1 − 𝛿

𝑂 #
/!0

log log "
/!0!

bitsonce a counter reaches 𝑋 = log $)
*

, 

by union bound no such counter is ever incremented

it is incremented with probability at most *
$)

, so



Boosting via Chernoff
Morris+: average over 𝑠 runs of Morris, then

ℙ | C𝑛( − 𝑛| ≥ 𝜀𝑛 ≤
1

2𝑠𝜀"

Chernoff: ℙ |𝑋 − 𝔼 𝑋 | ≥ ℓ ≤ 2 exp −"ℓ
!

$

for 𝑋 = 𝑋! +⋯+ 𝑋$, independent 𝑋!, … , 𝑋$ ∈ 0,1

Proof:

Morris++:

1) Run 𝑡 copies of Morris+ with 𝑠 ≔ 2/𝜀!
median over 𝑡 runs of Morris+

2) output median of their estimates E𝑛#), … , E𝑛%)

(that is, sort and pick the middle value)

Lem: For 𝑡 ≥ 8 log 2/𝛿 we have

ℙ F𝑛)) − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

Each run of Morris+ succeeds with prob. ≥ (
1

𝑌 = 𝑌# +⋯+ 𝑌%

𝑌2 =
1 if 𝑖-th run of Morris+ succeeds

0 otherwise

ℙ[Morris++ fails] ≤ ℙ 𝑌 ≤ %
!

≤ ℙ 𝑌 ≤ 𝔼 𝑌 −
𝑡
4
≤ 2 exp −

2𝑡!

16 𝑡
≤ 𝛿

𝔼 𝑌 ≥ (
1 𝑡



Approximate Counting
monitor a sequence of events, maintain an approximate counter of the number of events

Data structure problem:

maintain a number 𝑛

update(): increment 𝑛 by 1

query(): output E𝑛 with

Solution:    Morris‘ Counter (1978)

1) Initialize 𝑋 = 0

ℙ F𝑛 − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

2) On update():  Increment 𝑋 with probability 2&'

3) On query():  output E𝑛 = 2' − 1

Goal:  𝑂 log log 𝑛 space

Morris+: average over 𝑠 = 2/𝜀! runs of Morris

Space usage:

with probability at least 1 − 𝛿

𝑂 #
/!
log #

0
log log "

/0
bits Morris++: median of 𝑡 = 8 log 2/𝛿 runs of Morris+



Approximate Counting
monitor a sequence of events, maintain an approximate counter of the number of events

Solution:    Morris‘ Counter (1978)

1) Initialize 𝑋 = 0

2) On update():  Increment 𝑋 with probability 2&'

3) On query():  output E𝑛 = 2' − 1

Goal:  𝑂 log log 𝑛 space

Morris+: average over 𝑠 = 2/𝜀! runs of Morris

Morris++: median of 𝑡 = 8 log 2/𝛿 runs of Morris+→ Primer to Randomness

We learned about:

- unbiased estimators

- boosting via Chebyshev

- boosting via Chernoff

- probability basics

- concentration inequalities



More Material

- These slides will be available on the course website

- Video recording will be made available

- Course Website → Material → A Primer to Randomness

- Course Website → Material → Link to Summer School on Streaming by Jelani Nelson

- Presence Exercise Sheet: Will be send out in the next couple of days, Tutorial on May 11

See you next week!



EXTRA


