.
UNIVERSITAT
DES iIfh p i
SAARLANDES

max planck institut
informatik

Sublinear Algorithms

Lecture 01: Introduction & Streaming |

Karl Bringmann
May 07, 2020

Established by the European Commission

Etiquette

— These slides will be available on the course website
— The lecture is recorded and a video will be made available to all participants

— We start every meeting with everyone’s (but mine) mics and videos off,
to avoid noise and save bandwidth

Questions: — can always be asked in the chat, | will keep an eye on the chat window

— during breaks the recording is paused, so it is safe to turn on your video
and ask questions

— during recording, you can also unmute and ask questions, but be aware that
you are recorded and the video will be made available to all participants

Organization
Advanced Lecture, 2+1, 5CP

Lecture: Karl Bringmann and Vasileios Nakos
every Thursday 16-18 (on holidays: move to Monday 16-18)

via Zoom + video download

Tutorial: Nick Fischer
every second Monday 16-18

via Zoom

Requirements: basic algorithms lecture, e.g., Grundztige von Algorithmen und Datenstrukturen

Exam: oral exam
admittance by =50% of points on 4 exercise sheets

https://lists.mpi-inf.mpg.de/listinfo/sublinear
https://www.mpi-inf. mpg.de/departments/algorithms-complexity/teaching/summer20/sublinear-algorithms/

Course Overview

[NP: 0(2") 0(2\/17) 0(71")]

0(n100)

. 0 (n*
P:) O(nlogn)

0o(n)

Space o(n)?
##Measurements o(n)?

Time o(n)?

Course Overview

[NP: 0(2") 0(2V%) O(n")J @eamingAlgorithms:

Data stream x¢, x5, ..., Xp,

100
0(m™™) Make one pass over the stream

p. 0@
' O(nlogn) Working memory o(n)/0(logn)

O(n)

5 '

.o)

- & w. BA¥
{8 na

|

=~ |low-space data structures e

Space o(n)? Typical problems:

Compute number of distinct x;’s
##Measurements o(n)?
Compute the majority element (if exists)

Time o(n)? Compute all numbers that appear = en times

Course Overview

[NP: 0o(2M) 02/ O(n")J ﬁandomizedTrials:

Estimate the infected population

0 (n10%) by testing random individuals

p. 0@
) O(nlogn) Combinatorial Group Testing:

0(n) Mix samples of a group of individuals — test tells

4 us whether at least one individual is positive
Space o(n)? Find all positive individuals using o(n) group tests
#Measurements o(n)? Medical Imaging:
. . Reconstruct a sparse vector
Time o(n)’ from few Fourier measurements
-

©Geoff B Hall / Wikipedia

Course Overview

[NP: O(Zn) 0(2\/17) O(n") J
ﬂoperty Testing: \

100
, 0(n™™) Really sublinear time o(n)!
p. 0%
O(nlogn) “What can we find out about x4, X5, ..., X,,
0]
() using o(n) random accesses?”
-
Space o(n)? Typical problems:

Is x1, X5, ..., X, monotone or far from monotone?

##Measurements o(n)?

ys a graph 2-colorable or far from 2-co|orab|e?/
Time o(n)?

Course Overview

[NP: O(Zn) 0(2\/17) 0(71")]

0(71100)
. 0 nZ .
P: (n°) O(nlog) 3 3x Streaming (Space)
0o(n)
~

Course Outline:

4x Vector Reconstruction (Measurements)

-

Space o(n)? 2x Property Testing (Time)

k/Zx Applications
##Measurements o(n)? PP

Time o(n)?

Outline

1) Course Overview ,
Questions?

2) Basic Probability Theory ,
5min Break?

3) Morris’ Counter

Random
Variable:

Expectation:

Linearity of

Expectation:

Basic Probability Theory

Course Website — Material - A Primer to Randomness

X is a random coin flip

X = X{ + X5, where
X1, X5 are random coin flips

PX=0l=PX=1]=3 E[X]=1
P[X = 0] = P[X = 2] = % E[X] {15
and P[X =1] ==
Event: X=0
X<1
X is even

Union Bound:

P[A or B] < P[A] + P[B]

Concentration Inequalities

Markov: PIX >t] < — Foranyt > 0, assuming X > 0

Markov:

Chebyshev:

Concentration Inequalities

PX>t]<—— Foranyt > 0, assuming X > 0

Var[X] Foranyt > 0
t2 Variance Var[X] = E[X?] — E[X]?

—

Concentration Inequalities

Markov: PIX >t] < — Foranyt > 0, assuming X > 0

Var[X] Foranyt > 0

Chebyshev: PlX — E|X|| = t]| <
ebyshev 1 (X = t] = t2 Variance Var[X] = E[X?] — E[X]?

Foranyt > 0, assuming X =X, + -+ X
Chernoff: P[|X — E[X]| = t] < 2exp (_%) y g 1 n

with independent X, ..., X,, € {0,1}

_)
for any values x4, ..., x;:
P[X; = xy and ... and X,, = x,,]
-]P)[Xl - x1] ° oo ©]P)[Xn - xn]

Outline

1) Course Overview ,
Questions?

2) Basic Probability Theory _
5min Break?

3) Morris’ Counter

CO u ntl N g Most simple streaming problem

monitor a sequence of events, maintain a counter of the number of events

g Data structure problem:
maintain a number n
update(): incrementn by 1
query(): outputn

G

~

f

initiallyn =0

Solution: Standard Counter

store n using [logn| = 0(logn) bits

This is optimal: with < logn bits...

... we must make an error

— need approximation

... we run into infinite loops

— need randomization

Approximate Counting coal: 0(loglogn) space

monitor a sequence of events, maintain an approximate counter of the number of events

-

.

Data structure problem:
maintain a number n
update(): incrementn by 1

query(): outpu@with

Pln—n|=en] <6

~

J

In otherwords: (1—e)n<n<(1+¢&)n

with probability at least 1 — §

g,6 € (0,1) are parameters given to the

algorithm upfront

: Solution: Morris‘ Counter (1978)

1) Initialize X = 0

2) On update(): Increment X with probability 2%
5 3) On query(): output 71 = 2% —1

J

Intuition: store integerZX ~ logn)

When to increment?

Increment with probability% ~ 27X

Approximate Counting

Lem: Morris‘ Counter is an unbiased Morris‘ Counter
estimator of n, that is,’lﬁ[ﬁ] =n.) 1) Initialize X = 0

2) On update(): Increment X with probability 27%

Proof: Consider one update in isolation 3) On query(): output i = 2% — 1

Let X, X' be the counter before/after the update

' 1 1
[E[ZX |X] = Z_X . ZX@-l- (1 — 2_X> . ZX express expectation of 2X" in terms of X
_ Il z
=2%+1 E[2%n] = E[2%n-1] 4+ 1

—

Thus, inductively after n updates we have: E[2%] =n @

Approximate Counting

Lem: Morris’ Counter is an unbiased
estimator of n, that is, E[7l] = n.

Morris‘ Counter
1) Initialize X = 0
2) On update(): Increment X with probability 27%

3) On query(): output 1 = 2% — 1

Var|X]-
Chebyshev: P[|X — E[X]]| = t] < L]

—_— t2

Var[X] = E[X?] — E[X]?

, 1 1
E[4%|X]| = % 4X+1_|_(1_2_X) 4%
E[#?] = E[(2¥ — 1)?] = E[4¥] — 2E[2¥] + 1
=4%+3.2%
E[4%] = E[4%] + 3+ E[2%n] = E[4%]+3n =3-(" T 1)

Approximate Counting

Lem: Morris’ Counter is an unbiased
estimator of n, that is, E[7l] = n.

(
£ 3
Lem: We have E[71?] = Enz >Q
P[|n —n| = en] < o

[No approximation guarantee for ¢ < 0.7 | '

A

Morris‘ Counter
1) Initialize X = 0
2) On update(): Increment X with probability 27%

3) On query(): output 1 = 2% — 1

Chebyshev: P[|X — E[X]]| = ¢t] < Va;“EX]
Var[X] = E[X?] — E[X]?
Questions?

5min Break?

Boosting via Chebyshev

4)
Morris+: average over s runs of Morris
1) Run s independent copies of Morris Counter
2) Let 74, ..., Tig be their estimates
3) output 1t = % (g + -+ i) ”
. .
Lem: Fors = 1/(2¢%6) we have
P[[n* —n| = en] <4 ”
Proof: Morris+ is an unbiased estimator: E[

Morris Counter computes estimate 71 s.t.

E[71]] = n (unbiased estimator)

Var|1i] 1

Pl[n —n| = en| < <

Var[X]
t2

Chebyshev: P[|X — E[X]| =>¢t] <

Var[X] = E[X?] — E[X]?

(B[] + -+ B[R] = n

a—
—

by linearity of expectation

Boosting via Chebyshev

(")
Morris+: average over s runs of Morris Morris‘ Counter computes estimate 71 s.t.
1) Run s independent copies of Morris‘ Counter E[#] = n (unbiased estimator)
2) Let 74, ..., Tig be their estimates Var[#] 1
" Plli—n|=en| <——5 <=
3) output AT =~ (A + - + 7iy) e2n? = 2¢
_ _J
i Chebyshev: P[X — E[X]| = f] < “o i
ebyshev: — > t] <
Lem: Fors > 1/(228) we have Y t?
P[[nt —n|=>en] <6 Var[X] = E[X?] — E[X]*
. | | s ey
Proof: Morris+ is an unbiased estimator
. .. Var[d 1 Var|n
Variance of Morris+ is ar(n] , Var[ﬁ+] =—- (Var[ﬁl] 4 o Var[ﬁs]) — 7] \
S S P S

(1) Var[aX] = a*Var[X] 2) Var[X + Y] = Var[X] + Var[Y] for independent X, Y]

Boosting via Chebyshev

4)
Morris+: average over s runs of Morris
1) Run s independent copies of Morris Counter
2) Let 74, ..., Tig be their estimates
3) output it = % (A, + -+ 1)
. .
Lem: Fors = 1/(2¢%6) we have
P[[n* —n| = en] <4
Proof: Morris+ is an unbiased estimator

Var[n]
S

Variance of Morris+ is

Morris Counter computes estimate 71 s.t.

E[71]] = n (unbiased estimator)

P(I7 -]<Var[fi]< 1
il =] = s = g?n? = 2¢?
P
Var[X]

Chebyshev: P[|X — E[X]| =>¢t] <

Var[X] = E[X?] — E[X]?

So by Chebyshev:

Approximate Counting coal: 0(loglogn) space

monitor a sequence of events, maintain an approximate counter of the number of events

-

Data structure problem:
maintain a number n
update(): incrementn by 1
query(): output 71 with

P[|n — n| Zen]SSI

~

J

ns
once a counter reaches X =i log 1 5))

it is incremented with probability at most

@s

by union bound no such counter is ever incremented

0)

4)
Solution: Morris‘ Counter (1978)
1) Initialize X = 0
2) On update(): Increment X with probability 2%
3) On query(): output 71 = 2% —1
_ J
.))
Morris+: average over s = [1/(2&°6)] runs of Morris
S
1 Space usage: 0O @loglog (5252)) bits

== With probability atleast 1 — ¢

\.‘

Boosting via Chernoff

Lem: Fort >(8log(2/6) e have
P[[n*t —n|=>en] <4
Proof:

Each run of Morris+ succeeds with prob. >

»

Y=Y, ++Y,

1 if i-th run of Morris+ succeeds

>3

E[Y] =2t

P[Morris++ fails] < P [Y < g]

[l 2t2
< IP[Y < E[Y] _Z] <Z2exp| -

= a e

B w

0 otherwise EE'(‘-’} :ﬁE{\-:/Q-;%

i5e) 70

Morris+: average over s runs of Morris, then

|

P[|it —n| = en] < 1
,) B ~ 2s¢g?
=% n=%t
Chernoft/: "\ P[|X — E[X]| = f] < 2exp (—2—;";2)

forX = X; + .-+ X,,, independent X, ..., X,, € {0,1}

-

_

. , _ A
Morris++: median over t runs of Morris+ / d\ = —-}

1) Run t copies of Morris+ with s := [2/&?]

/

2) output median of their estimates 7], ..., fi;

(that is, sort and pick the middle value)

J

Approximate Counting coal: 0(loglogn) space

monitor a sequence of events, maintain an approximate counter of the number of events

4 N\ ()
Data structure problem: Solution: Morris‘ Counter (1978)
maintain a number n 1) Initialize X = 0
update(): incrementn by 1 2) On update(): Increment X with probability 2%
query(): output 7 with 3) On query(): output 71 = 2% —1
_ _ J
Pl[lIn—n| = en] <6
a0 .)
_ Y, Morris+: average over s = |2/€“] runs of Morris
_ J
Space usage: e ~
1 1 n . Morris++: median of t = [8log(2/6)]| runs of Morris+
0, (8_2108 (5) log log (5)) bits _)

with probability at least 1 — 6

Approximate Counting coal: 0(loglogn) space

monitor a sequence of events, maintain an approximate counter of the number of events

4 N >
We learned about: Solution: Morris‘ Counter (1978)
[s
— probability basics 1) Initialize X = 0
— concentration inequalities 2) On update(): Increment X with probability 27%
— unbiased estimators 3) On query(): output 71 = 2% —1
_ J
— boosting via Chebyshev s ™
Morris+: average over s = [2/£?] runs of Morris
— boosting via Chernoff / \ Y,
2 e | o
— Primer to Randomness £ \Morr|s++: median of t = [8log(2/5)]| runs of Morr/sD

_ /

More Material

These slides will be available on the course website
Video recording will be made available
Course Website > Material > A Primer to Randomness

Course Website - Material - Link to Summer School on Streaming by Jelani Nelson

Presence Exercise Sheet: Will be send out in the next couple of days, Tutorial on May 11

See you next week!

