

Sublinear Algorithms

Lecture 01: Introduction & Streaming I

European Research Council Established by the European Commission Karl Bringmann

May 07, 2020

Etiquette

- These **slides** will be available on the course website
- The lecture is **recorded** and a video will be made available to all participants
- We start every meeting with everyone's (but mine) mics and videos off, to avoid noise and save bandwidth
- **Questions:** can always be asked in the **chat**, I will keep an eye on the chat window
 - during breaks the recording is paused, so it is safe to turn on your video and ask questions
 - during recording, you can also unmute and ask questions, but be aware that you are recorded and the video will be made available to all participants

Organization

Advanced Lecture, 2+1, 5CP

Lecture: Karl Bringmann and Vasileios Nakos every Thursday 16-18 (on holidays: move to Monday 16-18) via Zoom + video download

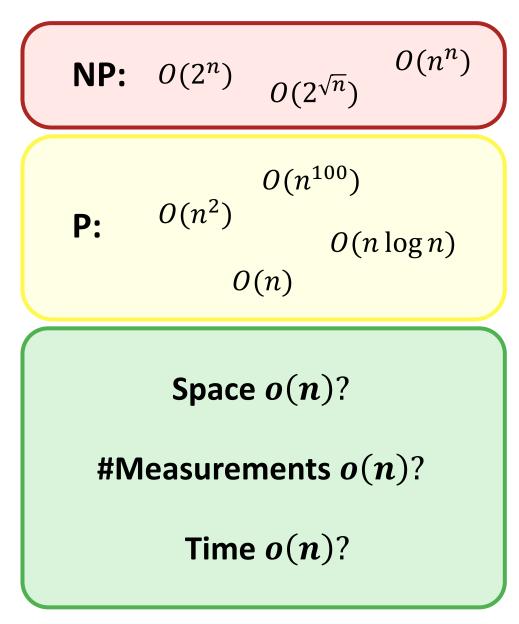
Tutorial:Nick Fischerevery second Monday 16-18via Zoom

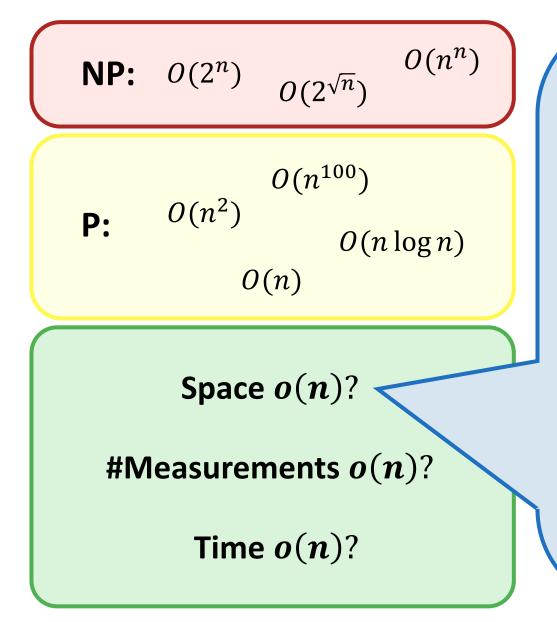
Requirements: basic algorithms lecture, e.g., Grundzüge von Algorithmen und Datenstrukturen

Exam: oral exam admittance by \geq 50% of points on 4 exercise sheets

https://lists.mpi-inf.mpg.de/listinfo/sublinear

https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer20/sublinear-algorithms/





Streaming Algorithms:

Data stream $x_1, x_2, ..., x_n$ Make one pass over the stream Working memory $o(n)/O(\log n)$

 \approx low-space data structures

be-cix

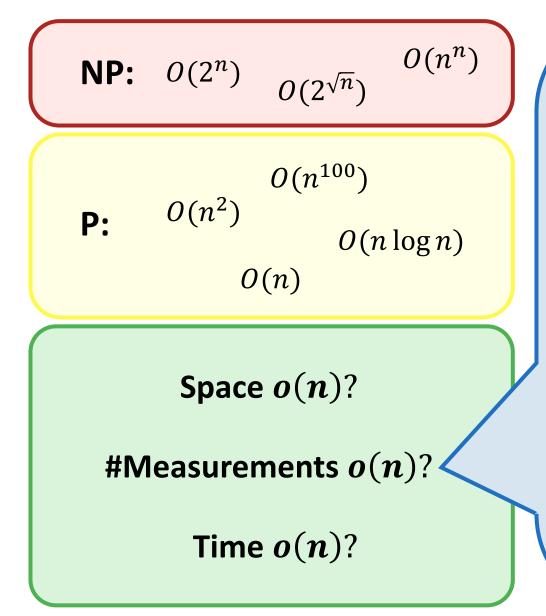
©Stefan Funke / Wikipedia

Typical problems:

Compute number of distinct x_i 's

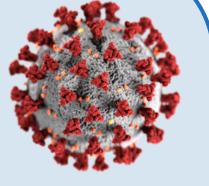
Compute the majority element (if exists)

Compute all numbers that appear $\geq \varepsilon n$ times



Randomized Trials:

Estimate the infected population by testing random individuals



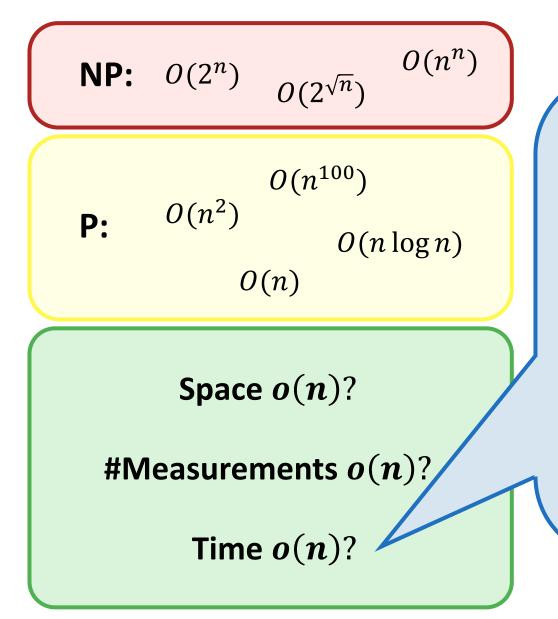
Combinatorial Group Testing:

Mix samples of a group of individuals \rightarrow test tells us whether at least one individual is positive Find *all* positive individuals using o(n) group tests

Medical Imaging:

Reconstruct a sparse vector from few Fourier measurements

©Geoff B Hall / Wikipedia



Property Testing:

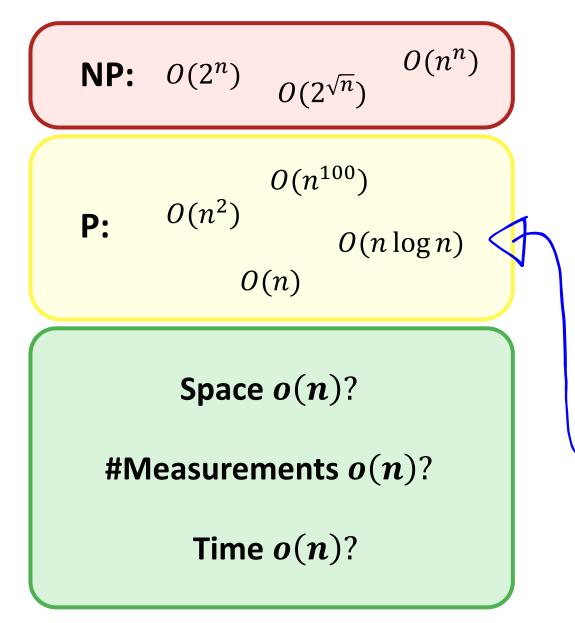
Really sublinear time o(n)!

"What can we find out about x_1, x_2, \dots, x_n

using o(n) random accesses?"

Typical problems:

Is $x_1, x_2, ..., x_n$ monotone or *far* from monotone? Is a graph 2-colorable or *far* from 2-colorable?



Course Outline:

3x Streaming (Space)

4x Vector Reconstruction (Measurements)

2x Property Testing (Time)

2x Applications

Outline

1) Course Overview

2) Basic Probability Theory

Questions?

5min Break?

3) Morris' Counter

Basic Probability Theory

Course Website \rightarrow Material \rightarrow A Primer to Randomness

Random Variable:	X is a random coin flip	$\mathbb{P}[X=0]=\mathbb{P}$	$P[X=1] = \frac{1}{2}$	$\mathbb{E}[X] = \frac{1}{2}$
	$X = X_1 + X_2$, where X_1, X_2 are random coin flips	$\mathbb{P}[X=0]=\mathbb{P}$ and $\mathbb{P}[X=1]$		$\mathbb{E}[X] = 1$
Expectation:	$\mathbb{E}[X] = \sum_{n} n \cdot \mathbb{P}[X = n]$	Event:	$X = 0$ $X \le 1$	
Linearity of Expectation:	$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$		X is even	
		Union Bound:	$\mathbb{P}[A \text{ or } B] \leq \mathbb{I}$	$\mathbb{P}[A] + \mathbb{P}[B]$

Concentration Inequalities

$$\mathbb{P}[X \ge t] \le \frac{\mathbb{E}[X]}{t}$$

For any t > 0, assuming $X \ge 0$

Concentration Inequalities

Markov:

$$\mathbb{P}[X \ge t] \le \frac{\mathbb{E}[X]}{t}$$

TTT F T 7 7

For any t > 0, assuming $X \ge 0$

Chebyshev:
$$\mathbb{P}[|X - \mathbb{E}[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$

For any t > 0Variance Var $[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Concentration Inequalities

Markov:

$$[X \ge t] \le \frac{\mathbb{E}[X]}{t}$$

For any t > 0, assuming $X \ge 0$

Chebyshev:
$$\mathbb{P}[|X - \mathbb{E}[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$

 \mathbb{P}

For any t > 0Variance Var $[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Chernoff: $\mathbb{P}[|X - \mathbb{E}[X]| \ge t] \le 2 \exp\left(-\frac{2t^2}{n}\right)$

For any t > 0, assuming $X = X_1 + \dots + X_n$ with *independent* $X_1, \dots, X_n \in \{0, 1\}$ for any values x_1, \dots, x_n : $\mathbb{P}[X_1 = x_1 \text{ and } \dots \text{ and } X_n = x_n]$ $= \mathbb{P}[X_1 = x_1] \cdot \dots \cdot \mathbb{P}[X_n = x_n]$

Outline

1) Course Overview

2) Basic Probability Theory

Questions?

5min Break?

3) Morris' Counter

Counting

Most simple streaming problem

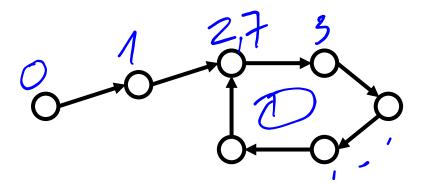
monitor a sequence of events, maintain a **counter** of the number of events

maintain a number n

update(): increment *n* by 1

query(): output n

initially n = 0



Solution: Standard Counter

store *n* using $\lceil \log n \rceil = O(\log n)$ bits

This is optimal: with $< \log n$ bits...

... we must make an error

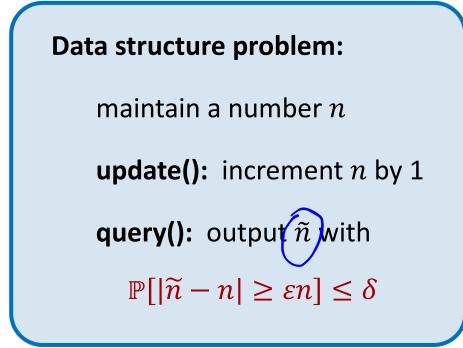
 \rightarrow need **approximation**

... we run into infinite loops

 \rightarrow need **randomization**

Goal: $O(\log \log n)$ space

monitor a sequence of events, maintain an **approximate counter** of the number of events



In other words: $(1 - \varepsilon)n < \tilde{n} < (1 + \varepsilon)n$ with probability at least $1 - \delta$

 $\varepsilon, \delta \in (0,1)$ are parameters given to the algorithm upfront

Solution: Morris' Counter (1978)

1) Initialize X = 0

2) On update(): Increment X with probability 2^{-X}

3) On query(): output $\tilde{n} = 2^X - 1$

Intuition: store integer $X \approx \log n$ When to increment? Increment with probability $\frac{1}{n} \approx 2^{-X}$

Lem: Morris' Counter is an **unbiased** estimator of n, that is, $\mathbb{E}[\tilde{n}] = n$.

Proof: Consider one update in isolationLet *X*, *X'* be the counter before/after the update

Morris' Counter
1) Initialize
$$X = 0$$

2) On update(): Increment X with probability 2^{-X}
3) On query(): output $\tilde{n} = 2^{X} - 1$

$$\mathbb{E}[2^{X'}|X] = \frac{1}{2^X} \cdot 2^{X+1} + \left(1 - \frac{1}{2^X}\right) \cdot 2^X \qquad \text{express expectation of } 2^{X'} \text{ in terms of } X$$
$$= 2^X + 1 \qquad \qquad \mathbb{E}[2^{X_n}] = \mathbb{E}[2^{X_{n-1}}] + 1$$
Thus, inductively after *n* updates we have:
$$\mathbb{E}[2^X] = n + 1$$

Lem: Morris' Counter is an **unbiased** estimator of n, that is, $\mathbb{E}[\tilde{n}] = n$.

$$\mathbb{P}[|\widetilde{n} - n| \ge \varepsilon n] \le \frac{\mathbb{E}[\widetilde{n}^2] - n^2}{\varepsilon^2 n^2}$$

Lem: We have
$$\mathbb{E}[\tilde{n}^2] = \frac{3}{2}n^2 - \frac{1}{2}n$$
.

$$\mathbb{E}[4^{X'}|X] = \frac{1}{2^X} \cdot 4^{X+1} + \left(1 - \frac{1}{2^X}\right) \cdot 4^X$$

$= 4^X + 3 \cdot 2^X$

$$\mathbb{E}[4^{X_n}] = \mathbb{E}[4^{X_{n-1}}] + 3 \cdot \mathbb{E}[2^{X_{n-1}}] = \mathbb{E}[4^{X_{n-1}}] + 3n = 3 \cdot \binom{n+1}{2}$$

Morris' Counter

1) Initialize X = 0

2) On update(): Increment X with probability 2^{-X}

3) On query(): output $\tilde{n} = 2^X - 1$

Chebyshev:
$$\mathbb{P}[|X - \mathbb{E}[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$

 $\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

 $\mathbb{E}[\tilde{n}^2] = \mathbb{E}[(2^X - 1)^2] = \mathbb{E}[4^X] - 2\mathbb{E}[2^X] + 1$

Lem: Morris' Counter is an **unbiased** estimator of n, that is, $\mathbb{E}[\tilde{n}] = n$.

Lem: We have
$$\mathbb{E}[\tilde{n}^2] \stackrel{\checkmark}{=} \frac{3}{2}n^2 \stackrel{1}{\longrightarrow} n$$
.

$$\mathbb{P}[|\widetilde{n} - n| \ge \varepsilon n] \le \frac{\frac{3}{2}n^2 - n^2}{\varepsilon^2 n^2} \le \frac{1}{2\varepsilon^2}$$

No approximation guarantee for $\varepsilon \leq 0.7$!

Morris' Counter

1) Initialize X = 0

2) On update(): Increment X with probability 2^{-X}

3) On query(): output $\tilde{n} = 2^X - 1$

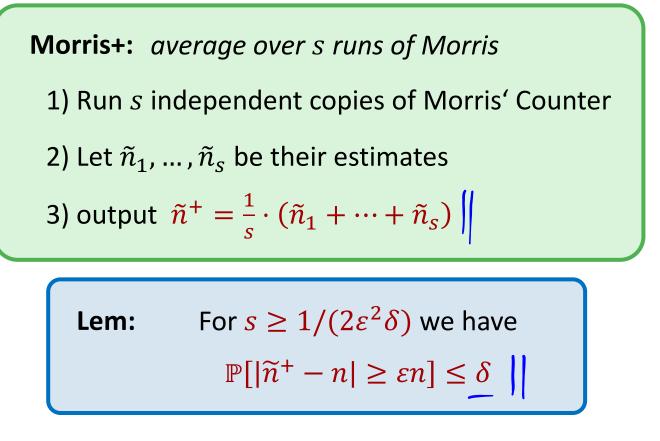
Chebyshev:
$$\mathbb{P}[|X - \mathbb{E}[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$

 $\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Questions?

5min Break?

Boosting via Chebyshev



Proof: Morris+ is an unbiased estimator:

Morris' Counter computes estimate \tilde{n} s.t.

 $\mathbb{E}[\tilde{n}] = n$ (unbiased estimator)

$$\mathbb{P}[|\tilde{n} - n| \ge \varepsilon n] \le \frac{\operatorname{Var}[\tilde{n}]}{\varepsilon^2 n^2} \le \frac{1}{2\varepsilon^2}$$

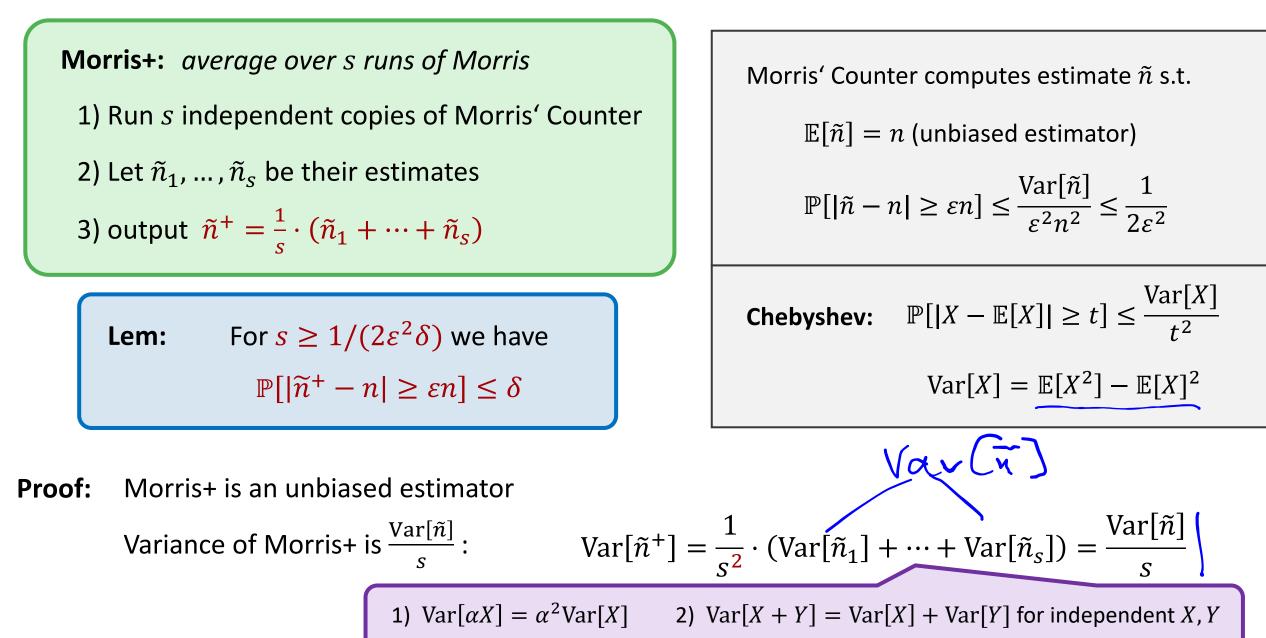
Chebyshev:
$$\mathbb{P}[|X - \mathbb{E}[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$

 $\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

$$\mathbb{E}[\tilde{n}^+] = \frac{1}{s} \cdot (\mathbb{E}[\tilde{n}_1] + \dots + \mathbb{E}[\tilde{n}_s]) = n$$

by linearity of expectation

Boosting via Chebyshev



Boosting via Chebyshev

Morris+: average over s runs of Morris 1) Run *s* independent copies of Morris' Counter 2) Let $\tilde{n}_1, \ldots, \tilde{n}_s$ be their estimates 3) output $\tilde{n}^+ = \frac{1}{s} \cdot (\tilde{n}_1 + \dots + \tilde{n}_s)$ For $s \ge 1/(2\varepsilon^2 \delta)$ we have $\mathbb{P}[|\widetilde{n}^+ - n| \ge \varepsilon n] \le \delta$ Lem:

Morris' Counter computes estimate \tilde{n} s.t.

 $\mathbb{E}[\tilde{n}] = n$ (unbiased estimator)

$$\mathbb{P}[|\tilde{n} - n| \ge \varepsilon n] \le \frac{\operatorname{Var}[\tilde{n}]}{\varepsilon^2 n^2} \le \frac{1}{2\varepsilon^2}$$

Chebyshev: $\mathbb{P}[|X - \mathbb{E}[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$ $\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

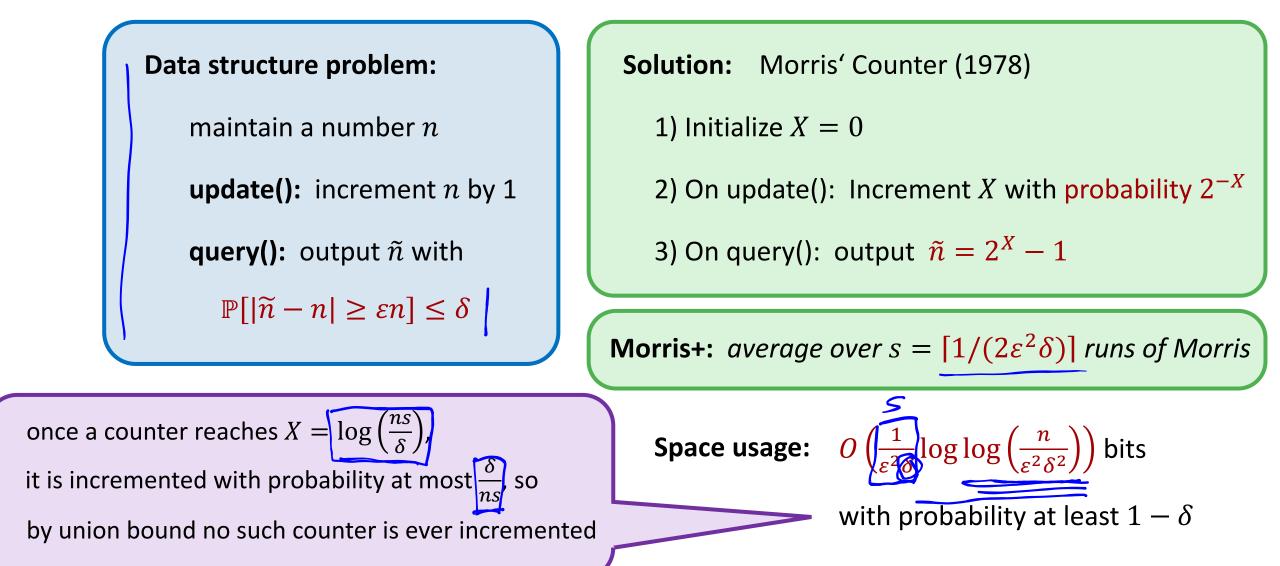
Proof:Morris+ is an unbiased estimatorVariance of Morris+ is $\frac{Var[\tilde{n}]}{s}$

So by Chebyshev:

$$\mathbb{P}[|\tilde{n} - n| \ge \varepsilon n] \le \frac{\operatorname{Var}[\tilde{n}^+]}{\varepsilon^2 n^2} \le \frac{1}{2s\varepsilon^2} \le \delta$$

Goal: $O(\log \log n)$ space

monitor a sequence of events, maintain an **approximate counter** of the number of events



Boosting via Chernoff

Lem: For
$$t \ge 8\log(2/\delta)$$
 we have
 $\mathbb{P}[|\tilde{n}^{++} - n| \ge \varepsilon n] \le \delta$

Proof:

Each run of Morris+ succeeds with prob. $\geq \frac{3}{4}$

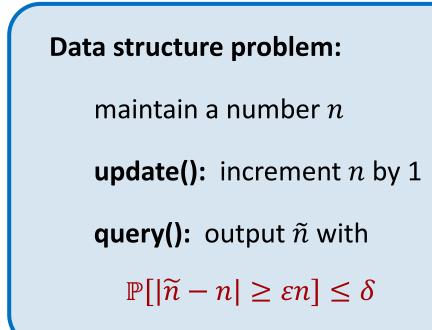
$$\mathbb{P}[\text{Morris++ fails}] \le \mathbb{P}\left[Y \le \frac{t}{2}\right]$$
$$\le \mathbb{P}\left[Y \le \mathbb{E}[Y] - \frac{t}{4}\right] \le 2\exp\left(-\frac{2t^2}{16t}\right) \le \delta$$

Morris+: average over *s* runs of Morris, then $\mathbb{P}[|\tilde{n}^{+} - n| \ge \varepsilon n] \le \frac{1}{2s\varepsilon^{2}}$ $\begin{array}{l} l = \mathcal{H} \\ l = \mathcal{H} \\$

Morris++: median over t runs of Morris+ $\int \frac{1}{4}$ 1) Run t copies of Morris+ with $s := \lfloor 2/\epsilon^2 \rfloor$ 2) output median of their estimates $\tilde{n}_1^+, ..., \tilde{n}_t^+$ (that is, sort and pick the middle value)

Goal: $O(\log \log n)$ space

monitor a sequence of events, maintain an **approximate counter** of the number of events



Space usage:

$$O\left(\frac{1}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\log\log\left(\frac{n}{\varepsilon\delta}\right)\right)$$
 bits

with probability at least $1-\delta$

Solution: Morris' Counter (1978) 1) Initialize X = 02) On update(): Increment X with probability 2^{-X}

3) On query(): output $\tilde{n} = 2^X - 1$

Morris+: average over $s = \lfloor 2/\epsilon^2 \rfloor$ runs of Morris

Morris++: median of $t = \lceil 8 \log(2/\delta) \rceil$ runs of Morris+

Goal: $O(\log \log n)$ space

monitor a sequence of events, maintain an **approximate counter** of the number of events

We learned about:

- probability basics
- concentration inequalities
- unbiased estimators
- boosting via Chebyshev
- boosting via Chernoff

 \rightarrow Primer to Randomness \swarrow

Solution: Morris' Counter (1978)

1) Initialize X = 0

2) On update(): Increment X with probability 2^{-X}

3) On query(): output $\tilde{n} = 2^X - 1$

Morris+: average over $s = \lfloor 2/\epsilon^2 \rfloor$ runs of Morris

Morris++: median of $t = \lceil 8 \log(2/\delta) \rceil$ runs of Morris+

More Material

- These slides will be available on the course website
- Video recording will be made available
- Course Website \rightarrow Material \rightarrow A Primer to Randomness
- Course Website \rightarrow Material \rightarrow Link to Summer School on Streaming by Jelani Nelson

- **Presence Exercise Sheet**: Will be send out in the next couple of days, Tutorial on May 11

See you next week!

EXTRA