
Karl Bringmann

May 07, 2020

Sublinear Algorithms
Lecture 01: Introduction & Streaming I

Etiquette

- We start every meeting with everyone’s (but mine) mics and videos off,
to avoid noise and save bandwidth

Questions: - can always be asked in the chat, I will keep an eye on the chat window

- during breaks the recording is paused, so it is safe to turn on your video
and ask questions

- The lecture is recorded and a video will be made available to all participants

- during recording, you can also unmute and ask questions, but be aware that
you are recorded and the video will be made available to all participants

- These slides will be available on the course website

Organization
Advanced Lecture, 2+1, 5CP

Karl Bringmann and Vasileios Nakos
every Thursday 16-18 (on holidays: move to Monday 16-18)
via Zoom + video download

Nick Fischer
every second Monday 16-18
via Zoom

Requirements: basic algorithms lecture, e.g., Grundzüge von Algorithmen und Datenstrukturen

https://lists.mpi-inf.mpg.de/listinfo/sublinear

Exam: oral exam
admittance by ≥50% of points on 4 exercise sheets

Lecture:

Tutorial:

https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer20/sublinear-algorithms/

Course Overview

P:
𝑂(𝑛)

𝑂(𝑛!)
𝑂(𝑛 log 𝑛)

NP: 𝑂(2")

Space 𝒐 𝒏 ?

𝑂(𝑛")
𝑂(2 ")

𝑂(𝑛#$$)

#Measurements 𝒐 𝒏 ?

Time 𝒐 𝒏 ?

Course Overview

P:
𝑂(𝑛)

𝑂(𝑛!)
𝑂(𝑛 log 𝑛)

NP: 𝑂(2")

Space 𝒐 𝒏 ?

𝑂(𝑛")
𝑂(2 ")

𝑂(𝑛#$$)

#Measurements 𝒐 𝒏 ?

Time 𝒐 𝒏 ?

Streaming Algorithms:

Data stream 𝑥!, 𝑥", … , 𝑥#
Make one pass over the stream

Working memory 𝑜 𝑛 /𝑂 log 𝑛

Typical problems:

Compute number of distinct 𝑥$’s

Compute the majority element (if exists)

Compute all numbers that appear ≥ 𝜀𝑛 times

©Stefan Funke / Wikipedia≈ low-space data structures

Course Overview

P:
𝑂(𝑛)

𝑂(𝑛!)
𝑂(𝑛 log 𝑛)

NP: 𝑂(2")

Space 𝒐 𝒏 ?

𝑂(𝑛")
𝑂(2 ")

𝑂(𝑛#$$)

#Measurements 𝒐 𝒏 ?

Time 𝒐 𝒏 ?

Randomized Trials:

Estimate the infected population
by testing random individuals

Combinatorial Group Testing:

Mix samples of a group of individuals → test tells
us whether at least one individual is positive

Medical Imaging:

Reconstruct a sparse vector
from few Fourier measurements

©Geoff B Hall / Wikipedia

Find all positive individuals using 𝑜(𝑛) group tests

Course Overview

P:
𝑂(𝑛)

𝑂(𝑛!)
𝑂(𝑛 log 𝑛)

NP: 𝑂(2")

Space 𝒐 𝒏 ?

𝑂(𝑛")
𝑂(2 ")

𝑂(𝑛#$$)

#Measurements 𝒐 𝒏 ?

Time 𝒐 𝒏 ?

Property Testing:

Really sublinear time 𝑜(𝑛)!

“What can we find out about 𝑥!, 𝑥", … , 𝑥#
using 𝑜 𝑛 random accesses?”

Typical problems:

Is 𝑥!, 𝑥", … , 𝑥# monotone or far from monotone?

Is a graph 2-colorable or far from 2-colorable?

Course Overview

P:
𝑂(𝑛)

𝑂(𝑛!)
𝑂(𝑛 log 𝑛)

NP: 𝑂(2")

Space 𝒐 𝒏 ?

𝑂(𝑛")
𝑂(2 ")

𝑂(𝑛#$$)

#Measurements 𝒐 𝒏 ?

Time 𝒐 𝒏 ?

Course Outline:

3x Streaming (Space)

4x Vector Reconstruction (Measurements)

2x Property Testing (Time)

2x Applications

Outline

1) Course Overview

2) Basic Probability Theory

3) Morris’ Counter

Questions?

5min Break?

Basic Probability Theory
Course Website → Material → A Primer to Randomness

𝑋 is a random coin flipRandom
Variable:

𝑋 = 𝑋# + 𝑋!, where
𝑋#, 𝑋! are random coin flips

ℙ 𝑋 = 0 = ℙ 𝑋 = 1 = !
"

ℙ 𝑋 = 0 = ℙ 𝑋 = 2 = !
#

and ℙ 𝑋 = 1 = !
"

Expectation: 𝔼[𝑋] =2
"

𝑛 ⋅ ℙ 𝑋 = 𝑛

𝔼[𝑋] = !
"

𝔼[𝑋] = 1

Linearity of
Expectation:

𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌]

𝑋 = 0Event:

Union Bound: ℙ 𝐴 or 𝐵 ≤ ℙ 𝐴 + ℙ 𝐵

𝑋 ≤ 1

𝑋 is even

Concentration Inequalities

Markov: For any 𝑡 > 0, assuming 𝑋 ≥ 0ℙ 𝑋 ≥ 𝑡 ≤
𝔼[𝑋]
𝑡

Concentration Inequalities

Markov: For any 𝑡 > 0, assuming 𝑋 ≥ 0ℙ 𝑋 ≥ 𝑡 ≤
𝔼[𝑋]
𝑡

Chebyshev:
For any 𝑡 > 0

ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡! Variance Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"

Concentration Inequalities

Markov: For any 𝑡 > 0, assuming 𝑋 ≥ 0ℙ 𝑋 ≥ 𝑡 ≤
𝔼[𝑋]
𝑡

Chebyshev:
For any 𝑡 > 0

ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡! Variance Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"

Chernoff:
For any 𝑡 > 0, assuming 𝑋 = 𝑋! +⋯+ 𝑋$ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤ 2 exp −!%!" with independent 𝑋!, … , 𝑋$ ∈ 0,1

for any values 𝑥!, … , 𝑥$:
ℙ 𝑋! = 𝑥! 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑋$ = 𝑥$
= ℙ 𝑋! = 𝑥! ⋅ … ⋅ ℙ 𝑋$ = 𝑥$

Outline

1) Course Overview

2) Basic Probability Theory

3) Morris’ Counter

Questions?

5min Break?

Counting
monitor a sequence of events, maintain a counter of the number of events

Data structure problem:

maintain a number 𝑛

update(): increment 𝑛 by 1

query(): output 𝑛

initially 𝑛 = 0

Solution: Standard Counter

store 𝑛 using log 𝑛 = 𝑂 log 𝑛 bits

This is optimal: with < log 𝑛 bits...

... we must make an error

→ need approximation

... we run into infinite loops

→ need randomization

Most simple streaming problem

Approximate Counting
monitor a sequence of events, maintain an approximate counter of the number of events

Data structure problem:

maintain a number 𝑛

update(): increment 𝑛 by 1

query(): output E𝑛 with

Solution: Morris‘ Counter (1978)

1) Initialize 𝑋 = 0

ℙ F𝑛 − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

𝜀, 𝛿 ∈ (0,1) are parameters given to the
algorithm upfront

In other words: 1 − 𝜀 𝑛 < C𝑛 < 1 + 𝜀 𝑛
with probability at least 1 − 𝛿

2) On update(): Increment 𝑋 with probability 2&'

3) On query(): output E𝑛 = 2' − 1

Intuition: store integer 𝑋 ≈ log 𝑛

When to increment?

Increment with probability #
"
≈ 2&'

Goal: 𝑂 log log 𝑛 space

Approximate Counting

Lem: Morris‘ Counter

1) Initialize 𝑋 = 0

2) On update(): Increment 𝑋 with probability 2%&

3) On query(): output C𝑛 = 2& − 1

Morris‘ Counter is an unbiased
estimator of 𝑛, that is, 𝔼 E𝑛 = 𝑛.

Proof:

Let 𝑋, 𝑋' be the counter before/after the update

𝔼 2%! 𝑋

Consider one update in isolation

express expectation of 2"! in terms of 𝑋

= 2% + 1

=
1
2%

⋅ 2%(! + 1 −
1
2%

⋅ 2%

Thus, inductively after 𝑛 updates we have: 𝔼 2% = 𝑛 + 1

𝔼 2'# = 𝔼 2'#$% + 1

Approximate Counting

Lem: Morris‘ Counter

1) Initialize 𝑋 = 0

2) On update(): Increment 𝑋 with probability 2%&

3) On query(): output C𝑛 = 2& − 1

Morris‘ Counter is an unbiased
estimator of 𝑛, that is, 𝔼 E𝑛 = 𝑛.

Chebyshev: ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡"

Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"

ℙ |F𝑛 − 𝑛| ≥ 𝜀𝑛 ≤
𝔼 9𝑛" − 𝑛"

𝜀!𝑛!

Lem: We have 𝔼 E𝑛! = (
!
𝑛! − #

!
𝑛.

𝔼 4'& 𝑋

= 4' + 3 ⋅ 2'

=
1
2' ⋅ 4

')# + 1 −
1
2' ⋅ 4'

𝔼 4'# = 𝔼 4'#$% + 3 ⋅ 𝔼 2'#$%

𝔼 E𝑛! = 𝔼 2' − 1 ! = 𝔼 4' − 2𝔼 2' + 1

= 3 ⋅ 𝑛 + 1
2= 𝔼 4'#$% + 3𝑛

Approximate Counting

Lem: Morris‘ Counter

1) Initialize 𝑋 = 0

2) On update(): Increment 𝑋 with probability 2%&

3) On query(): output C𝑛 = 2& − 1

Morris‘ Counter is an unbiased
estimator of 𝑛, that is, 𝔼 E𝑛 = 𝑛.

Chebyshev: ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡"

Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"
ℙ |F𝑛 − 𝑛| ≥ 𝜀𝑛 ≤

(
!𝑛! − 𝑛"
𝜀!𝑛! ≤

1
2𝜀!

Lem: We have 𝔼 E𝑛! = (
!
𝑛! − #

!
𝑛.

No approximation guarantee for 𝜀 ≤ 0.7 !
Questions?

5min Break?

Boosting via Chebyshev

Morris‘ Counter computes estimate C𝑛 s.t.

𝔼 C𝑛 = 𝑛 (unbiased estimator)

ℙ | C𝑛 − 𝑛| ≥ 𝜀𝑛 ≤
Var C𝑛
𝜀"𝑛"

≤
1
2𝜀"

Chebyshev: ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡"

Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"

Morris+:

1) Run 𝑠 independent copies of Morris‘ Counter

2) Let E𝑛#, … , E𝑛* be their estimates

average over 𝑠 runs of Morris

3) output E𝑛) = #
*
⋅ E𝑛# +⋯+ E𝑛*

Lem: For 𝑠 ≥ 1/(2𝜀!𝛿) we have

ℙ F𝑛) − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

𝔼 E𝑛) =
1
𝑠 ⋅ 𝔼 E𝑛# +⋯+ 𝔼 E𝑛* = 𝑛

by linearity of expectation

Proof: Morris+ is an unbiased estimator:

Boosting via Chebyshev

Morris‘ Counter computes estimate C𝑛 s.t.

𝔼 C𝑛 = 𝑛 (unbiased estimator)

ℙ | C𝑛 − 𝑛| ≥ 𝜀𝑛 ≤
Var C𝑛
𝜀"𝑛"

≤
1
2𝜀"

Chebyshev: ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡"

Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"

Morris+:

1) Run 𝑠 independent copies of Morris‘ Counter

2) Let E𝑛#, … , E𝑛* be their estimates

average over 𝑠 runs of Morris

3) output E𝑛) = #
*
⋅ E𝑛# +⋯+ E𝑛*

Lem: For 𝑠 ≥ 1/(2𝜀!𝛿) we have

ℙ F𝑛) − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

Var E𝑛) =
1
𝑠!
⋅ Var E𝑛# +⋯+ Var E𝑛* =

Var E𝑛
𝑠

Proof: Morris+ is an unbiased estimator

Variance of Morris+ is +,- ."
*

:

1) Var 𝛼𝑋 = 𝛼'Var[𝑋] 2) Var 𝑋 + 𝑌 = Var 𝑋 + Var[𝑌] for independent 𝑋, 𝑌

Boosting via Chebyshev

Morris‘ Counter computes estimate C𝑛 s.t.

𝔼 C𝑛 = 𝑛 (unbiased estimator)

ℙ | C𝑛 − 𝑛| ≥ 𝜀𝑛 ≤
Var C𝑛
𝜀"𝑛"

≤
1
2𝜀"

Chebyshev: ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var[𝑋]
𝑡"

Var 𝑋 = 𝔼 𝑋" − 𝔼[𝑋]"

Morris+:

1) Run 𝑠 independent copies of Morris‘ Counter

2) Let E𝑛#, … , E𝑛* be their estimates

average over 𝑠 runs of Morris

3) output E𝑛) = #
*
⋅ E𝑛# +⋯+ E𝑛*

Lem: For 𝑠 ≥ 1/(2𝜀!𝛿) we have

ℙ F𝑛) − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

Proof: Morris+ is an unbiased estimator

Variance of Morris+ is +,- ."
*

So by Chebyshev:

ℙ | C𝑛 − 𝑛| ≥ 𝜀𝑛 ≤
Var C𝑛(

𝜀"𝑛" ≤
1

2𝑠𝜀" ≤ 𝛿

Approximate Counting
monitor a sequence of events, maintain an approximate counter of the number of events

Data structure problem:

maintain a number 𝑛

update(): increment 𝑛 by 1

query(): output E𝑛 with

Solution: Morris‘ Counter (1978)

1) Initialize 𝑋 = 0

ℙ F𝑛 − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

2) On update(): Increment 𝑋 with probability 2&'

3) On query(): output E𝑛 = 2' − 1

Goal: 𝑂 log log 𝑛 space

Morris+: average over 𝑠 = 1/(2𝜀!𝛿) runs of Morris

Space usage:

with probability at least 1 − 𝛿

𝑂 #
/!0

log log "
/!0!

bitsonce a counter reaches 𝑋 = log $)
*

,

by union bound no such counter is ever incremented

it is incremented with probability at most *
$)

, so

Boosting via Chernoff
Morris+: average over 𝑠 runs of Morris, then

ℙ | C𝑛(− 𝑛| ≥ 𝜀𝑛 ≤
1

2𝑠𝜀"

Chernoff: ℙ |𝑋 − 𝔼 𝑋 | ≥ ℓ ≤ 2 exp −"ℓ
!

$

for 𝑋 = 𝑋! +⋯+ 𝑋$, independent 𝑋!, … , 𝑋$ ∈ 0,1

Proof:

Morris++:

1) Run 𝑡 copies of Morris+ with 𝑠 ≔ 2/𝜀!
median over 𝑡 runs of Morris+

2) output median of their estimates E𝑛#), … , E𝑛%)

(that is, sort and pick the middle value)

Lem: For 𝑡 ≥ 8 log 2/𝛿 we have

ℙ F𝑛)) − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

Each run of Morris+ succeeds with prob. ≥ (
1

𝑌 = 𝑌# +⋯+ 𝑌%

𝑌2 =
1 if 𝑖-th run of Morris+ succeeds

0 otherwise

ℙ[Morris++ fails] ≤ ℙ 𝑌 ≤ %
!

≤ ℙ 𝑌 ≤ 𝔼 𝑌 −
𝑡
4
≤ 2 exp −

2𝑡!

16 𝑡
≤ 𝛿

𝔼 𝑌 ≥ (
1 𝑡

Approximate Counting
monitor a sequence of events, maintain an approximate counter of the number of events

Data structure problem:

maintain a number 𝑛

update(): increment 𝑛 by 1

query(): output E𝑛 with

Solution: Morris‘ Counter (1978)

1) Initialize 𝑋 = 0

ℙ F𝑛 − 𝑛 ≥ 𝜀𝑛 ≤ 𝛿

2) On update(): Increment 𝑋 with probability 2&'

3) On query(): output E𝑛 = 2' − 1

Goal: 𝑂 log log 𝑛 space

Morris+: average over 𝑠 = 2/𝜀! runs of Morris

Space usage:

with probability at least 1 − 𝛿

𝑂 #
/!
log #

0
log log "

/0
bits Morris++: median of 𝑡 = 8 log 2/𝛿 runs of Morris+

Approximate Counting
monitor a sequence of events, maintain an approximate counter of the number of events

Solution: Morris‘ Counter (1978)

1) Initialize 𝑋 = 0

2) On update(): Increment 𝑋 with probability 2&'

3) On query(): output E𝑛 = 2' − 1

Goal: 𝑂 log log 𝑛 space

Morris+: average over 𝑠 = 2/𝜀! runs of Morris

Morris++: median of 𝑡 = 8 log 2/𝛿 runs of Morris+→ Primer to Randomness

We learned about:

- unbiased estimators

- boosting via Chebyshev

- boosting via Chernoff

- probability basics

- concentration inequalities

More Material

- These slides will be available on the course website

- Video recording will be made available

- Course Website → Material → A Primer to Randomness

- Course Website → Material → Link to Summer School on Streaming by Jelani Nelson

- Presence Exercise Sheet: Will be send out in the next couple of days, Tutorial on May 11

See you next week!

EXTRA

