
Karl Bringmann
May 18, 2020

Sublinear Algorithms
Lecture 03: Streaming III

Recap: Distinct Elements

Data structure problem:

maintain set ! and its size "

update(#): add $ to !

query(): output "̃ with

ℙ '" − " ≥ *" ≤ ,
Let -., … , -1 be the distinct items in the stream

Suppose that -., … , -1 are random in [0,1]
Then we expect 1/min: -: ≈ "

Idealized Setting: FM (Flajolet,Martin 1985)

1) Pick random function ℎ: > → [0,1]
2) On update(): Maintain @ = min: ℎ $:
3) On query(): Output "̃ = 1/@ − 1

approximate the number of distinct items among $., … , $B ∈ >

Recap: Distinct Elements

Theoretical Variant: (Bar-Yossef et al. 2002)

1) Pick a prime ! with "# ≤ ! ≤ "% &

2) Pick pairwise independent

hash function ℎ(: " → [!]

3) Denote ℎ - ≔ ℎ(- /! ∈ 0,1

4) Maintain a set 4 containing the 5 ≔ 36/89

smallest distinct values among ℎ -& , … , ℎ -;

5) On query():

Otherwise:

If 4 < 5: Output >̃ = 4
Output >̃ = 5/max 4

Space usage: C &
DE
log "

approximate the number of distinct items among -&, … , -; ∈ "

Idealized Setting: FM (Flajolet,Martin 1985)

1) Pick random function ℎ: " → [0,1]

2) On update(): Maintain I = min
L
ℎ -L

3) On query(): Output >̃ = 1/I − 1

Recap: Pairwise Independence
Random variables !",… , !% are independent if for any &", … , &% we have

ℙ !" = &" and… and !% = &% = ℙ !" = &" ⋅ … ⋅ ℙ !% = &%

Random variables !",… , !% are pairwise independent if
for any - ≠ -/ the random variables !0 and !01 are independent.

Lem: For pairwise independent !",… , !% we have

Var !" +⋯+ !% = Var !" +⋯+ Var !%

Random variables !",… , !% are 6-wise independent if
for any distinct -", … , -7 the random variables !08, … , !09 are independent.

Recap: Pairwise Independent Hash Function
Let ! be a prime with ! ≥ #, and pick ℎ ∈ ℋ uniformly at random

A function ℎ ∈ ℋ can be represented by the pair ',) ∈ ! *, using 2 log ! bits

Let ℋ be the set of all functions ℎ: # → [2] of the form

ℎ 4 = ' ⋅ 4 +) mod ! where ',) ∈ !

We can sample a function ℎ ∈ ℋ in time : 1

The random variables ℎ 1 ,… , ℎ # are pairwise independent

Each hash value ℎ(4) is uniformly distributed in 2

k-wise Independent Hash Function
Let ! be a prime with ! ≥ #, and pick ℎ ∈ ℋ uniformly at random

Let ℋ be the set of all functions ℎ: # → [!] of the form

ℎ + = -. + -0 ⋅ + + ⋯+ -340 ⋅ +340 mod ! where -., … , -340 ∈ !

A function ℎ ∈ ℋ can be represented by the tuple -., … , -340 ∈ ! 3, using : log ! bits

We can sample a function ℎ ∈ ℋ in time = :

The random variables ℎ 1 ,… , ℎ # are :-wise independent

Each hash value ℎ(+) is uniformly distributed in A

k-wise Independent Hash Function
Let ! be a prime with ! ≥ #, and pick ℎ ∈ ℋ uniformly at random

Let ℋ be the set of all functions ℎ: # → [!] of the form

ℎ + = -. + -0 ⋅ + + ⋯+ -340 ⋅ +340 mod ! where -., … , -340 ∈ !

Arbitrary Codomain:

: + ≔ <= > ?@A B

Can we get codomain C = <0,… , <B for D ≪ !?

Lem: Fix F. For any # and C, there is a family ℋ of functions from # to C such that

- ℎ ∈ ℋ can be stored using G log # + C bits, and sampled in time G 1 ,

- for random ℎ ∈ ℋ and fixed +, the value ℎ(+) is (almost) uniformly distributed in C,

- for random ℎ ∈ ℋ, the random variables ℎ 1 ,… , ℎ # are F-wise independent.

is almost uniform, that is, ℙ : + = <N = 1/D ± G 1/!

Outline

1) Turnstile Model + Moment Estimation

2) Point Query + Heavy Hitters

Generalized Streaming Model

General data structure problem:

maintain vector ! ∈ ℤ$

update(%, '): !(= !(+ Δ

query(): approximate ,(!)

maintain a vector ! ∈ ℤ$ under updates of the form !(= !(+ Δ

Insertion-only: Each update has Δ = 1
This is what we studied so far

(E.g. distinct elements: #non-zero !(‘s)

Generalized Streaming Model

General data structure problem:

maintain vector ! ∈ ℤ$

update(%, '): !(= !(+ Δ

query(): approximate ,(!)

maintain a vector ! ∈ ℤ$ under updates of the form !(= !(+ Δ

Insertion-only: Each update has Δ = 1
This is what we studied so far

Strict Turnstile: Δ ∈ ℤ (may be negative!)

Promise: !(≥ 0 for all 2 at all times

General Turnstile: Δ ∈ ℤ, !(∈ ℤ

©
Ka

re
n

Fo
to

(E.g. distinct elements: #non-zero !(‘s)

Second Moment Estimation
approximate !" = $ "" = ∑&'() $&" for a vector $ ∈ ℤ) given in turnstile model

Data structure problem:

maintain vector $ ∈ ℤ)

update(,, .): $& = $& + Δ

query(): output 1!" with

ℙ 3!" − !" ≥ 6!" ≤ 8

Goal: 9 log = space

initially $ = 0,… , 0
assume Δ = =@ (

so entries of $ are 9 log = -bit integers

AMS Sketch: (Alon, Matias, Szegedy 1999)

1) Pick 4-wise independent
hash function A: = → −1,1

2) Maintain E = ∑&'() A F ⋅ $&
3) Output E"

Second Moment Estimation
approximate !" = $ "" = ∑&'() $&" for a vector $ ∈ ℤ) given in turnstile model

AMS Sketch: (Alon, Matias, Szegedy 1999)

1) Pick 4-wise independent ,: . → −1,1
2) Maintain 3 = ∑&'() , 4 ⋅ $&
3) Output 3"

Lem: AMS Sketch is an unbiased estimator,

that is, 6 3" = $ ""

Standard Approach:

Proof: 6 3"

= 6 ∑&,7 , 4 , 8 $&$7

= 6 ∑&'() , 4 $& "

= ∑& 6 , 4 " $&" + ∑&:7 6 , 4 , 8 $&$7

= ∑& $&"
...since , is pairwise

independent

Second Moment Estimation
approximate !" = $ "" = ∑&'() $&" for a vector $ ∈ ℤ) given in turnstile model

Standard Approach:

Proof: , -. = , ∑&'() / 0 $& .

...since / is 4-wise independent and has expectation 0, see Exercise Sheet 1

Lem: AMS Sketch is an unbiased estimator,
that is, , -" = $ ""

= ∑&'() , / 0 $& . + 6∑&34 , / 0 $& " ⋅ , / 6 $4
"

= ∑&'() $&. + 6∑&34 $&" ⋅ $4" ≤ 3 ∑&'() $&. + 2∑&34 $&" ⋅ $4" = 3 ∑&'() $&"
" = 3, -" "

Lem: We have , -. ≤ 3, -" ".

AMS Sketch: (Alon, Matias, Szegedy 1999)

1) Pick 4-wise independent /: ; → −1,1
2) Maintain - = ∑&'() / 0 ⋅ $&
3) Output -"

Second Moment Estimation
approximate !" = $ "" = ∑&'() $&" for a vector $ ∈ ℤ) given in turnstile model

Lem: We have , -. ≤ 3, -" ".

Standard Approach:

Lem: AMS Sketch is an unbiased estimator,
that is, , -" = $ ""

By Chebyshev: ℙ -" − !" ≥ 4!" ≤ "
56

Boosting via Chebyshev: AMS+ = average over 7
56 runs of AMS has error prob. 1/4

Boosting via Chernoff: AMS++ = median of 8 log 2/@ runs of AMS has error prob. @

AMS Sketch: (Alon, Matias, Szegedy 1999)

1) Pick 4-wise independent A: C → −1,1
2) Maintain - = ∑&'() A F ⋅ $&
3) Output -"

Second Moment Estimation
approximate !" = $ "" = ∑&'() $&" for a vector $ ∈ ℤ) given in turnstile model

Data structure problem:

maintain vector $ ∈ ℤ)

update(,, .): $& = $& + Δ

query(): output 1!" with

ℙ 1!" − !" ≥ 5!" ≤ 7

AMS Sketch: (Alon, Matias, Szegedy 1999)

1) Pick 4-wise independent 8: : → −1,1

2) Maintain = = ∑&'() 8 > ⋅ $&
3) Output ="

AMS+: average over @ 1/5" runs of AMS

AMS++: median of @ log 1/7 runs of AMS+Space usage: @ (
EF log

(
G log :

Remark 1: Moment Estimation

approximate !" = $ "
" = ∑&'() $& " for a vector $ ∈ ℤ) given in turnstile model

For 0 ≤ . ≤ 2 and constant 0: There is streaming algorithm using poly 56(log 8 space.

For . > 2 and constant 5, 0: Space complexity is 8(6;/" up to logfactors.

[Alon,Matias,Szegedy‘99, Bar-Yossef,Jayram,Kumar,Sivakumar‘04, Indyk,Woodruff‘05, Indyk‘06]

Remark 2: Linear Sketch
... is an algorithm that maintainsΠ", for some matrix Π ∈ ℝ%×'

Want to maintain vector " ∈ ℤ'

Pick a suitable matrix Π
and instead maintain) ∈ ℤ% with) = +"

Π may be randomized (that is, chosen from some probability distribution)

We cannot store Π explicitly!
Implicit representation of Π: Given ,, . we can efficiently compute the entry Π/,0

On update(,, Δ):) =) + Δ ⋅ Π/, where Π/ is the ,-th column of Π

⋅
Π "

=
)

→ time 5 6

Remark 2: Linear Sketch
... is an algorithm that maintainsΠ", for some matrix Π ∈ ℝ%×'

Want to maintain vector " ∈ ℤ'

Pick a suitable matrix Π
and instead maintain) ∈ ℤ% with) = +" ⋅

Π "
=

)

Any algorithm in strict/general turnstile model can be converted into a linear sketch,
at the cost of at most a logarithmic factor in the space bound.

[Li,Nguyen,Woodruff‘14]

Remark 2: Linear Sketch
approximate !" = $ "" = ∑&'() $&" for a vector $ ∈ ℤ) given in turnstile model

AMS+ Sketch: (Alon, Matias, Szegedy 1999)

1) Pick 4-wise independent
hash functions ,(, … , ,/: 1 → −1,1

2) Maintain 56 = ∑&'() ,6 7 ⋅ $&

3) Output (/ ∑6'(
/ 56"

This is a linear sketch!

Π is implicitly represented

5 = Π$ with Π6,& = ,6 7

Data structure problem:

maintain vector $ ∈ ℤ)

update(:, ;): $& = $& + Δ

query(): output >! with

ℙ @! − !" ≥ B!" ≤ D

Outline

1) Turnstile Model + Moment Estimation

2) Point Query + Heavy Hitters

Point Query
approximate !" ± $! % for a vector ! ∈ ℤ(given in turnstile model

Data structure problem:

maintain vector ! ∈ ℤ(

update(), +): !" = !" + Δ

query()): output /!" with

ℙ /!" − !" ≥ $! % ≤ 4

Goal: 5 log 9 space

CountMin Sketch: (Cormode,Muthukrishnan‘05)

1) Pick 2-wise independent
hash function ℎ: 9 → = for = = 4/$

2) Maintain counters @A = ∑" C.E. F " GA !"

3) On query(H): output @F "

That is, initially @%,… , @J = 0
On update(H, Δ): Add Δ to @F "

Point Query
approximate !" ± $! % for a vector ! ∈ ℤ(given in turnstile model

CountMin Sketch: (Cormode,Muthukrishnan‘05)

1) Pick 2-wise independent
hash function ℎ: + → - for - = 4/$

2) Maintain counters 12 = ∑" 4.6. 7 " 82 !"

3) On query(9): output 17 "

That is, initially 1%,… , 1< = 0
On update(9, Δ): Add Δ to 17 "

Lem: ℙ 17 " − !" > $! % ≤ 1/4

Proof:

17 " = !" + ∑2E" !2F2

F2 = G1, if ℎ J = ℎ(9)
0, otherwise

17 " − !" ≤ ∑2E" !2 ⋅ F2

U F2 = ℙ F2 = 1 = 1/-

ℙ 17 " − !" > $! % ≤ ℙ ∑2E" !2 ⋅ F2 > $! %

Fix 9. For J ≠ 9:

≤ %
W<
≤ %

X
≤

∑YZ[|]Y|/<
W] ^

(Markov)

Point Query
approximate !" ± $! % for a vector ! ∈ ℤ(given in turnstile model

Data structure problem:

maintain vector ! ∈ ℤ(

update(), +): !" = !" + Δ

query()): output /!" with

ℙ /!" − !" ≥ $! % ≤ 4

CountMin Sketch: (Cormode,Muthukrishnan‘05)

1) Pick 2-wise independent
hash function ℎ: 7 → 9 for 9 = 4/$

2) Maintain counters <= = ∑" ?.A. B " C= !"

3) On query(D): output <B "

That is, initially <%,… , <F = 0
On update(D, Δ): Add Δ to <B "

CM++: median of H log 1/4 runs of CM

Space usage: H %
M
log %

N
log 7

In strict turnstile model we can
use minimum instead of median

Heavy Hitters
compute all ! with "# ≥ % " & for a vector " ∈ ℤ) given in strict turnstile model

Data structure problem:

maintain vector " ∈ ℤ)

update(*, ,): "# = "# + Δ

query(*): output a set 0 s.t.

Goal: 1 polylog 7 space

0 contains all ! with "# ≥ % " &
0 contains no ! with "# < 9

: " &
with failure probability ;

Heavy Hitters: Dyadic Trick
compute all ! with "# ≥ % " & for a vector " ∈ ℤ) given in strict turnstile model

Data structure problem:

maintain vector " ∈ ℤ)

update(*, ,): "# = "# + Δ

query(*): output a set 0 s.t.
0 contains all ! with "# ≥ % " &
0 contains no ! with "# < 2

3 " &
with failure probability 4

"& +⋯+ ")

"& +⋯+ ")/7 ")/78& + ⋯+ ")

"& "7 ")… …

… … … …

Heavy Hitters: Dyadic Trick
compute all ! with "# ≥ % " & for a vector " ∈ ℤ) given in strict turnstile model

"& +⋯+ ")

"& +⋯+ ")/- ")/-.& + ⋯+ ")

"& "- ")… …

… … … …

"#ℓ = " #2&)/-ℓ.& + ⋯+ "#)/-ℓ
Level ℓ corresponds to vector "ℓ ∈ ℤ-ℓ with

Store a CM++ sketch for every vector 3ℓ

with ℙ 5"#ℓ − "#ℓ ≥ 7
8 "ℓ & ≤ :7

8 ;<=)

Heavy Hitters: Dyadic Trick
compute all ! with "# ≥ % " & for a vector " ∈ ℤ) given in strict turnstile model

"& +⋯+ ")

"& +⋯+ ")/- ")/-.& + ⋯+ ")

"& "- ")… …

… … … …

"#ℓ = " #2&)/-ℓ.& + ⋯+ "#)/-ℓ
Level ℓ corresponds to vector "ℓ ∈ ℤ-ℓ with

Store a CM++ sketch for every vector 3ℓ

with ℙ 5"#ℓ − "#ℓ ≥ 7
8 "ℓ & ≤ :7

8 ;<=)

On update(>, @):

Affects one entry of every vector "ℓ

So perform A log E updates of CM+

Heavy Hitters: Dyadic Trick
compute all ! with "# ≥ % " & for a vector " ∈ ℤ) given in strict turnstile model

"& +⋯+ ")

"& +⋯+ ")/- ")/-.& + ⋯+ ")

"& "- ")… …

… … … …

On query():
Same norm on every level: "ℓ & = " &

There are 2 1/% heavy hitters on each level

Every node is less than or equal to its parent

So all heavy hitters on all levels form a subtree

DFS("#ℓ):
Use CM++ sketch to decide if "#ℓ ≥ 4

- % " &

If "#ℓ is a leaf: add ! to result 5
If CM++ says „larger“:

Else: run DFS("-#6&ℓ.&) and DFS("-#ℓ.&)

"#ℓ = " #6&)/-ℓ.& + ⋯+ "#)/-ℓ
Level ℓ corresponds to vector "ℓ ∈ ℤ-ℓ with

Store a CM++ sketch for every vector 7ℓ

with ℙ 9"#ℓ − "#ℓ ≥ ;
< "ℓ & ≤ >;

< ?@A)

Heavy Hitters: Dyadic Trick
compute all ! with "# ≥ % " & for a vector " ∈ ℤ) given in strict turnstile model

"& +⋯+ ")

"& +⋯+ ")/- ")/-.& + ⋯+ ")

"& "- ")… …

… … … …

On query():
Assuming correctness of CM++:

So ≤ 1
2 log 6 calls to CM++, so error probability 7

CM++ says „larger“ only if "#ℓ ≥ 2
- " &

On each level we explore the children of ≤ 2/% nodes

DFS("#ℓ):
Use CM++ sketch to decide if "#ℓ ≥ :

- % " &

If "#ℓ is a leaf: add ! to result ;
If CM++ says „larger“:

Else: run DFS("-#<&ℓ.&) and DFS("-#ℓ.&)

"#ℓ = " #<&)/-ℓ.& + ⋯+ "#)/-ℓ
Level ℓ corresponds to vector "ℓ ∈ ℤ-ℓ with

Store a CM++ sketch for every vector >ℓ

with ℙ @"#ℓ − "#ℓ ≥ 2
1 "ℓ & ≤ B2

1 CDE)

Heavy Hitters: Dyadic Trick
compute all ! with "# ≥ % " & for a vector " ∈ ℤ) given in strict turnstile model

"& +⋯+ ")

"& +⋯+ ")/- ")/-.& + ⋯+ ")

"& "- ")… …

… … … …

Space: 0 log 4 ⋅ 0 1
% log

log 4
7% log 4

"#ℓ = " #:&)/-ℓ.& + ⋯+ "#)/-ℓ
Level ℓ corresponds to vector "ℓ ∈ ℤ-ℓ with

Store a CM++ sketch for every vector ;ℓ

with ℙ ="#ℓ − "#ℓ ≥ ?
@ "ℓ & ≤ B?

@ CDE)

= 0 1
% log

- 4 log log 4 + log 1
7%

bits

Heavy Hitters
compute all ! with "# ≥ % " & for a vector " ∈ ℤ) given in strict turnstile model

Data structure problem:

maintain vector " ∈ ℤ)

update(*, ,): "# = "# + Δ

query(*): output a set 0 s.t.

Goal: 1 polylog 7 space

0 contains all ! with "# ≥ % " &

0 contains no ! with "# < 9
: " &

with failure probability ;

"#ℓ = " #=&)/?ℓ@& + ⋯+ "#)/?ℓ

Level ℓ corresponds to vector "ℓ ∈ ℤ?ℓ with

Store a CM++ sketch for every vector Bℓ

with ℙ D"#ℓ − "#ℓ ≥ F
G
"ℓ & ≤ IF

G JKL)

Space: 1
1
%
log? 7 log log 7 + log

1
;%

bits

Update time: 1 log 7 log log 7 + log
1
;%

Query time: 1
1
% log 7 log log 7 + log

1
;%

More Material

Moment estimation, AMS Sketch:
[Alon, Matias, Szegedy „The space complexity of approximating the drequency moments“ 1999]

- Course Website → Material → Link to Summer School on Streaming by Jelani Nelson

- Exercise Sheet 1 due on Friday, May 22

Nect lecture by Vasileios Nakos on May 28!

Point Query + Heavy Hitters, CountMin Sketch:
[Cormode, Muthukrishnan „An improved data stream summary: the count-min sketch and its applications“ 2005]

