

Sublinear Algorithms

Lecture 07: Property Testing I

Previous 3 lectures *Measurements*

Next 3 lectures Property Testing

Property Testing

Goal: Infer a property of an enormous object by looking at a small fraction of it

Difference from sparse recovery:
In sparse recovery you compress the whole object
Via measurements

Minimize measurements
Vs
Minimize Accesses to the object and Time

Form of Property Testing

Decide whether an object has a property
Or
is far from having it

Is a graph G on m edges bipartite, or one needs to remove more than εm edges to make it bipartite?

Are two sequnces of length n equal, or does one need to delete at least εn characters from each to make them equal?

Is a graph triangle free, or Does one need to delete at least εm edges to make it triangle free?

Computational Cost

Given: Oracle access to the object Minimize #oracle accesses + running time

Example 1. Oracle access to a graph in the following way: For vertices *u*, *v*, are *u* and *v* connected?

Example 2. Oracle access to two sequences in the following way: Given a position *i*, do they have the same symbol on *i*?

Formal definition

A property testing algorithm for a decision problem L with query complexity Q(n), time complexity T(n), proximity parameter ε ,

Is a randomized algorithm which on input x makes Q(|x|) queries, runs in T(|x|) time

If x belongs to L, accepts wp 0.9 If x is ε -far from L, rejects wp 0.9

Testing Monotonicity

You may think of it as an *n*-length array

$$ightharpoonup f: [n]
ightharpoonup R
ightharpoonup Totally ordered set$$

f is monotone if $\forall x, y$ with x < y : f(x) < f(y)

Decide whether f is δ -far from monotone

Pick random $i \in [n]$

Run the standard executation of binary search on *f*, and test whether you arrived at *i*.

Binary search did not arrive at i

$$1 + \lceil \log_2 n \rceil$$
 queries

Testing Monotonicity

Randomness only over the choice of i Call i good if the execution ends on i

Claim I: If both $i \le j$ are good then f(i) < f(j)

 $t \in [\lceil \log_2 n \rceil]$:point where first step in which the binary searches for i,j split

Claim II: The restriction of f on good points yields a monotone sequence

$$i_1, i_2, \dots, i_G$$
 are good $f(i_1) < f(i_2) < \dots < f(i_G)$

Probability of acceptance at least G/n

Analyzing the binary search algorithm

If prob of acceptance is at least 1- δ then

f is δ -close to monotone \frown

Becuse G is at least $(1-\delta)n$, δn substitutions suffice

f is δ -far from monotone, then prob of acceptance < 1- δ

How many times do I need to run the tester to decide if probability of acceptance is 1 or $< 1-\delta$?

Equivalent: How many times to I need to throw a coin to decide whether heads happens wp 1 or $<1-\delta$? (problem set)

Can distinguish between monotone or δ -far from monotone

Testing Linearity

A $\{0,1\}$ *n*-dimensional vector

 $x = (x_1, x_2, \dots, x_n)$

$$f: \{0,1\}^n \to \{0,1\}$$

Important:
Over {0,1}^n
Addition is the same as
Subtraction

$$f$$
 is linear if $\forall x, y : f(x+y) = f(x) + f(y)$

$$\exists (a_1, a_2, \dots, a_n) \in \{0, 1\}^n : f(x) = \left(\sum_{i=1}^n a_i x_i\right) \bmod 2$$

Blum-Luby-Rubinfield test

Pick 2 points x, y and test whether f(x) + f(y) = f(x+y)

Soundness of the BLR test:

If f is δ -far from linear, then

$$\Pr\left\{\text{BLR rejects } f\right\} \ge \min\left\{\frac{2}{9}, \frac{\delta}{2}\right\} \ge \frac{2\delta}{9}$$

Pick $\Omega(1/\delta)$ pairs to ensure rejection

Analysis of the BLR Test

$$g(x)=1, \text{if } \Pr\left\{f(y)+f(x-y)=1\right\} \geq \frac{1}{2}$$

$$g(x)=0, \text{otherwise}$$
 Majority vote

$$g(x) \neq f(x) \rightarrow_{\text{at least half of the y}}: f(y) + f(y - x) \neq f(x) \longrightarrow f(x + y) \neq f(x) + f(y)$$

$$\Pr\left\{rejection\right\} \geq \Pr\left\{f(x) \neq g(x)\right\} \cdot \Pr\left\{\text{bad y for x is chosen}\right\} \geq \operatorname{dist}(f, g) \cdot \frac{1}{2}$$

$$\operatorname{dist}(f, g) = |\{x \in \{0, 1\}^n : f(x) \neq g(x)\}|$$

Structural Claim: If probability of rejection < 2/9 then g is linear

Conclusion:

Either rejection probability is constant, or is at least $\Omega(\text{dist}(f, linear)) = \Omega(\delta)$

Proof of the Structural Claim

Structural Claim: If probability of rejection < 2/9 then g is linear

$$g(x) = 1$$
, if $\Pr\{f(y) + f(x - y) = 1\} \ge \frac{1}{2}$ $B_x = |y \in \{0, 1\}^n : g(x) = f(y) + f(x - y)|$ $g(x) = 0$, otherwise $B_x \ge \frac{2^n}{2} = 2^{n-1}$

Intermediate Structural Claim: If probability of rejection < 2/9 then $\forall x, B_x > \frac{2}{3} \cdot 2^n$

Assuming intermeditate claim: Pick random z. Each one of the following holds with >2/3 probability.

1.
$$f(z) + f(x+z) = g(x)$$

2.
$$f(z) + f(y+z) = g(y)$$

3.
$$f(z+x) + f(z+y) = g(x+y)$$

And all simultaneously with positive probability

so add them up... g is linear!

Proof of the Intermediate Structural Claim

Intermediate Structural Claim: If probability of rejection < 2/9 then $\forall x, B_x > \frac{2}{3} \cdot 2^n$

$$g(x) = 1$$
, if $\Pr\{f(y) + f(x - y) = 1\} \ge \frac{1}{2}$ $B_x = |y \in \{0, 1\}^n : g(x) = f(y) + f(x - y)|$ $g(x) = 0$, otherwise $B_x \ge \frac{2^n}{2} = 2^{n-1}$

Fix x, and double count:

$$V = |\{(y,z): f(y) + f(x+y) = f(z) + f(x+z)\}|$$

Claim I:
$$V = \underbrace{B_x^2}_{\text{both terms equal to } g(x)} + \underbrace{(2^n - B_x)^2}_{\text{both terms equal to } g(x) + 1}$$

Claim II: $V > \frac{5}{9} \cdot 4^n$ Combine claims for a lower bound

Sketch of proof of Claim II: Condition in V equivalent to

$$f(y) + f(z) = f(x+y) + f(x+z)$$

Satisfied for at least 5/9 fraction of pairs (y.z) by assumption on BLR

Recap

Structural Part + Algorithmic Part

Often simple algorithms, and all the complexity is pushed to analysis

Structural part: Understand how an object which is δ -far from having a property looks like

