
Sublinear Algorithms

Lecture 09: Applications I

Previous 2 lectures:
Property Testing

Next 3 lectures:
Technology transfer from Sublinear Algorithms to

Traditional algorithms

This lecture:
Sparse Convolution

Polynomial Multiplication and Convolution

Convolution

can be computed with FFT
in time O(d log d)

Convolution ~ polynomial multiplication

r-th coefficient:

Some applications of convolution

Subset Sum: Given set and a target t, does

Knapsack (via 2D convolution): Given tuples

And a budget W, among the points in

with ordinate at most W
which is the one with the largest abscissa ?

Pattern Matching: Can be written as a convolution
between text and pattern

Sparse Convolution

Compute convolution in time near-linear to the size of

An intermediate notion: cyclic convolution

Going beyond O(dlogd)

-Boolean Convolution
-Nonnegative Convolution

-Most general case

Hashing the support

Approach: Get our hands on the support of the convolution
by performing a << d-length convolution

(Intermediate) Promise Problem: Solve sparse convolution,
given a set T which contains the support.

Folding: Pick a number B, and fold the vectors:

Claim:
Resembles a hashing of
to B buckets.

Short: sum up
every B-th entry
to obtain a
B-length vector

Hashing the support

Approach: Get our hands on the support of the convolution
by performing a << d-length convolution

(Intermediate) Promise Problem: Solve sparse convolution,
given a set T which contains the support.

Hashing claim:

In which term does contribute to?

It contributes to the i-th term
in the unfolded version

It contributes to the (i mod B)-th term
in the folded version

Convolution preserving

Hashing the support

(Intermediate) Promise Problem: Solve sparse convolution,
given a set T which contains the support.

If all i in T are distinct mod B (hashed to distinct bucket)
we can recover the initial convolution from B buckets.

How? For every i in T, look at the bucket i mod B, and read its value.

Ensure distinctness: Pick random prime B of size ~ |T| (logd)2

Repeat O(log |T| times – and union bound!

Bad event: i in T collides with some j in T, i.e. i mod B = j mod B

So, where are we?

(Intermediate) Promise Problem: Sparse convolution,
given a set T which contains the support,

Can be solved in time O(|T| (log d)4)

Removing this assumption in the nonnegative case

Theorem: Given two vectors, v,w we can compute their convolution
in time O(out (log d)5), where out is

the number of non-zero coordinates in the convolution

Let d be a power of 2. We shall discuss the case
of finding A+B= {a+b | a in A, b in B}
in time O(|A+B|(log d)5), for A,B in [d].

Compute A’+B’
recursively

Compute A+B using the (intermediate) Promise problem routine

(correctness)

(time bound)

Sketch of the general case

(Intermediate) Promise Problem still holds for general vectors,
but the recursion fails

Idea: Before folding, add an identifier.
Let ω be a (2d)-th root of unity.

But can still solve the problem in near-linear time in
(size of input)+ (size of output)

If i is isolated, then from the complex part of ,we can read ωi

Iterate over all B buckets, and find possible locations

From ωi, we can learn i in O(log d) time.

If we knew out = size of output, we’d set B = 10out (log d)2

We recover a constant fraction of coordinates + introduce false positives
... so “recurse” to clean the erros.

Recap of this lecture

... with the help of some hashing/sketching

Sparse Convolutions:
Compute convolutions faster than FFT

Next lecture by Karl Bringmann

We can compute convolutions in near-linear output-sensitive time

Thank you

	Διαφάνεια 1
	Διαφάνεια 2
	Διαφάνεια 3
	Διαφάνεια 4
	Διαφάνεια 5
	Διαφάνεια 6
	Διαφάνεια 7
	Διαφάνεια 8
	Διαφάνεια 9
	Διαφάνεια 10
	Διαφάνεια 11
	Διαφάνεια 12

