
Karl Bringmann

July 9, 2020

Sublinear Algorithms
Lecture 11: Applications III – String Algorithms

Convolution:

Their convolution is the vector 𝑢 ∗ 𝑣 ∈ ℝ!" with 𝑢 ∗ 𝑣 # = ∑$%&# 𝑢$𝑣#'$

It can be computed in time (𝑂 𝑜𝑢𝑡 = (𝑂 𝑛

Let 𝑢, 𝑣 ∈ ℝ"

Recap: Convolution

!𝑂 hides factor polylog 𝑛

Variant: IP-Convolution

Compute inner product of 𝑣 and each window 𝑢 𝑖 + 1… 𝑖 + 𝑚

Convolution:

Their convolution is the vector 𝑢 ∗ 𝑣 ∈ ℝ!" with 𝑢 ∗ 𝑣 # = ∑$%&# 𝑢$𝑣#'$

It can be computed in time (𝑂 𝑜𝑢𝑡 = (𝑂 𝑛

IP-Convolution:

Their IP-convolution is the vector 𝑢 ∗() 𝑣 ∈ ℝ"'*+, with 𝑢 ∗() 𝑣 # = ∑$%,* 𝑢#+$𝑣$

Let 𝑢, 𝑣 ∈ ℝ"

Let 𝑢 ∈ ℝ", 𝑣 ∈ ℝ* with 𝑛 ≥ 𝑚

Variant: IP-Convolution

Convolution:

Their convolution is the vector 𝑢 ∗ 𝑣 ∈ ℝ!" with 𝑢 ∗ 𝑣 # = ∑$%&# 𝑢$𝑣#'$

It can be computed in time (𝑂 𝑜𝑢𝑡 = (𝑂 𝑛

IP-Convolution:

Their IP-convolution is the vector 𝑢 ∗() 𝑣 ∈ ℝ"'*+, with 𝑢 ∗() 𝑣 # = ∑$%,* 𝑢#+$𝑣$

It can be computed in time (𝑂 𝑜𝑢𝑡 = (𝑂 𝑛

Let 𝑢, 𝑣 ∈ ℝ"

Let 𝑢 ∈ ℝ", 𝑣 ∈ ℝ* with 𝑛 ≥ 𝑚

𝑥 = (0, 𝑣,, … , 𝑣*, 0, … , 0) ∈ ℝ"+,

𝑦 = (𝑢", … , 𝑢,, 0, … , 0) ∈ ℝ"+,
Then 𝑥 ∗ 𝑦 # = ∑$%&# 𝑥$𝑦#'$

So 𝑢 ∗() 𝑣 # = 𝑥 ∗ 𝑦 "'#

= ∑$%,* 𝑢 "'# +$𝑣$= ∑$%,* 𝑣$𝑢"' #'$

Consider 𝑚 ≤ 𝑖 ≤ 𝑛

Pattern Matching

a b c b b c a a
b b c a ✗

b b c a ✗
b b c a ✗

b b c a ✓
b b c a ✗

Given two strings: text 𝑇 of length 𝑛 and pattern 𝑃 of length 𝑚 ≤ 𝑛

Does 𝑃 appear as a substring of 𝑇?

Knuth, Morris, Pratt ‘77: time 𝑂(𝑛)

optimal classic algorithm:

Let‘s consider generalizations!

𝑇# = 𝑇 𝑖 + 1. . 𝑖 + 𝑚

Is 𝑃 = 𝑇# for some 𝑖?

Text-to-Pattern Hamming Distance

a b c b b c a a
b b c a 2

b b c a 3
b b c a 3

b b c a 0
b b c a 2

Given two strings: text 𝑇 of length 𝑛 and pattern 𝑃 of length 𝑚 ≤ 𝑛

Compute Hamming distance between 𝑃 and each window 𝑇#

Algorithm: [Abrahamson‘87]

For each symbol 𝜎 in alphabet Σ:

Construct vector 𝑢 with 𝑢$ = 𝑇 𝑗 = 𝜎

Construct vector 𝑣 with 𝑣$ = 𝑃 𝑗 = 𝜎

Compute vector 𝑤- = IP-convolution of 𝑢 and 𝑣

// Then 𝑤#- = ∑$ 𝑢#+$𝑣$ = ∑$%,* 𝑇 𝑖 + 𝑗 = 𝜎 ⋅ 𝑃 𝑗 = 𝜎

Return 𝑑# = 𝑚 −∑-∈/𝑤#- for all 𝑖

Time (𝑂 Σ 𝑛

𝑇# = 𝑇 𝑖 + 1. . 𝑖 + 𝑚

𝑑# = 𝑑0 𝑃, 𝑇#

𝑑0 𝑋, 𝑌 = # 𝑗 𝑋[𝑗] ≠ 𝑌 𝑗

New Tool: Subset Shifts
Given 𝐴, 𝐵 ⊆ ℤ, determine all 𝑥 such that 𝐴 + 𝑥 ⊆ 𝐵

This is in time (𝑂 𝐴 + 𝐵 w.h.p.

Subset Shifts:

Given 𝐴, 𝐵 ⊆ 0,… , 𝑑

Compute all 𝑥 with 𝐴 + 𝑥 ⊆ 𝐵:

𝐴⇧𝐵 ≔ 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵

𝐴 = 1,2,4

𝑥 = 0:

𝐵 = {1,2,3,5,6,8}

𝑥 = 1:
𝑥 = 2:
𝑥 = 3:
𝑥 = 4:

𝐴⇧𝐵 = {1,4}

Wildcard Matching
Given two strings: text 𝑇 of length 𝑛 and pattern 𝑃 of length 𝑚 ≤ 𝑛

𝑃 contains wildcards „∗“ that match any symbol. Does 𝑃 match any substring of 𝑇?

𝑃 matches 𝑇# if for all 1 ≤ 𝑗 ≤ 𝑚:

𝑃 𝑗 = ∗ or 𝑃 𝑗 = 𝑇 𝑖 + 𝑗

𝑇 ∈ Σ", 𝑃 ∈ Σ ∪ ∗ *

a b c b b c a a
b ∗ ∗ a ✗

b ∗ ∗ a ✗
b ∗ ∗ a ✗

b ∗ ∗ a ✓
b ∗ ∗ a ✓

Algorithm: [Cole,Hariharan‘02]

For each symbol 𝜎 in alphabet Σ:

Construct set 𝐴- = 𝑗 | 𝑃 𝑗 = 𝜎

Construct set 𝐵- = 𝑗 | 𝑇 𝑗 = 𝜎

Compute 𝐴-⇧𝐵- // = all shifts s.t. all 𝜎‘s in 𝑃 are matched

Return ⋂-∈/𝐴-⇧𝐵- ∩ 0,… , 𝑛 − 𝑚

Time (𝑂 𝑛

Subset Matching
Given two sequences: text 𝑇 of length 𝑛 and pattern 𝑃 of length 𝑚 ≤ 𝑛

Each position is a set of alphabet symbols: 𝑇 𝑗 , 𝑃 𝑗 ⊆ Σ.
𝑃 matches window 𝑇# if for all 1 ≤ 𝑗 ≤ 𝑚 we have 𝑃 𝑗 ⊆ 𝑇 𝑖 + 𝑗

Does 𝑃 match any window 𝑇#?

a,b b c b a,b a,b ∅
b ∅ ∅ a,b ✗

b ∅ ∅ a,b ✓
b ∅ ∅ a,b ✗

b ∅ ∅ a,b ✗

Algorithm: [Cole,Hariharan‘02]

For each symbol 𝜎 in alphabet Σ:

Construct set 𝐴- = 𝑗 | 𝜎 ∈ 𝑃 𝑗

Construct set 𝐵- = 𝑗 | 𝜎 ∈ 𝑇 𝑗

Compute 𝐴-⇧𝐵- // = all shifts s.t. all 𝜎‘s in 𝑃 are matched

Return ⋂-∈/𝐴-⇧𝐵- ∩ 0,… , 𝑛 − 𝑚

Time (𝑂 𝑠

Input size 𝑠 = ∑$ 𝑇 𝑗 + ∑$ 𝑃 𝑗

Subset Shifts
Given 𝐴, 𝐵, determine all 𝑥 such that 𝐴 + 𝑥 ⊆ 𝐵

This is in time (𝑂 𝐴 + 𝐵 w.h.p.

Subset Shifts:

Given 𝐴, 𝐵 ⊆ 0,… , 𝑑

Compute all 𝑥 with 𝐴 + 𝑥 ⊆ 𝐵:

𝐴⇧𝐵 ≔ 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵

𝐴 = 1,2,4

𝑥 = 0:

𝐵 = {1,2,3,5,6,8}

𝑥 = 1:
𝑥 = 2:
𝑥 = 3:
𝑥 = 4:

𝐴⇧𝐵 = {1,4}

Write

𝐴 = 𝑎,, … , 𝑎|2| ,

𝐵 = 𝑏,, … , 𝑏|3|

We must have 𝐴 ≤ 𝐵

since 𝑎! must be aligned to one of 𝑏!, … , 𝑏|#|

otherwise 𝐴⇧𝐵 = ∅, since 𝐴 + 𝑥 = 𝐴 > 𝐵

𝐴⇧𝐵 ⊆ 𝐵 − 𝑎, = 𝑏, − 𝑎,, 𝑏! − 𝑎,, … , 𝑏 3 − 𝑎,

𝐴⇧𝐵 = ⋂4∈2 𝐵 − 𝑎 In particular, 𝐴⇧𝐵 ≤ 𝐵

Subset Shifts
Given 𝐴, 𝐵, determine all 𝑥 such that 𝐴 + 𝑥 ⊆ 𝐵

This is in time (𝑂 𝐴 + 𝐵 w.h.p.

Subset Shifts:

Given 𝐴, 𝐵 ⊆ 0,… , 𝑑

Compute all 𝑥 with 𝐴 + 𝑥 ⊆ 𝐵:

𝐴⇧𝐵 ≔ 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵

Direct Use of IP-Convolution: (𝑂 𝑑

1) Construct 𝑢 with 𝑢# = 𝑖 ∈ 𝐴

2) Construct 𝑣 with 𝑣# = 𝑖 ∈ 𝐵

4) Return 𝑥 | 𝑤5 = 𝐴

[Cole,Hariharan’02]

3) 𝑤 ≔ 𝑣 ∗() 𝑢

𝑤5 = 𝑣 ∗() 𝑢 5 = ∑#%&6 𝑣5+#𝑢#

= ∑#%&6 𝑥 + 𝑖 ∈ 𝐵 ⋅ 𝑖 ∈ 𝐴

𝑤5 = 𝐴 ⟺ ∀𝑎 ∈ 𝐴: 𝑎 + 𝑥 ∈ 𝐵

≤ 𝐴

𝐴⇧𝐵 = 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵 ⊆ 𝐵 − 𝑎!, 𝐴 ≤ 𝐵

Correctness: Convolution counts for each shift
the number of matches

Subset Shifts
Given 𝐴, 𝐵, determine all 𝑥 such that 𝐴 + 𝑥 ⊆ 𝐵

This is in time (𝑂 𝐴 + 𝐵 w.h.p.

Subset Shifts:

Given 𝐴, 𝐵 ⊆ 0,… , 𝑑

Compute all 𝑥 with 𝐴 + 𝑥 ⊆ 𝐵:

𝐴⇧𝐵 ≔ 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵

Direct Use of IP-Convolution: (𝑂 𝑑

1) Construct 𝑢 with 𝑢# = 𝑖 ∈ 𝐴

2) Construct 𝑣 with 𝑣# = 𝑖 ∈ 𝐵

4) Return 𝑥 | 𝑤5 = 𝐴

[Cole,Hariharan’02]

3) 𝑤 ≔ 𝑣 ∗() 𝑢

𝐴⇧𝐵 = 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵 ⊆ 𝐵 − 𝑎!, 𝐴 ≤ 𝐵

Outputsensitive IP-Convolution takes time
(𝑂 𝑜𝑢𝑡 = (𝑂 𝐴 + 𝐵 ≫ 𝐵 in general!

Subset Shifts

This is in time (𝑂 𝐴 + 𝐵 w.h.p.

Subset Shifts:

Given 𝐴, 𝐵 ⊆ 0,… , 𝑑

Compute all 𝑥 with 𝐴 + 𝑥 ⊆ 𝐵:

𝐴⇧𝐵 ≔ 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵

𝐴⇧𝐵 = 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵 ⊆ 𝐵 − 𝑎!, 𝐴 ≤ 𝐵

Outputsensitive: (𝑂 𝐵

1) Pick set 𝑃 of log 𝑑 random
primes in the range Θ 𝐵 log! 𝑑

2) For each 𝑝 ∈ 𝑃:

4) For each 𝑏 ∈ 𝐵: 𝑥 ≔ 𝑏 − 𝑎,

5) If 𝑥 mod 𝑝 ∈ Δ7 for all 𝑝 ∈ 𝑃: print 𝑥

3) Δ7 ≔ the set of all 𝑥 ∈ 0,… , 𝑝 − 1
with 𝐴 + 𝑥 mod 𝑝 ⊆ 𝐵 mod 𝑝

Subset Shifts

𝐴⇧𝐵 = 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵 ⊆ 𝐵 − 𝑎!, 𝐴 ≤ 𝐵

Lem: Δ7 is equal to

0,… , 𝑝 − 1 ∩ 𝐴 mod 𝑝 ⇧ 𝐵 mod 𝑝 + 0, 𝑝
and thus Δ7 can be computed in time (𝑂 𝑝

Outputsensitive: (𝑂 𝐵

1) Pick set 𝑃 of log 𝑑 random
primes in the range Θ 𝐵 log! 𝑑

2) For each 𝑝 ∈ 𝑃:

4) For each 𝑏 ∈ 𝐵: 𝑥 ≔ 𝑏 − 𝑎,

5) If 𝑥 mod 𝑝 ∈ Δ7 for all 𝑝 ∈ 𝑃: print 𝑥

Proof:

𝐵 mod 𝑝 𝐵 mod 𝑝 + 𝑝

1 𝑝 2𝑝

𝑥

𝐴 mod 𝑝 + 𝑥

𝐴 + 𝑥 mod 𝑝

𝑥

3) Δ7 ≔ the set of all 𝑥 ∈ 0,… , 𝑝 − 1
with 𝐴 + 𝑥 mod 𝑝 ⊆ 𝐵 mod 𝑝

Subset Shifts

Correctness:

If 𝐴 + 𝑥 ⊆ 𝐵 then 𝐴 + 𝑥 mod 𝑝 ⊆ 𝐵 mod 𝑝

So 𝑥 mod 𝑝 ∈ Δ7 for all 𝑝 ∈ 𝑃

So we print 𝑥

„𝐴 + 𝑥 ⊆ 𝐵 ⟹ print 𝑥“

𝐴⇧𝐵 = 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵 ⊆ 𝐵 − 𝑎!, 𝐴 ≤ 𝐵

Outputsensitive: (𝑂 𝐵

1) Pick set 𝑃 of log 𝑑 random
primes in the range Θ 𝐵 log! 𝑑

2) For each 𝑝 ∈ 𝑃:

3) Δ7 ≔ the set of all 𝑥 ∈ 0,… , 𝑝 − 1
with 𝐴 + 𝑥 mod 𝑝 ⊆ 𝐵 mod 𝑝

4) For each 𝑏 ∈ 𝐵: 𝑥 ≔ 𝑏 − 𝑎,

5) If 𝑥 mod 𝑝 ∈ Δ7 for all 𝑝 ∈ 𝑃: print 𝑥

Subset Shifts

Correctness:

If 𝐴 + 𝑥 ⊈ 𝐵 then 𝑎 + 𝑥 ∉ 𝐵 for some 𝑎 ∈ 𝐴

ℙ 𝑥 mod 𝑝 ∈ Δ7 ≤ ℙ 𝑎 + 𝑥 mod 𝑝 ∈ 𝐵 mod 𝑝

≤ 𝐵 ⋅ ℙ 𝑎 + 𝑥 mod 𝑝 = 𝑏 mod 𝑝

„𝐴 + 𝑥 ⊈ 𝐵 ⟹ w.h.p. don‘t print 𝑥“

≤ 𝐵 ⋅ ℙ 𝑎 + 𝑥 − 𝑏 mod 𝑝 = 0

≤ 𝐵 ⋅
log 𝑑

#primes in the range Θ 𝐵 log! 𝑑 ≤
1
2

𝐴⇧𝐵 = 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵 ⊆ 𝐵 − 𝑎!, 𝐴 ≤ 𝐵

Thus, ℙ 𝑥 mod 𝑝 ∈ Δ7 for all 𝑝 ∈ 𝑃 ≤ !
"

Outputsensitive: (𝑂 𝐵

1) Pick set 𝑃 of log 𝑑 random
primes in the range Θ 𝐵 log! 𝑑

2) For each 𝑝 ∈ 𝑃:

4) For each 𝑏 ∈ 𝐵: 𝑥 ≔ 𝑏 − 𝑎,

5) If 𝑥 mod 𝑝 ∈ Δ7 for all 𝑝 ∈ 𝑃: print 𝑥

3) Δ7 ≔ the set of all 𝑥 ∈ 0,… , 𝑝 − 1
with 𝐴 + 𝑥 mod 𝑝 ⊆ 𝐵 mod 𝑝

Subset Shifts

Similarity to previous lectures:

𝐵 mod 𝑝 # =z
$:$ 9:; 7%#

𝐵 #

𝐵 mod 𝑝 is a Boolean version of fold 𝐵 , 𝑝

𝐴⇧𝐵 = 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵 ⊆ 𝐵 − 𝑎!, 𝐴 ≤ 𝐵

Outputsensitive: (𝑂 𝐵

1) Pick set 𝑃 of log 𝑑 random
primes in the range Θ 𝐵 log! 𝑑

2) For each 𝑝 ∈ 𝑃:

4) For each 𝑏 ∈ 𝐵: 𝑥 ≔ 𝑏 − 𝑎,

5) If 𝑥 mod 𝑝 ∈ Δ7 for all 𝑝 ∈ 𝑃: print 𝑥

3) Δ7 ≔ the set of all 𝑥 ∈ 0,… , 𝑝 − 1
with 𝐴 + 𝑥 mod 𝑝 ⊆ 𝐵 mod 𝑝

Subset Shifts

𝐴⇧𝐵 = 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵 ⊆ 𝐵 − 𝑎!, 𝐴 ≤ 𝐵

Outputsensitive: (𝑂 𝐵

1) Pick set 𝑃 of log 𝑑 random
primes in the range Θ 𝐵 log! 𝑑

2) For each 𝑝 ∈ 𝑃:

4) For each 𝑏 ∈ 𝐵: 𝑥 ≔ 𝑏 − 𝑎,

5) If 𝑥 mod 𝑝 ∈ Δ7 for all 𝑝 ∈ 𝑃: print 𝑥

3) Δ7 ≔ the set of all 𝑥 ∈ 0,… , 𝑝 − 1
with 𝐴 + 𝑥 mod 𝑝 ⊆ 𝐵 mod 𝑝This is in time (𝑂 𝐴 + 𝐵 w.h.p.

Subset Shifts:

Given 𝐴, 𝐵 ⊆ 0,… , 𝑑

Compute all 𝑥 with 𝐴 + 𝑥 ⊆ 𝐵:

𝐴⇧𝐵 ≔ 𝑥 | 𝐴 + 𝑥 ⊆ 𝐵

More Material

Lecture based on:
[Cole, Hariharan „Verifying Candidate Matches in Sparse and Wildcard Matching“ 2002]
[Abrahamson „Generalized string matching“ 1987]

See also:
[Chan, Golan, Kociumaka, Kopelovitz, Porat „Approximating text-to-pattern Hamming distances“ 2020]

Course Overview

P:
𝑂(𝑛)

𝑂(𝑛!)
𝑂(𝑛 log 𝑛)

NP: 𝑂(2")

Space 𝒐 𝒏 ?

𝑂(𝑛")
𝑂(2 ")

𝑂(𝑛,&&)

#Measurements 𝒐 𝒏 ?

Time 𝒐 𝒏 ?

Course Overview

P:
𝑂(𝑛)

𝑂(𝑛!)
𝑂(𝑛 log 𝑛)

NP: 𝑂(2")

Space 𝒐 𝒏 ?

𝑂(𝑛")
𝑂(2 ")

𝑂(𝑛,&&)

#Measurements 𝒐 𝒏 ?

Time 𝒐 𝒏 ?

Streaming Algorithms:

Data stream 𝑥(, 𝑥), … , 𝑥*
Make one pass over the stream

Working memory 𝑜 𝑛 /𝑂 log 𝑛

Typical problems:

Compute number of distinct 𝑥+’s

Compute all numbers that appear ≥ 𝜀𝑛 times

Maintain a vector and its frequency moments

©Stefan Funke / Wikipedia≈ low-space data structures

Course Overview

P:
𝑂(𝑛)

𝑂(𝑛!)
𝑂(𝑛 log 𝑛)

NP: 𝑂(2")

Space 𝒐 𝒏 ?

𝑂(𝑛")
𝑂(2 ")

𝑂(𝑛,&&)

#Measurements 𝒐 𝒏 ?

Time 𝒐 𝒏 ?

Randomized Trials:

Estimate the infected population
by testing random individuals

Combinatorial Group Testing:

Mix samples of a group of individuals → test tells
us whether at least one individual is positive

Medical Imaging:

Reconstruct a sparse vector
from few Fourier measurements

©Geoff B Hall / Wikipedia

Find all positive individuals using 𝑜(𝑛) group tests

Course Overview

P:
𝑂(𝑛)

𝑂(𝑛!)
𝑂(𝑛 log 𝑛)

NP: 𝑂(2")

Space 𝒐 𝒏 ?

𝑂(𝑛")
𝑂(2 ")

𝑂(𝑛,&&)

#Measurements 𝒐 𝒏 ?

Time 𝒐 𝒏 ?

Property Testing:

Really sublinear time 𝑜(𝑛)!

“What can we find out about 𝑥(, 𝑥), … , 𝑥*
using 𝑜 𝑛 random accesses?”

Typical problems:

Is 𝑥(, 𝑥), … , 𝑥* sorted or far from sorted?

Is a graph connected or far from connected?

Course Overview

P:
𝑂(𝑛)

𝑂(𝑛!)
𝑂(𝑛 log 𝑛)

NP: 𝑂(2")

Space 𝒐 𝒏 ?

𝑂(𝑛")
𝑂(2 ")

𝑂(𝑛,&&)

#Measurements 𝒐 𝒏 ?

Time 𝒐 𝒏 ?

Course Outline:

3x Streaming (Space)

3x Vector Reconstruction (Measurements)

2x Property Testing (Time)

3x Applications

Exam
Oral exam on July 20 via Zoom
If you do not know your exam slot yet, contact me!
You must be registered in LSF

Thanks!

Have some ID ready (e.g. student ID card)
You are allowed a blank sheet of paper + pens, and no other materials
Be prepared to show us the room that you are in
The exam is not recorded

All course material is relevant
Questions of two types:
- explain algorithm X from the lecture
- simple problems in the spirit of the exercise sheets

