Mathematical Background

A.1 Calculus

In this appendix, we state some basic results from calculus used in various places throughout the text. We refer the reader to Ross [1] for a systematic derivation of these results.

Theorem A.1 (Fundamental Theorem of Calculus I, cf. Ross [1] §34.1)**.** *Suppose is continuous on the interval* $[a, b]$ *and differentiable on* (a, b) *. If* f' *is integrable on* $[a, b]$ *, then*

$$
\int_{a}^{b} f'(x) dx = f(b) - f(a).
$$

Theorem A.2 (Fundamental Theorem of Calculus II, cf. Ross [1] §34.3)**.** *Suppose is an integrable function on* $[a, b]$ *. Then for* $x \in [a, b]$ *, define*

$$
F(x) = \int_{a}^{x} f(t) dt.
$$

Then F is continuous on [a, b]. If f is continuous at $x_0 \in [a, b]$, then *F* is differentiable *at* x_0 *and* $F'(x_0) = f(x_0)$ *.*

Theorem A.3 (Change of Variables Formula, cf. Ross [1] §34.4)**.** *Suppose is a continuously differentiable function on an open interval . Let be an open interval such that* $u(x) \in I$ *for all* $x \in J$ *. If* f *is continuous on* I *, then* $f \circ u$ *is continuous on* J *and*

$$
\int_a^b (f \circ u)(x) \cdot u'(x) dx = \int_{u(a)}^{u(b)} f(u) du.
$$

Lemma A.4. For $k \in \mathbb{N}$, let $\mathcal{F} = \{f_i | i \in [k]\}$, where each $f_i : [t_0, t_1] \rightarrow \mathbb{R}$ is $\text{differential}\ \text{le, and}\ \begin{bmatrix} t_0, t_1 \end{bmatrix} \subset \mathbb{R}. \ \text{Define}\ F: \begin{bmatrix} t_0, t_1 \end{bmatrix} \to \mathbb{R} \ \text{by}\ F(t) \coloneqq \max_{i \in \begin{bmatrix} k \end{bmatrix}} \{f_i(t)\}.$ *Suppose* $\mathcal F$ *has the property that for every i and t, if* $f_i(t) = F(t)$ *, then* $\frac{d}{dt} \dot{f_i}(t) \leq r$ *. Then for all* $t \in [t_0, t_1]$ *, we have* $F(t) \leq F(t_0) + r(t - t_0)$ *.*

Proof. We prove the stronger claim that for all a, b satisfying $t_0 \le a < b \le t_1$, we have

$$
\frac{F(b) - F(a)}{b - a} \le r.
$$
\n(A.1)

To this end, suppose to the contrary that there exist $a_0 < b_0$ satisfying $(F(b_0) F(a_0)/(b_0 - a_0) \ge r + \varepsilon$ for some $\varepsilon > 0$. We define a sequence of nested intervals $[a_0, b_0] \supset [a_1, b_1] \supset \cdots$ as follows. Given $[a_j, b_j]$, let $c_j = (b_j + a_j)/2$ be the midpoint of a_j and b_j . Observe that

$$
\frac{F(b_j) - F(a_j)}{b_j - a_j} = \frac{1}{2} \frac{F(b_j) - F(c_j)}{b_j - c_j} + \frac{1}{2} \frac{F(c_j) - F(a_j)}{c_j - a_j} \ge r + \varepsilon,
$$

so that

$$
\frac{F(b_j) - F(c_j)}{b_j - c_j} \ge r + \varepsilon \quad \text{or} \quad \frac{F(c_j) - F(a_j)}{c_j - a_j} \ge r + \varepsilon.
$$

If the first inequality holds, define $a_{j+1} = c_j$, $b_{j+1} = b_j$, and otherwise define $a_{j+1} =$ $a_j, b_j = c_j$. From the construction of the sequence, it is clear that for all j we have

$$
\frac{F(b_j) - F(a_j)}{b_j - a_j} \ge r + \varepsilon.
$$
 (A.2)

Observe that the sequences $\{a_j\}_{j=0}^{\infty}$ and $\{b_j\}_{j=0}^{\infty}$ ar both bounded and monotonic, hence convergent. Further, since $\vec{b}_j - a_j = \frac{1}{2^j} (\vec{b}_0 - a_0)$, the two sequences share the same limit.

Define

$$
c := \lim_{j \to \infty} a_j = \lim_{j \to \infty} b_j,
$$

and let $f \in \mathcal{F}$ be a function satisfying $f(c) = F(c)$. By the hypothesis of the lemma, we have $f'(c) \leq r$, so that

$$
\lim_{h \to 0} \frac{f(c+h) - f(h)}{h} \le r.
$$

Therefore, there exists some $h > 0$ such that for all $t \in [c-h, c+h]$, $t \neq c$, we have

$$
\frac{f(t) - f(c)}{t - c} \le r + \frac{1}{2}\varepsilon.
$$

Further, from the definition of c, there exists $N \in \mathbb{N}$ such that for all $j \ge N$, we have $a_j, b_j \in [c-h, c+h]$. In particular this implies that for all sufficiently large j, we have

$$
\frac{f(c) - f(a_j)}{c - a_j} \le r + \frac{1}{2}\varepsilon,\tag{A.3}
$$

$$
\frac{f(b_j) - f(c)}{b_j - c} \le r + \frac{1}{2}\varepsilon.
$$
 (A.4)

Since $f(a_j) \leq F(a_j)$ and $f(c) = F(c)$, (A.3) implies that for all $j \geq N$,

$$
\frac{F(c) - F(a_j)}{c - a_j} \le r + \frac{1}{2}\varepsilon.
$$

However, this expression combined with with (A.2) implies that for all $j \geq N$

$$
\frac{F(b_j) - F(c)}{b_j - c} \ge r + \varepsilon.
$$
 (A.5)

A.1 Calculus 3

Since $F(c) = f(c)$, the previous expression together with (A.4) implies that for all $j \geq N$ we have $f(b_j) < F(b_j)$.

For each $j \ge N$, let $g_j \in \mathcal{F}$ be a function such that $g_j(b_j) = F(b_j)$. Since \mathcal{F} is finite, there exists some $g \in \mathcal{F}$ such that $g = g_j$ for infinitely many values j. Let $j_0 < j_1 < \cdots$ be the subsequence such that $g = g_{j_k}$ for all $k \in \mathbb{N}$. Then for all j_k , we have $F(b_{jk}) = g(b_{jk})$. Further, since F and g are continuous, we have

$$
g(c) = \lim_{k \to \infty} g(b_{jk}) = \lim_{k \to \infty} F(b_{jk}) = F(c) = f(c).
$$

By $(A.5)$, we therefore have that for all k

$$
\frac{g(b_{jk}) - g(c)}{b_{jk} - c} = \frac{F(b_j) - F(c)}{b_j - c} \ge r + \varepsilon.
$$

However, this final expression contradicts the assumption that $g'(c) \leq r$. Therefore, $(A.1)$ holds, as desired.