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Exercise 1 4 points

Let P1, . . . , Pk be streaming algorithms that require si(n) space and ti(n) time (i = 1, . . . , k). Show that
the pipeline Pk(Pk−1(. . . (P1(x)) . . . )) can be realized as a streaming algorithm in O(

∑k
i=1 si(ni)) space and

O(
∑k

i=1 ti(ni)) time, where ni is the output length of Pi−1(Pi−2(. . . (P1(x)) . . . )). (Note that the pipeline is a
streaming algortihm that has to write the output in sequence and cannot read it.)

Exercise 2 5+5 points

Consider the pipeline SampleMergek(SampleMergek(. . . ((PartSortk(S))) on an unsorted array S that was
discussed in Lecture 3. Let a1 . . . , ak be the output of the pipeline.

a) Suppose that S has length 2jk and SampleMergek is applied j times. Let Lj(i) and Mj(i) be the least and
most possible elements in S strictly smaller than ai. Show that they satisfy the following recursion:

Lj(i) = min
p+q=i

p>0, q≥0

(Lj−1(2p) + Lj−1(2q) + 1) and Mj(i) = max
p+q=i

p>0, q≥0

(Mj−1(2p) +Mj−1(2q + 2)),

where we set Lj(0) = −1.

b) Compute Lj(i) and Mj(i) explicitly, and prove that with j = O(log n
k ) applications of sample merge, the

rank of ai and ai+1 differ by at most O(n
k log n).

Exercise 3 6 points

Give a sublinear space algorithm (with arbitrarily many passes) that decides if a given 3-dimensional LP
instance is unbounded or not.

Exercise 4 5+2 points

Let S denote a set of geometric objects in Rd and suppose that there is an algorithm A with running time T (k)
that determines if a set S of k such objects is disjoint (i.e the k objects are pairwise disjoint). Furthermore,
we say that S is ε-far from being disjoint if there is no set Q ⊆ S with |Q| < εn such that S \Q is disjoint.

a) Show that there exists an 1-sided error tester for DISJOINTNESS that rejects an ε-far set S with
probability at least 2/3 using at most 8

√
n/ε samples. What is the running time of the tester?

Hint: Note that the lemma in slide 7 of lecture 4 might be helpful.

b) How many samples would be sufficient to achieve a success probability of 9/10 in the soundness
case?

Exercise 5 5+8 points

a) Let Ω be an arbitrary set of n elements and k, `, s be arbitrary integers. Let W1, . . .Wk be disjoint subsets
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of Ω each of size ` and S be a set containing s elements chosen independently and uniformly at random from
Ω. For any p ∈ (0, 1), if s < (n− (`− 1)) · (p/k)1/`, then

Pr[∃j ∈ [k] : Wj ⊆ S] ≤ p

b) Show that there is no ε-tester for DISJOINTNESS with sample complexity o(
√
n/ε).

Hint: Consider the following set S∗ as a counterexample: S∗ consists of n− εn pairwise disjoint objects and an
additional εn pairwise disjoint ones, each intersecting with exactly one of the former ones.
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