Sándor Kisfaludi-Bak

Geometric algorithms with limited resources Summer semester 2021

Theorem

Given a convex polytope (as DCEL) of n vertices and a directed line, their intersection can be computed in $O(\sqrt{n})$ time. √

Theorem

Given a Delaunay triangulation or a Voronoi diagram as DCEL, we can compute point location (i.e., identify the cell a given query point falls into) in $O(\sqrt{n})$ ∣∪۔
⁄ time.

 $n_P(q)$: nearest point of P to q $\xi_P(\ell)$: point of largest ℓ -coordinate in P $\xi_P (H, \ell)$: point of largest ℓ -coordinate in $P \cap H$

Theorem

Given a convex polytope P (as DCEL) of n vertices, a point q and a directed line ℓ , we can compute $n_P (q), \xi_P (\ell), \xi_P (H, \ell)$ in $O(\sqrt{n})$ time. ∣ d
⁄

Theorem

Given $\varepsilon > 0$ and a convex polyope P on n vertices with a DCEL, we can compute a $(1+\varepsilon)$ -approximation of its volume in $O(\sqrt{n}/\varepsilon)$ time. ∣∪∣
∕

Theorem

Given $\varepsilon > 0$ and a convex polyope P on n vertices with a DCEL, we can compute a $(1+\varepsilon)$ -approximation of its volume in $O(\sqrt{n}/\varepsilon)$ time. ∣∪∣
∕

Stage 1. Reshaping into ball-like polytope

Stage 2. Coreset-like approximation with $O(1/\varepsilon)$ size polytope Q s.t. Stage 2. Coreset-fike approximation with $O($
 $P \subset Q \subset P_{\varepsilon}$ by projecting $\sqrt{\varepsilon}$ -net of sphere

Theorem

Given $\varepsilon > 0$ and a convex polyope P on n vertices with a DCEL, we can compute a $(1+\varepsilon)$ -approximation of its volume in $O(\sqrt{n}/\varepsilon)$ time. ∣∪∣
∕

Stage 1. Reshaping into ball-like polytope

Stage 2. Coreset-like approximation with $O(1/\varepsilon)$ size polytope Q s.t. Stage 2. Coreset-fike approximation with $O($
 $P \subset Q \subset P_{\varepsilon}$ by projecting $\sqrt{\varepsilon}$ -net of sphere

Stage 1 will use:

Theorem. Any compact convex object $K\subset \mathbb{R}^d$ has a unique maximum volume ellipsoid $\mathcal{E} \subseteq K$.

Theorem (John 1948). For any compact convex $K \subset \mathbb{R}^d$ with $\mathcal E$ centered at the origin, $\mathcal{E} \subseteq K \subseteq d\mathcal{E}$.

Theorem

Given $\varepsilon > 0$ and a convex polyope P on n vertices with a DCEL, we can compute a $(1+\varepsilon)$ -approximation of its volume in $O(\sqrt{n}/\varepsilon)$ time. ∣∪∣
∕

Stage 1. Reshaping into ball-like polytope

Stage 2. Coreset-like approximation with $O(1/\varepsilon)$ size polytope Q s.t. Stage 2. Coreset-fike approximation with $O($
 $P \subset Q \subset P_{\varepsilon}$ by projecting $\sqrt{\varepsilon}$ -net of sphere

Stage 1 will use:

Theorem. Any compact convex object $K\subset \mathbb{R}^d$ has a unique maximum volume ellipsoid $\mathcal{E} \subseteq K$.

Theorem (John 1948). For any compact convex $K \subset \mathbb{R}^d$ with $\mathcal E$ centered at the origin, $\mathcal{E} \subseteq K \subseteq d\mathcal{E}$.

If K has $O(1)$ vertices, then constant-approximation \mathcal{E}' of $\mathcal E$ can be computed in $O_d(1)$ time s.t. $\mathcal{E}' \subset P \subset c_d \mathcal{E}'.$

Stage 1: Reshaping into ball-like object

Compute $\xi_P(.)$ for $\pm x, \pm y, \pm z$, let w_1w_2 be the most distant pair.

Claim

$$
\frac{\text{diam}(P)}{\sqrt{3}} \le \text{dist}(w_1, w_2)
$$

Stage 1: Reshaping into ball-like object

Compute $\xi_P(.)$ for $\pm x, \pm y, \pm z$, let w_1w_2 be the most distant pair.

Claim

$$
\frac{\text{diam}(P)}{\sqrt{3}} \le \text{dist}(w_1, w_2)
$$

 P_w : intersection of P with plane perpendicular to w_1w_2 going through $w.$ Let w_0 = midpoint of w_1w_2 .

Claim Suppose $S \subset P_{w_0}$ is such that $\text{Area}(\text{conv}(S)) \geq c_1 \text{Area}(P_{w_0}).$ Then $Vol(\text{conv}(S \cup \{w_1, w_2\})) \ge c_2 Vol(P).$

Reshaping to ball-like object: linear transfomration

Ellipsoid: $x^T A^T A x \le 1$ for some PSD matrix A. Let $T = A/\det(A)$.

Reshaping to ball-like object: linear transfomration

Ellipsoid: $x^T A^T A x \le 1$ for some PSD matrix A. Let $T = A/\det(A)$.

Assume wlog. that $B_c \subseteq P \subseteq B_1$ for some constsant $c > 0$.

Stage 2: approximate polytope

Goal: compute convex polytope Q such that $P \subseteq Q \subseteq P_{\varepsilon}$.

Construction of Q:

Stage 2: approximate polytope

Goal: compute convex polytope Q such that $P \subseteq Q \subseteq P_{\varepsilon}$.

Construction of Q:

Theorem[Dudley '76]

$$
P \subset Q \subset P_{\varepsilon}
$$

Constructing Q in sublinear time

Compute $\sqrt{\varepsilon}$ -net of the unit sphere

Volume approximation wrap-up