Geometric Algorithms with Limited Resources

Lecturers: Themistoklis Gouleakis (Themis)

tgouleak@mpi-inf .mpg.de
Sandor Kisfaludi-Bak (['fa:ndor])
skisfalu@mpi-inf .mpg.de

TA: Hannaneh Akrami (Hana)

hannaneh.akrami95@gmail. com

Assignments: biweekly, hand in 50% of total point value to take exam.
Exam: oral, soon after end of teaching.

Lectures are recorded (without video) and uploaded, see mailing list for access.

Geometric Algorithms with Limited Resources

Typical input: set of points or a metric space.

But! Not proper computatinal geometry
course, only what we need.

Geometric Algorithms)with Limited Resources

Typical input: set of points or a metric space.
But! Not proper computatinal geometry
course, only what we need.

Geometric Al@thh @ted @

Sublinear time, property testing.
Sublinear space, streaming.

Typical input: set of points or a metric space.
But! Not proper computatinal geometry
course, only what we need.

Geometric Al@vﬂth @ted @

Sublinear time, property testing.
Sublinear space, streaming.

Recent (mostly after 2000) results, fresh research questions!

Introduction, concepts from computational geometry

Sandor Kisfaludi-Bak

Geometric algorithms with limited resources
Summer semester 2021

l ' I I I max planck institut
informatik

Overview

Overview

e Computational models, limitations in space

Overview

e Computational models, limitations in space

e Naive convex hull, gift wrapping in O(1) space

Overview

e Computational models, limitations in space

e Naive convex hull, gift wrapping in O(1) space

e Classic algorithm: Graham's scan, O(nlogn) time

Overview

Computational models, limitations in space

Naive convex hull, gift wrapping in O(1) space

Classic algorithm: Graham's scan, O(nlogn) time

Time-space tradeoff: Chan and Chen’s algorithm

Convex hull

Overview

Computational models, limitations in space

Naive convex hull, gift wrapping in O(1) space

Classic algorithm: Graham's scan, O(nlogn) time

Time-space tradeoff: Chan and Chen’s algorithm

A classic deterministic algorithm in R?

Convex hull

Low-dim linear
programming

Overview

Computational models, limitations in space

Naive convex hull, gift wrapping in O(1) space

Classic algorithm: Graham's scan, O(nlogn) time

Time-space tradeoff: Chan and Chen’s algorithm

A classic deterministic algorithm in R?

Sublinear space LP (Chan—Chen '07)

Convex hull

Low-dim linear
programming

Real RAM vs. Word RAM

Real RAM vs. Word RAM

(Real RAM (Word RAM)

arbitrary real numbers words of size O(logn)

Real RAM vs. Word RAM

(Real RAM (Word RAM)

arbitrary real numbers words of size O(logn)

no rounding/floor, no modulo realistic*operations (shifts, etc)

Real RAM vs. Word RAM

(Real RAM (Word RAM)
arbitrary real numbers words of size O(logn)
no rounding/floor, no modulo realistic*operations (shifts, etc)
Real inputs and outputs, Exact arithmetic for
can extend with /-, In(.) rational inputs with + — %/

Real RAM vs. Word RAM

(Real RAM (Word RAM)
arbitrary real numbers words of size O(logn)
no rounding/floor, no modulo realistic*operations (shifts, etc)
Real inputs and outputs, Exact arithmetic for
can extend with /-, In(.) rational inputs with + — %/
Unrealistic power Too restrictive?

Real RAM vs. Word RAM

(Real RAM (Word RAM)
arbitrary real numbers words of size O(logn)
no rounding/floor, no modulo realistic*operations (shifts, etc)
Real inputs and outputs, Exact arithmetic for
can extend with /-, In(.) rational inputs with + — %/
Unrealistic power Too restrictive?
Often needed for exact Usually enough for approximations!

computation

Limited workspace model

n
A

2.45 7 (3.1416| 7 -0.7

Read-only input

Limited workspace model

n
A

7 |245| 7 [31416) 7 |-07| 7 | 7

Read-only input

o g O(v), or poly(logn))

N

177 | 245 | 28 |(3.1416

Read-write workspace

Limited workspace model

n
A

I I 2.45 7 (3.1416| 7 -0.7 I I

Read-only input

= o e, O(V), or poly(logm)

67 | 177 | 245 | 28 |3.1416

Read-write workspace

I I 2.45 [(3.1416| 7 -0.7

Write-only output stream

<> written only in sequence!

Streaming and multi-pass model

n
A

I I 2.45 7 (3.1416| 7 -0.7 I

Read-only input

oln) __ &g, O(v/n), or poly(logn))

17712.45| 28 |3.14

Read-write workspace

[1245 7 |3.14] 7 |-0.7

Write-only output stream

Streaming and multi-pass model

n
A

I I 2.45 7 (3.1416| 7 -0.7 I I

Read-only input

Stream: Read once and in sequence

o) __ &g, O(v/n), or poly(logn))

17712.45| 28 |3.14

Read-write workspace

[1245 7 |3.14] 7 |-0.7

Write-only output stream

Streaming and multi-pass model

n
A
~ N
I I 2.45 [(3.1416] 7 -0.7 I I I
Read-only input
Stream: Read once and in sequence
multi-pass, _ _
k—paZs: Read k times and in sequence
o(n
. /Q __eg, O(y/n), or poly(logn))
67 | 177 |2.45| 28 |3.14
Read-write workspace
I ((245 7 |3.14| 7 |-0.7

Write-only output stream

Convex hull

Convex hull

Notations, definitions
R? is d-dimensional Euclidean space
P ={p1,...,pn} set of n points

X C R is convex if for any p,q € X we have pg C X

(. . . .
minimum convex set containing P
= { intersection of convex sets containing P

{aipr 4+ +anpn |y >0and 37 oy =1}

Convex hull

Notations, definitions
R? is d-dimensional Euclidean space
P ={p1,...,pn} set of n points

X C R is convex if for any p,q € X we have pg C X

(. . . .
minimum convex set containing P

= { intersection of convex sets containing P
\{041]91 + -+ appn | a; >0 and 2?21 a; =1}

Convex hull

Notations, definitions

R< is d-dimensional Euclidean space

P ={p1,...,pn} set of n points

X C R is convex if for any p,q € X we have pg C X

Convex hull:

(_ _
minimum convex set containing P

conv(F?) = < intersection of convex sets containing P
{aipi 4+ +appn |y >0and Y7 oy =1}

conv(P)

Convex hull: input and output

Input: Points with coordianate pairs (z,y) € R?
(e,), (3,3),(2.95,2.9), (+/11, 3.05), (, e)

°
P1 P4
P2

P3 o
P5

Convex hull: input and output

Input: Points with coordianate pairs (z,y) € R?
(e,), (3,3),(2.95,2.9), (+/11, 3.05), (, e)

Output: "corners" in clockwise order
smallest Q C P s.t. conv(Q) = conv(P)

P1,P4,P5,DP3

P1 P4
P2

P3
P5

Convex hull: input and output

Input: Points with coordianate pairs (z,y) € R?
(e,), (3,3),(2.95,2.9), (+/11, 3.05), (, e)

Output: "corners" in clockwise order
smallest Q C P s.t. conv(Q) = conv(P)

P1,P4,P5,DP3

o
P2 /

P3

P5

Convex hull: input and output

Input: Points with coordianate pairs (z,y) € R?
(e,), (3,3),(2.95,2.9), (+/11, 3.05), (, e)

Output: "corners" in clockwise order
smallest Q C P s.t. conv(Q) = conv(P)

P1,P4,P5,DP3

o
P2 /

P3

P5

Everything works with rational inputs on Word RAM!

Naive algorithms, workspace O(1)

10

Naive Algorithm

Suppose no 3 points on one line. (no collinear triples)

11

Naive Algorithm

Suppose no 3 points on one line. (no collinear triples)

In O(1) time, decide if ¢ is on left or right side of line pp’

Px Dy
sgn | P, Py
dxz dy

11

Naive Algorithm

Suppose no 3 points on one line. (no collinear triples)

In O(1) time, decide if ¢ is on left or right side of line pp’

Px Dy
sgn | |pl, P,
Gz Qy

(Naive Convex Hull in R?

For each p,p’ € P,
check if all g € P\ {p,p’} is on the left of line pp’.
If yes, then p’ follows p in conv(P).

Assemble and output the hull
o

11

Naive Algorithm

Suppose no 3 points on one line. (no collinear triples)

In O(1) time, decide if ¢ is on left or right side of line pp’

Px Dy
sgn | P, Py
dxz dy

(Naive Convex Hull in R?

For each p,p’ € P,
check if all g € P\ {p,p’} is on the left of line pp’.
If yes, then p’ follows p in conv(P).

Assemble and output the hull
o

Running time: (5) - (n —2) - O(1) = O(n?)

11

Less naive algorithm: Jarvis' March — aka gift wrapping

Algorithm:
Start at leftmost point, find next point with minimum (maxmum) slope.

12

Less naive algorithm: Jarvis' March — aka gift wrapping

Algorithm:
Start at leftmost point, find next point with minimum (maxmum) slope.

O(hn) time, and enough to keep track of vy, v;,v;01. O(1) space.

12

Less naive algorithm: Jarvis' March — aka gift wrapping

Algorithm:
Start at leftmost point, find next point with minimum (maxmum) slope.

O(hn) time, and enough to keep track of vy, v;, v;11. O(1) space.

h = size of convex hull. Output-sensitive algorithm.

12

Graham's scan (1972)

13

Let P, ..

Graham's Scan idea

., Pn: points sorted with increasing z-coordinates.

14

Graham's Scan idea

Let p1,...,py,: points sorted with increasing x-coordinates.

—>> P1,Pn are on convex hull

|

Upper hull
part of the hull after p; and before p,, in clockwise order

14

Graham's Scan idea

Let p1,...,py,: points sorted with increasing x-coordinates.

—>> P1,Pn are on convex hull

|

Upper hull
part of the hull after p; and before p,, in clockwise order

Lower hull

14

Graham's Scan idea

Let p1,...,py,: points sorted with increasing x-coordinates.

—>> P1,Pn are on convex hull

Upper hull
part of the hull after p; and before p,, in clockwise order

Lower hull

Idea:
[Add points left to right, update upper hull after each addition

14

Graham's Scan: update

Right turn

(p: is below last hull segment)

pl [) ‘\

| eft turn

(p: is above last hull segment)

P1 o

15

Graham's Scan: update

Right turn

(p: is below last hull segment)
®

P1 ®

Add p; to the upper hull

Pi

| eft turn

(p: is above last hull segment)

P1 o

15

Graham's Scan: update

Right turn

(p: is below last hull segment)
®

P1 ®

Add p; to the upper hull

Pi

| eft turn

(p: is above last hull segment)

P1 o

15

Graham's Scan: update

Right turn

(p: is below last hull segment)
®

h ¢ Di

Add p; to the upper hull

| eft turn

(p: is above last hull segment)

@
[ﬁ’)pi

Add p; but remove previous hull
point until left turn disappears

15

Graham's Scan: update

Right turn Left turn
(pi is below last hull segment) (pi is above last hull segment)
B 2 —O0
¢ [Di
b ¢ j 2
o ® ® o
Add p; to the upper hull Add p; but remove previous hull

point until left turn disappears

Similalrly for lower hull, after adding p;:
while last three points of lower hull ¢, ¢, p; are a right turn:
remove the middle point ¢’

15

Graham’'s Scan: pseudocode + runtime

Sort P by increasing z-coordinates
Add P11, P2 to U and L
for : =3 ton do

Add p; to U and L
while last three pts of U form left turn do
Remove pt preceding p; from U

while last three pts of L form right turn do

Remove pt preceding p; from L
return L and reverse of U

16

Graham’'s Scan: pseudocode + runtime

Sort P by increasing z-coordinates
Add P11, P2 to U and L
for : =3 ton do

Add p; to U and L
while last three pts of U form left turn do
Remove pt preceding p; from U

while last three pts of L form right turn do

Remove pt preceding p; from L
return L and reverse of U

Running time:
Sorting

—>>(0(nlogn)

16

Graham’'s Scan: pseudocode + runtime

Sort P by increasing z-coordinates
Add P11, P2 to U and L
for : = 3 ton do
Add p; to U and L
while last three pts of U form left turn do
Remove pt preceding p; from U

while last three pts of L form right turn do

Remove pt preceding p; from L
return L and reverse of U

Running time:
Sorting

Eachpe P is:
added once to U (same for L)
removed at most once from U (same for L)

Triplets checked in While loop heads

16

Graham’'s Scan: pseudocode + runtime

Sort P by increasing z-coordinates
Add P11, P2 to U and L
for : =3 ton do

Add p; to U and L
while last three pts of U form left turn do
Remove pt preceding p; from U

while last three pts of L form right turn do

Remove pt preceding p; from L
return L and reverse of U

O(nlogn) time, but O(n) space.

Time-optimal because of sorting (was exercise last year)

Graham’'s Scan: pseudocode + runtime

Sort P by increasing z-coordinates
Add P11, P2 to U and L
for : =3 ton do

Add p; to U and L
while last three pts of U form left turn do
Remove pt preceding p; from U

while last three pts of L form right turn do

Remove pt preceding p; from L
return L and reverse of U

O(nlogn) time, but O(n) space.

Time-optimal because of sorting (was exercise last year)

Near-optimal time-space tradeoff:
sorting on RAM requires T - S = Q(n?/logn). [Borodin—Cook '82]

Convex hull with good time-space tradeoff

17

Sorting in sublinear space

Theorem (Munro, Paterson 1980)
Given = and an unsorted array A, we can find the s smallest elements greater

than z in A in a single pass, in O(s) space and O(n) time.
We can also sort in

e O(n?/s+nlogs) time

e O(s) space

e with n/s passes.

18

Convex hull in sublinear space

Theorem (Chan—Chen 2007)

Given n points in R?, the convex hull can be computed in
e O(n?/s+nlogs) time
e O(s) space
e with n/s passes.

19

Sublinear space convex hull pseudocode

v := leftmost point
while v = rightmost point do
Find vertical slab o with s pts whose left wall contains v
qo, - --,q; = upper hull of PNo
for all p € P to the right of o do
while qj—14;P is left turn do
ji=4—1
j e =] + 17 q; - =P
Print(qo, - --,q;)
V= Qj

20

Sublinear space convex hull pseudocode

v := leftmost point
while v = rightmost point do
Find vertical slab o with s pts whose left wall contains v
qo, - --,q; = upper hull of PNo
for all p € P to the right of o do
while qj—14;P is left turn do
ji=4—1
j e =] + 17 q; - =P
Print(qo, - --,q;)
V= Qj

2|n/s| passes, O(s) space, O((n/s) - (n+ slogs)) time

20

Linear Programming in low-dimensional space

21

Given:

LP with 2 variables: halfplanes in R?

min ¢ + coy subject to
a1 + a0y < by
21 + a2y < bo

An1T + an2y < by,

22

Given:

LP with 2 variables: halfplanes in R?

min ¢ + coy subject to
a1 + a0y < by
21 + a2y < bo

An1T + an2y < by,

Given set H of n halfplanes, find extreme point in direction c.

\c

22

Given:

LP with 2 variables: halfplanes in R?

min ¢ + coy subject to
a1 + a2y < by
a21Z + a2y < bo

An1T + an2y < by,

Given set H of n halfplanes, find extreme point in direction c.

Dual Graham's scan solves it in O(nlogn)

22

Deterministic method: paired halfplanes

Lemma [Megiddo, Dyer 1984]
Assuming that (), . H # 0 is bounded from below, we can find
OPT in O(n) time.

23

Sublinear space low-dimensional LP

We prove:

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

° O(%n1+5) time
e O(3n’) space
e with O(1/9) passes.

24

Sublinear space low-dimensional LP

We prove:

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

° O(%n1+5) time
e O(3n’) space
e with O(1/9) passes.

We might return to:

Theorem (Chan—Chen 2007)

Given n half-spaces in R? and § > 0, the lowest point of their intersection can
be computed in

o Od((w%n) time

e O4(5547n°) space

e with O(1/6%7 1) passes.
Theorem (Chan—Chen 2007)

Given n half-spaces in R, the lowest point of their intersection can be
computed in Og4(n) time and Og4(logn) space.
24

Towards sublinear space LP: filtering and listing

Given stream H of halfplanes, produce stream of vertical lines.

List(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = h1N---N A,
Print vertical lines through vertices of I that fall in o

25

Towards sublinear space LP: filtering and listing

Given stream H of halfplanes, produce stream of vertical lines.

List(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = h1N---N A,
Print vertical lines through vertices of I that fall in o

Given stream H of halfplanes, produce stream of halfplanes.

Filter(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = hyN---Nh,
Print halfplanes involved in 9(1 N o)

25

Towards sublinear space LP: filtering and listing

Given stream H of halfplanes, produce stream of vertical lines.

List(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = h1N---N A,
Print vertical lines through vertices of I that fall in o

Given stream H of halfplanes, produce stream of halfplanes.

Filter(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = hyN---Nh,
Print halfplanes involved in 9(1 N o)

List and Filter work in one pass, in O(r) space and O(nlogr) time.
25

Sublinear time LP in R?

Parameter: r

Invariant: solution is in o; and defined by halfplanes in H;

26

Pseudocode

LP(r,o, H)

oo -— R2

for i =0,1,... do Preserves invariant v/
if |H;| =0(1) then

return brute force solution for H;

Divide o; into r slabs with roughly same # of lines from List, ., (H;)
Decide which subslab has the solution, let that be ;4.
H,L'_|_1 = Filt@rr,aiﬂ (Hz)

27

Pseudocode

LP(r,o, H)

oo -— R2

for i =0,1,... do Preserves invariant v/
if |H;| =0(1) then

return brute force solution for H;

Divide o; into r slabs with roughly same # of lines from List, ., (H;)
Decide which subslab has the solution, let that be ;4.
H,L'_|_1 = Filt@rr,aiﬂ (Hz)

Issue: H; can't be stored. We need to recompute it every time.

27

Pseudocode

LP(r, o, H)
oo -— RQ
fori=0,1,... do Preserves invariant v’
if |H;| =0(1) then
return brute force solution for H;

Divide o; into r slabs with roughly same # of lines from List, ., (H;)
Decide which subslab has the solution, let that be o;..
Hi_|_1 = FiltGTT’UiH (HfL)

Issue: H; can't be stored. We need to recompute it every time.

LP(r,o, H)
opg -— R2
fori =0,1,... do
if |Filter, . (... (Filter, ., (H)))| = O(1) then
return brute force solution for Filter, ,, (... (Filter, ,, (H)))

Divide o; into 7 slabs with roughly same # of lines from
List, o, (Filter, . (... (Filter, ,,(H))))
Decide which subslab has the solution, let that be 0,1

27

Pseudocode

LP(r, o, H)
oo -— RQ
fori=0,1,... do Preserves invariant v’
if |H;| =0(1) then
return brute force solution for H;

Divide o; into r slabs with roughly same # of lines from List, ., (H;)
Decide which subslab has the solution, let that be o;..
Hi_|_1 = FiltGTT’JiH (HfL)

Issue: H; can't be stored. We need to recompute it every time.

LP(r,o, H)
opg -— R2
fori =0,1,... do
if |Filter, . (... (Filter, ., (H)))| = O(1) then
return brute force solution for Filter, ,, (... (Filter, ,, (H)))

Divide o; into 7 slabs with roughly same # of lines from
List, o, (Filter, . (... (Filter, ,,(H))))
sDecide which subslab has the solution, let that be o,

g One pass, maintain » — 1 minima at inner slab walls

27

Space-efficient pipeline of streams

How to execute P;(P;_1(...(Pi(x))))
if P; are single-pass processes with worksapce s; and time ¢;?

Pipeline:

28

Space-efficient pipeline of streams

How to execute P;(P;_1(...(Pi(x))))
if P; are single-pass processes with worksapce s; and time ¢;?

Pipeline:

Each P; is either waiting for input, or ready to excute.
Init: all waiting for input

28

Space-efficient pipeline of streams

How to execute P;(P;_1(...(Pi(x))))
if P; are single-pass processes with worksapce s; and time ¢;?

Pipeline:

Each P; is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
o if all P; are waiting for input, execute P
e otherwise, pick largest j ready to execute, and execute one step.

28

Space-efficient pipeline of streams

How to execute P;(P;_1(...(Pi(x))))
if P; are single-pass processes with worksapce s; and time ¢;?

Pipeline:

Each P; is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
o if all P; are waiting for input, execute P
e otherwise, pick largest j ready to execute, and execute one step.

Space:), s; +O(1)

28

Space-efficient pipeline of streams

How to execute P;(P;_1(...(Pi(x))))
if P; are single-pass processes with worksapce s; and time ¢;?

Pipeline:

Each P; is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
o if all P; are waiting for input, execute P
e otherwise, pick largest j ready to execute, and execute one step.

Space:). s; + O(1) Time (mini-hw): O(_, t;)

28

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

29

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

29

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(rlog, n) space, O(nglogr +---+n;_1logr) = O(nlogr) time

29

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(rlog, n) space, O(nglogr +---+n;_1logr) = O(nlogr) time

ApproxQuant needs O(rlog” n;) space and O(n; log(rlogn;)) time. see later!

29

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(rlog, n) space, O(nglogr +---+n;_1logr) = O(nlogr) time

ApproxQuant needs O(rlog” n;) space and O(n; log(rlogn;)) time. see later!

Subslab selection needs O(r) space and O(nr) time.

29

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(rlog, n) space, O(nglogr +---+n;_1logr) = O(nlogr) time

ApproxQuant needs O(rlog” n;) space and O(n; log(rlogn;)) time. see later!

Subslab selection needs O(r) space and O(nr) time.

Altogether: O(rlog, n + rlog® n) space and O(nrlog,. n) time.

29

Chan-Chen simple LP wrap-up

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

e O(3n'™?) time
e O(3n’) space
e with O(1/6) passes.

Altogether: O(rlog, n + rlog® n) space and O(nrlog, n) time.

30

Chan-Chen simple LP wrap-up

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

e O(3n'™?) time
e O(3n’) space
e with O(1/6) passes.

Altogether: O(rlog, n + rlog® n) space and O(nrlog, n) time.

Set r = nd/2.

O(né/z L2+ n%/210g? n) = O0(in%) O(n . nd/2 M) = O(ipl+d

" lognd/2

=

)

30

Approximate quantiles

31

