
1

Geometric Algorithms with Limited Resources

Lecturers:

TA: Hannaneh Akrami (Hana)
hannaneh.akrami95@gmail.com

Themistoklis Gouleakis (Themis)
tgouleak@mpi-inf.mpg.de

Sándor Kisfaludi-Bak (["Sa:ndor])
skisfalu@mpi-inf.mpg.de

Assignments: biweekly, hand in 50% of total point value to take exam.
Exam: oral, soon after end of teaching.

Lectures are recorded (without video) and uploaded, see mailing list for access.

2

Geometric Algorithms with Limited Resources

2

Geometric Algorithms with Limited Resources

Typical input: set of points or a metric space.
But! Not proper computatinal geometry
course, only what we need.

2

Geometric Algorithms with Limited Resources

Typical input: set of points or a metric space.
But! Not proper computatinal geometry
course, only what we need.

Sublinear time, property testing.
Sublinear space, streaming.

2

Geometric Algorithms with Limited Resources

Typical input: set of points or a metric space.
But! Not proper computatinal geometry
course, only what we need.

Sublinear time, property testing.
Sublinear space, streaming.

Recent (mostly after 2000) results, fresh research questions!

3

Introduction, concepts from computational geometry

Sándor Kisfaludi-Bak

Geometric algorithms with limited resources
Summer semester 2021

4

Overview

4

Overview

• Computational models, limitations in space

4

Overview

• Naive convex hull, gift wrapping in O(1) space

• Computational models, limitations in space

4

Overview

• Naive convex hull, gift wrapping in O(1) space

• Classic algorithm: Graham’s scan, O(n log n) time

• Computational models, limitations in space

4

Overview

• Naive convex hull, gift wrapping in O(1) space

• Classic algorithm: Graham’s scan, O(n log n) time

• Computational models, limitations in space

• Time-space tradeoff: Chan and Chen’s algorithm

Convex hull

4

Overview

• Naive convex hull, gift wrapping in O(1) space

• Classic algorithm: Graham’s scan, O(n log n) time

• Computational models, limitations in space

• Time-space tradeoff: Chan and Chen’s algorithm

Low-dim linear
programming

• A classic deterministic algorithm in R2

Convex hull

4

Overview

• Naive convex hull, gift wrapping in O(1) space

• Classic algorithm: Graham’s scan, O(n log n) time

• Computational models, limitations in space

• Time-space tradeoff: Chan and Chen’s algorithm

Low-dim linear
programming

• A classic deterministic algorithm in R2

• Sublinear space LP (Chan–Chen ’07)

Convex hull

5

Real RAM vs. Word RAM

5

Real RAM vs. Word RAM

arbitrary real numbers words of size Θ(log n)

Real RAM Word RAM

5

Real RAM vs. Word RAM

arbitrary real numbers words of size Θ(log n)

no rounding/floor, no modulo realistic∗operations (shifts, etc)

Real RAM Word RAM

5

Real RAM vs. Word RAM

arbitrary real numbers words of size Θ(log n)

no rounding/floor, no modulo realistic∗operations (shifts, etc)

Real inputs and outputs,
can extend with √., ln(.)

Exact arithmetic for
rational inputs with +−∗/

Real RAM Word RAM

5

Real RAM vs. Word RAM

arbitrary real numbers words of size Θ(log n)

no rounding/floor, no modulo realistic∗operations (shifts, etc)

Real inputs and outputs,
can extend with √., ln(.)

Exact arithmetic for
rational inputs with +−∗/

Unrealistic power Too restrictive?

Real RAM Word RAM

5

Real RAM vs. Word RAM

arbitrary real numbers words of size Θ(log n)

no rounding/floor, no modulo realistic∗operations (shifts, etc)

Real inputs and outputs,
can extend with √., ln(.)

Exact arithmetic for
rational inputs with +−∗/

Unrealistic power Too restrictive?

Real RAM Word RAM

Often needed for exact
computation

Usually enough for approximations!

6

Limited workspace model

7 7 2.45 7 3.1416 7 -0.7 7 7 7

Read-only input

n

6

Limited workspace model

7 7 2.45 7 3.1416 7 -0.7 7 7 7

Read-only input

n

Read-write workspace

67 177 2.45 28 3.1416

o(n) e.g., O(
√
n), or poly(log n))

6

Limited workspace model

7 7 2.45 7 3.1416 7 -0.7 7 7 7

Read-only input

n

Read-write workspace

67 177 2.45 28 3.1416

o(n) e.g., O(
√
n), or poly(log n))

7 7 2.45 7 3.1416 7 -0.7

Write-only output stream

written only in sequence!

7

Streaming and multi-pass model

7 7 2.45 7 3.1416 7 -0.7 7 7 7

Read-only input

n

Read-write workspace

67 177 2.45 28 3.14

o(n) e.g., O(
√
n), or poly(log n))

7 7 2.45 7 3.14 7 -0.7
Write-only output stream

7

Streaming and multi-pass model

7 7 2.45 7 3.1416 7 -0.7 7 7 7

Read-only input

n

Read-write workspace

67 177 2.45 28 3.14

o(n) e.g., O(
√
n), or poly(log n))

7 7 2.45 7 3.14 7 -0.7
Write-only output stream

Stream: Read once and in sequence

7

Streaming and multi-pass model

7 7 2.45 7 3.1416 7 -0.7 7 7 7

Read-only input

n

Read-write workspace

67 177 2.45 28 3.14

o(n) e.g., O(
√
n), or poly(log n))

7 7 2.45 7 3.14 7 -0.7
Write-only output stream

Stream: Read once and in sequence
multi-pass,
k-pass: Read k times and in sequence

8

Convex hull

Notations, definitions

Rd is d-dimensional Euclidean space

P = {p1, . . . , pn} set of n points

X ⊆ Rd is convex if for any p, q ∈ X we have pq ⊆ X

8

Convex hull

Notations, definitions

Rd is d-dimensional Euclidean space

P = {p1, . . . , pn} set of n points

X ⊆ Rd is convex if for any p, q ∈ X we have pq ⊆ X

conv(P) =


minimum convex set containing P
intersection of convex sets containing P
{α1p1 + · · ·+ αnpn | αi ≥ 0 and

∑n
i=1 αi = 1}

Convex hull:

8

Convex hull

Notations, definitions

Rd is d-dimensional Euclidean space

P = {p1, . . . , pn} set of n points

X ⊆ Rd is convex if for any p, q ∈ X we have pq ⊆ X

conv(P) =


minimum convex set containing P
intersection of convex sets containing P
{α1p1 + · · ·+ αnpn | αi ≥ 0 and

∑n
i=1 αi = 1}

P

Convex hull:

8

Convex hull

Notations, definitions

Rd is d-dimensional Euclidean space

P = {p1, . . . , pn} set of n points

X ⊆ Rd is convex if for any p, q ∈ X we have pq ⊆ X

conv(P) =


minimum convex set containing P
intersection of convex sets containing P
{α1p1 + · · ·+ αnpn | αi ≥ 0 and

∑n
i=1 αi = 1}

P

conv(P)

Convex hull:

9

Convex hull: input and output

Input: Points with coordianate pairs (x, y) ∈ R2

(e, π), (3, 3), (2.95, 2.9), (
√

11, 3.05), (π, e)

p1

p2

p3
p5

p4

9

Convex hull: input and output

Input: Points with coordianate pairs (x, y) ∈ R2

(e, π), (3, 3), (2.95, 2.9), (
√

11, 3.05), (π, e)

p1

p2

p3
p5

p4

p1, p4, p5, p3

Output: "corners" in clockwise order
smallest Q ⊆ P s.t. conv(Q) = conv(P)

9

Convex hull: input and output

Input: Points with coordianate pairs (x, y) ∈ R2

(e, π), (3, 3), (2.95, 2.9), (
√

11, 3.05), (π, e)

p1

p2

p3
p5

p4

p1, p4, p5, p3

non-corner point on bondary:
not in output!

p6

Output: "corners" in clockwise order
smallest Q ⊆ P s.t. conv(Q) = conv(P)

9

Convex hull: input and output

Input: Points with coordianate pairs (x, y) ∈ R2

(e, π), (3, 3), (2.95, 2.9), (
√

11, 3.05), (π, e)

p1

p2

p3
p5

p4

p1, p4, p5, p3

non-corner point on bondary:
not in output!

p6

Output: "corners" in clockwise order
smallest Q ⊆ P s.t. conv(Q) = conv(P)

Everything works with rational inputs on Word RAM!

10

Naive algorithms, workspace O(1)

11

Naive Algorithm
Suppose no 3 points on one line. (no collinear triples)

11

Naive Algorithm
Suppose no 3 points on one line. (no collinear triples)

p

p′

q

In O(1) time, decide if q is on left or right side of line pp′

sgn

∣∣∣∣∣∣
px py 1
p′x p′y 1
qx qy 1

∣∣∣∣∣∣


11

Naive Algorithm
Suppose no 3 points on one line. (no collinear triples)

p

p′

q

In O(1) time, decide if q is on left or right side of line pp′

sgn

∣∣∣∣∣∣
px py 1
p′x p′y 1
qx qy 1

∣∣∣∣∣∣


Naive Convex Hull in R2

For each p, p′ ∈ P ,
check if all q ∈ P \ {p, p′} is on the left of line pp′.
If yes, then p′ follows p in conv(P).

Assemble and output the hull

11

Naive Algorithm
Suppose no 3 points on one line. (no collinear triples)

p

p′

q

In O(1) time, decide if q is on left or right side of line pp′

Running time:
(
n
2

)
· (n− 2) ·O(1) = O(n3)

sgn

∣∣∣∣∣∣
px py 1
p′x p′y 1
qx qy 1

∣∣∣∣∣∣


Naive Convex Hull in R2

For each p, p′ ∈ P ,
check if all q ∈ P \ {p, p′} is on the left of line pp′.
If yes, then p′ follows p in conv(P).

Assemble and output the hull

12

Less naive algorithm: Jarvis’ March – aka gift wrapping
Algorithm:
Start at leftmost point, find next point with minimum (maxmum) slope.

v1 v1

vi

vi+1
vi

12

Less naive algorithm: Jarvis’ March – aka gift wrapping
Algorithm:
Start at leftmost point, find next point with minimum (maxmum) slope.

v1 v1

vi

vi+1
vi

O(hn) time, and enough to keep track of v1, vi, vi+1. O(1) space.

12

Less naive algorithm: Jarvis’ March – aka gift wrapping
Algorithm:
Start at leftmost point, find next point with minimum (maxmum) slope.

v1 v1

vi

vi+1
vi

O(hn) time, and enough to keep track of v1, vi, vi+1. O(1) space.

h = size of convex hull. Output-sensitive algorithm.

13

Graham’s scan (1972)

14

Graham’s Scan idea
Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.

14

Graham’s Scan idea
Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.

p1, pn are on convex hull

p1 pn

Upper hull
part of the hull after p1 and before pn in clockwise order

14

Graham’s Scan idea
Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.

p1, pn are on convex hull

p1 pn

Lower hull

Upper hull
part of the hull after p1 and before pn in clockwise order

14

Graham’s Scan idea
Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.

p1, pn are on convex hull

p1 pn

Lower hull

Idea:
Add points left to right, update upper hull after each addition

Upper hull
part of the hull after p1 and before pn in clockwise order

15

Graham’s Scan: update

p1

Right turn

pi

Left turn

p1

pi

(pi is below last hull segment) (pi is above last hull segment)

15

Graham’s Scan: update

p1

Right turn

Add pi to the upper hull

pi

Left turn

p1

pi

(pi is below last hull segment) (pi is above last hull segment)

15

Graham’s Scan: update

p1

Right turn

Add pi to the upper hull

pi

Left turn

p1

pi

(pi is below last hull segment) (pi is above last hull segment)

15

Graham’s Scan: update

p1

Right turn

Add pi to the upper hull

pi

Add pi but remove previous hull
point until left turn disappears

Left turn

p1

pi

(pi is below last hull segment) (pi is above last hull segment)

15

Graham’s Scan: update

p1

Right turn

Add pi to the upper hull

pi

Add pi but remove previous hull
point until left turn disappears

Similalrly for lower hull, after adding pi:
while last three points of lower hull q, q′, pi are a right turn:

remove the middle point q′

Left turn

p1

pi

(pi is below last hull segment) (pi is above last hull segment)

16

Graham’s Scan: pseudocode + runtime
Sort P by increasing x-coordinates
Add p1, p2 to U and L
for i = 3 to n do

Add pi to U and L
while last three pts of U form left turn do

Remove pt preceding pi from U

while last three pts of L form right turn do
Remove pt preceding pi from L

return L and reverse of U

16

Graham’s Scan: pseudocode + runtime
Sort P by increasing x-coordinates
Add p1, p2 to U and L
for i = 3 to n do

Add pi to U and L
while last three pts of U form left turn do

Remove pt preceding pi from U

while last three pts of L form right turn do
Remove pt preceding pi from L

return L and reverse of U

Running time:
Sorting

O(n log n)

16

Graham’s Scan: pseudocode + runtime
Sort P by increasing x-coordinates
Add p1, p2 to U and L
for i = 3 to n do

Add pi to U and L
while last three pts of U form left turn do

Remove pt preceding pi from U

while last three pts of L form right turn do
Remove pt preceding pi from L

return L and reverse of U

Running time:
Sorting

Each p ∈ P is:
added once to U (same for L)
removed at most once from U (same for L)

O(n log n)

O(n)

O(n)

Triplets checked in While loop heads O(n)

16

Graham’s Scan: pseudocode + runtime
Sort P by increasing x-coordinates
Add p1, p2 to U and L
for i = 3 to n do

Add pi to U and L
while last three pts of U form left turn do

Remove pt preceding pi from U

while last three pts of L form right turn do
Remove pt preceding pi from L

return L and reverse of U

Running time:
Sorting

Each p ∈ P is:
added once to U (same for L)
removed at most once from U (same for L)

O(n log n)

O(n)

O(n)

Triplets checked in While loop heads O(n)

O(n log n) time, but O(n) space.

Time-optimal because of sorting (was exercise last year)

16

Graham’s Scan: pseudocode + runtime
Sort P by increasing x-coordinates
Add p1, p2 to U and L
for i = 3 to n do

Add pi to U and L
while last three pts of U form left turn do

Remove pt preceding pi from U

while last three pts of L form right turn do
Remove pt preceding pi from L

return L and reverse of U

Running time:
Sorting

Each p ∈ P is:
added once to U (same for L)
removed at most once from U (same for L)

O(n log n)

O(n)

O(n)

Triplets checked in While loop heads O(n)

O(n log n) time, but O(n) space.

Time-optimal because of sorting (was exercise last year)
Near-optimal time-space tradeoff:
sorting on RAM requires T · S = Ω(n2/ log n). [Borodin–Cook ’82]

17

Convex hull with good time-space tradeoff

18

Sorting in sublinear space

Theorem (Munro, Paterson 1980)
Given x and an unsorted array A, we can find the s smallest elements greater
than x in A in a single pass, in O(s) space and O(n) time.
We can also sort in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

19

Convex hull in sublinear space

Theorem (Chan–Chen 2007)
Given n points in R2, the convex hull can be computed in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

20

Sublinear space convex hull pseudocode

v := leftmost point
while v 6= rightmost point do

Find vertical slab σ with s pts whose left wall contains v
q0, . . . , qj = upper hull of P ∩ σ
for all p ∈ P to the right of σ do

while qj−1qjp is left turn do
j := j − 1

j := j + 1, qj := p

Print(q0, . . . , qj)
v := qj

20

Sublinear space convex hull pseudocode

v := leftmost point
while v 6= rightmost point do

Find vertical slab σ with s pts whose left wall contains v
q0, . . . , qj = upper hull of P ∩ σ
for all p ∈ P to the right of σ do

while qj−1qjp is left turn do
j := j − 1

j := j + 1, qj := p

Print(q0, . . . , qj)
v := qj

2dn/se passes, O(s) space, O((n/s) · (n+ s log s)) time

21

Linear Programming in low-dimensional space

22

LP with 2 variables: halfplanes in R2

Given:

min c1x+ c2y subject to
a11x+ a12y ≤ b1
a21x+ a22y ≤ b2

. . .

an1x+ an2y ≤ bn

22

LP with 2 variables: halfplanes in R2

Given:

min c1x+ c2y subject to
a11x+ a12y ≤ b1
a21x+ a22y ≤ b2

. . .

an1x+ an2y ≤ bn

c

Given set H of n halfplanes, find extreme point in direction c.

22

LP with 2 variables: halfplanes in R2

Given:

min c1x+ c2y subject to
a11x+ a12y ≤ b1
a21x+ a22y ≤ b2

. . .

an1x+ an2y ≤ bn

c

Given set H of n halfplanes, find extreme point in direction c.

c

OPT

Dual Graham’s scan solves it in O(n log n)

23

Deterministic method: paired halfplanes
Lemma [Megiddo, Dyer 1984]
Assuming that

⋂
h∈H H 6= ∅ is bounded from below, we can find

OPT in O(n) time.

24

Sublinear space low-dimensional LP
We prove:

Theorem (Chan–Chen 2007)
Given n points in R2, the convex hull can be computed in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

Theorem (Chan–Chen 2007)
Given n points in R2, the convex hull can be computed in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O(1

δn
1+δ) time

• O(1
δn

δ) space
• with O(1/δ) passes.

24

Sublinear space low-dimensional LP
We prove:

Theorem (Chan–Chen 2007)
Given n points in R2, the convex hull can be computed in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

Theorem (Chan–Chen 2007)
Given n points in R2, the convex hull can be computed in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O(1

δn
1+δ) time

• O(1
δn

δ) space
• with O(1/δ) passes.

We might return to:
Theorem (Chan–Chen 2007)
Given n half-spaces in Rd and δ > 0, the lowest point of their intersection can
be computed in
• Od(

1
δO(1)n) time

• Od(
1

δO(1)n
δ) space

• with O(1/δd−1) passes.
Theorem (Chan–Chen 2007)
Given n half-spaces in Rd, the lowest point of their intersection can be
computed in Od(n) time and Od(log n) space.

25

Towards sublinear space LP: filtering and listing

List(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of vertical lines.

25

Towards sublinear space LP: filtering and listing

List(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of vertical lines.

Given stream H of halfplanes, produce stream of halfplanes.

Filter(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print halfplanes involved in ∂(I ∩ σ)

25

Towards sublinear space LP: filtering and listing

List(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of vertical lines.

Given stream H of halfplanes, produce stream of halfplanes.

Filter(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print halfplanes involved in ∂(I ∩ σ)

List and Filter work in one pass, in O(r) space and O(n log r) time.

26

Sublinear time LP in R2

Parameter: r
Invariant: solution is in σi and defined by halfplanes in Hi

27

Pseudocode

Preserves invariant X

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Hi| = O(1) then

return brute force solution for Hi

Divide σi into r slabs with roughly same # of lines from Listr,σi(Hi)
Decide which subslab has the solution, let that be σi+1.
Hi+1 := Filterr,σi+1

(Hi)

27

Pseudocode

Preserves invariant X

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Hi| = O(1) then

return brute force solution for Hi

Divide σi into r slabs with roughly same # of lines from Listr,σi(Hi)
Decide which subslab has the solution, let that be σi+1.
Hi+1 := Filterr,σi+1

(Hi)

Issue: Hi can’t be stored. We need to recompute it every time.

27

Pseudocode

Preserves invariant X

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Hi| = O(1) then

return brute force solution for Hi

Divide σi into r slabs with roughly same # of lines from Listr,σi(Hi)
Decide which subslab has the solution, let that be σi+1.
Hi+1 := Filterr,σi+1

(Hi)

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs with roughly same # of lines from
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
Decide which subslab has the solution, let that be σi+1

Issue: Hi can’t be stored. We need to recompute it every time.

27

Pseudocode

Preserves invariant X

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Hi| = O(1) then

return brute force solution for Hi

Divide σi into r slabs with roughly same # of lines from Listr,σi(Hi)
Decide which subslab has the solution, let that be σi+1.
Hi+1 := Filterr,σi+1

(Hi)

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs with roughly same # of lines from
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
Decide which subslab has the solution, let that be σi+1

Issue: Hi can’t be stored. We need to recompute it every time.

One pass, maintain r − 1 minima at inner slab walls

28

Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si

28

Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si

Each Pj is either waiting for input, or ready to excute.
Init: all waiting for input

28

Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si

Each Pj is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
• if all Pj are waiting for input, execute P1

• otherwise, pick largest j ready to execute, and execute one step.

28

Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si

Each Pj is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
• if all Pj are waiting for input, execute P1

• otherwise, pick largest j ready to execute, and execute one step.

Space:
∑
j sj +O(1)

28

Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si

Each Pj is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
• if all Pj are waiting for input, execute P1

• otherwise, pick largest j ready to execute, and execute one step.

Space:
∑
j sj +O(1) Time (mini-hw): O(

∑
j tj)

29

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

29

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

Let ni = |Hi|. There are logr(n) iterations, O(logr n) passes.

29

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

Let ni = |Hi|. There are logr(n) iterations, O(logr n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(r logr n) space, O(n0 log r + · · ·+ ni−1 log r) = O(n log r) time

29

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

Let ni = |Hi|. There are logr(n) iterations, O(logr n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(r logr n) space, O(n0 log r + · · ·+ ni−1 log r) = O(n log r) time

ApproxQuant needs O(r log2 ni) space and O(ni log(r log ni)) time. see later!

29

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

Let ni = |Hi|. There are logr(n) iterations, O(logr n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(r logr n) space, O(n0 log r + · · ·+ ni−1 log r) = O(n log r) time

ApproxQuant needs O(r log2 ni) space and O(ni log(r log ni)) time. see later!

Subslab selection needs O(r) space and O(nr) time.

29

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

Let ni = |Hi|. There are logr(n) iterations, O(logr n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(r logr n) space, O(n0 log r + · · ·+ ni−1 log r) = O(n log r) time

ApproxQuant needs O(r log2 ni) space and O(ni log(r log ni)) time. see later!

Subslab selection needs O(r) space and O(nr) time.

Altogether: O(r logr n+ r log2 n) space and O(nr logr n) time.

30

Chan-Chen simple LP wrap-up

Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O(1

δn
1+δ) time

• O(1
δn

δ) space
• with O(1/δ) passes.

Altogether: O(r logr n+ r log2 n) space and O(nr logr n) time.

30

Chan-Chen simple LP wrap-up

Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O(1

δn
1+δ) time

• O(1
δn

δ) space
• with O(1/δ) passes.

Altogether: O(r logr n+ r log2 n) space and O(nr logr n) time.

Set r = nδ/2.

O
(
nδ/2 · 2δ + nδ/2 log2 n

)
= O(1

δn
δ) O

(
n · nδ/2 · logn

lognδ/2

)
= O(1

δn
1+δ)

31

Approximate quantiles

