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Recent (mostly after 2000) results, fresh research questions!
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Overview

Computational models, limitations in space

Naive convex hull, gift wrapping in O(1) space

Classic algorithm: Graham's scan, O(nlogn) time

Time-space tradeoff: Chan and Chen’s algorithm

A classic deterministic algorithm in R?

Sublinear space LP (Chan—Chen '07)

Convex hull

Low-dim linear
programming
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Real RAM vs. Word RAM

( Real RAM ( Word RAM )
arbitrary real numbers words of size O(logn)
no rounding/floor, no modulo realistic*operations (shifts, etc)
Real inputs and outputs, Exact arithmetic for
can extend with /-, In(.) rational inputs with + — %/
Unrealistic power Too restrictive?
Often needed for exact Usually enough for approximations!

computation
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Streaming and multi-pass model

n
A
~ N
I I 2.45 [ (3.1416] 7 -0.7 I I I
Read-only input
Stream: Read once and in sequence
multi-pass, _ _
k—paZs: Read k times and in sequence
o(n
. /Q __eg, O(y/n), or poly(logn))
67 | 177 |2.45| 28 |3.14
Read-write workspace
I ( (245 7 |3.14| 7 |-0.7

Write-only output stream
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Convex hull

Notations, definitions

R< is d-dimensional Euclidean space

P ={p1,...,pn} set of n points

X C R is convex if for any p,q € X we have pg C X

Convex hull:

( _ _
minimum convex set containing P

conv(F?) = < intersection of convex sets containing P
{aipi 4+ +appn |y >0and Y7 oy =1}

conv(P)
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Convex hull: input and output

Input: Points with coordianate pairs (z,y) € R?
(e, ), (3,3),(2.95,2.9), (+/11, 3.05), (, e)

Output: "corners" in clockwise order
smallest Q C P s.t. conv(Q) = conv(P)

P1,P4,P5,DP3

o
P2 /

P3

P5

Everything works with rational inputs on Word RAM!
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Naive Algorithm

Suppose no 3 points on one line. (no collinear triples)

In O(1) time, decide if ¢ is on left or right side of line pp’

Px Dy
sgn | P, Py
dxz dy

(Naive Convex Hull in R?

For each p,p’ € P,
check if all g € P\ {p,p’} is on the left of line pp’.
If yes, then p’ follows p in conv(P).

Assemble and output the hull
o

Running time: (5) - (n —2) - O(1) = O(n?)
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Less naive algorithm: Jarvis' March — aka gift wrapping

Algorithm:
Start at leftmost point, find next point with minimum (maxmum) slope.
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Less naive algorithm: Jarvis' March — aka gift wrapping

Algorithm:
Start at leftmost point, find next point with minimum (maxmum) slope.

O(hn) time, and enough to keep track of vy, v;, v;11. O(1) space.

h = size of convex hull. Output-sensitive algorithm.

12



Graham's scan (1972)
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Graham's Scan idea

Let p1,...,py,: points sorted with increasing x-coordinates.

—>> P1,Pn are on convex hull

Upper hull
part of the hull after p; and before p,, in clockwise order

Lower hull

Idea:
[Add points left to right, update upper hull after each addition

14



Graham's Scan: update

Right turn

(p: is below last hull segment)

pl [ ) ‘\

| eft turn

(p: is above last hull segment)

P1 o
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Graham's Scan: update

Right turn

(p: is below last hull segment)
®

h ¢ Di

Add p; to the upper hull

| eft turn

(p: is above last hull segment)

@
[ ﬁ’)pi

Add p; but remove previous hull
point until left turn disappears
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Graham's Scan: update

Right turn Left turn
(pi is below last hull segment) (pi is above last hull segment)
B 2 —O0
¢ [ Di
b ¢ j 2
o ® ® o
Add p; to the upper hull Add p; but remove previous hull

point until left turn disappears

Similalrly for lower hull, after adding p;:
while last three points of lower hull ¢, ¢, p; are a right turn:
remove the middle point ¢’

15



Graham’'s Scan: pseudocode + runtime

Sort P by increasing z-coordinates
Add P11, P2 to U and L
for : =3 ton do

Add p; to U and L
while last three pts of U form left turn do
Remove pt preceding p; from U

while last three pts of L form right turn do

Remove pt preceding p; from L
return L and reverse of U

16
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Running time:
Sorting

—>>(0(nlogn)
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Graham’'s Scan: pseudocode + runtime

Sort P by increasing z-coordinates
Add P11, P2 to U and L
for : = 3 ton do
Add p; to U and L
while last three pts of U form left turn do
Remove pt preceding p; from U

while last three pts of L form right turn do

Remove pt preceding p; from L
return L and reverse of U

Running time:
Sorting

Eachpe P is:
added once to U (same for L)
removed at most once from U (same for L)

Triplets checked in While loop heads

16
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Graham’'s Scan: pseudocode + runtime

Sort P by increasing z-coordinates
Add P11, P2 to U and L
for : =3 ton do

Add p; to U and L
while last three pts of U form left turn do
Remove pt preceding p; from U

while last three pts of L form right turn do

Remove pt preceding p; from L
return L and reverse of U

O(nlogn) time, but O(n) space.

Time-optimal because of sorting (was exercise last year)

Near-optimal time-space tradeoff:
sorting on RAM requires T - S = Q(n?/logn). [Borodin—Cook '82]



Convex hull with good time-space tradeoff
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Sorting in sublinear space

Theorem (Munro, Paterson 1980)
Given = and an unsorted array A, we can find the s smallest elements greater

than z in A in a single pass, in O(s) space and O(n) time.
We can also sort in

e O(n?/s+nlogs) time

e O(s) space

e with n/s passes.

18



Convex hull in sublinear space

Theorem (Chan—Chen 2007)

Given n points in R?, the convex hull can be computed in
e O(n?/s+nlogs) time
e O(s) space
e with n/s passes.

19



Sublinear space convex hull pseudocode

v := leftmost point
while v = rightmost point do
Find vertical slab o with s pts whose left wall contains v
qo, - --,q; = upper hull of PNo
for all p € P to the right of o do
while qj—14;P is left turn do
ji=4—1
j e = ] + 17 q; - =P
Print(qo, - --,q;)
V= Qj

20



Sublinear space convex hull pseudocode

v := leftmost point
while v = rightmost point do
Find vertical slab o with s pts whose left wall contains v
qo, - --,q; = upper hull of PNo
for all p € P to the right of o do
while qj—14;P is left turn do
ji=4—1
j e = ] + 17 q; - =P
Print(qo, - --,q;)
V= Qj

2|n/s| passes, O(s) space, O((n/s) - (n+ slogs)) time

20



Linear Programming in low-dimensional space
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Given:

LP with 2 variables: halfplanes in R?

min ¢ + coy subject to
a1 + a0y < by
21 + a2y < bo

An1T + an2y < by,
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Given:

LP with 2 variables: halfplanes in R?

min ¢ + coy subject to
a1 + a2y < by
a21Z + a2y < bo

An1T + an2y < by,

Given set H of n halfplanes, find extreme point in direction c.

Dual Graham's scan solves it in O(nlogn)

22



Deterministic method: paired halfplanes

Lemma [Megiddo, Dyer 1984]
Assuming that (), . H # 0 is bounded from below, we can find
OPT in O(n) time.

23



Sublinear space low-dimensional LP

We prove:

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

° O(%n1+5) time
e O(3n’) space
e with O(1/9) passes.
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Sublinear space low-dimensional LP

We prove:

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

° O(%n1+5) time
e O(3n’) space
e with O(1/9) passes.

We might return to:

Theorem (Chan—Chen 2007)

Given n half-spaces in R? and § > 0, the lowest point of their intersection can
be computed in

o Od((w%n) time

e O4(5547n°) space

e with O(1/6%7 1) passes.
Theorem (Chan—Chen 2007)

Given n half-spaces in R, the lowest point of their intersection can be
computed in Og4(n) time and Og4(logn) space.
24



Towards sublinear space LP: filtering and listing

Given stream H of halfplanes, produce stream of vertical lines.

List(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = h1N---N A,
Print vertical lines through vertices of I that fall in o
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Towards sublinear space LP: filtering and listing

Given stream H of halfplanes, produce stream of vertical lines.

List(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = h1N---N A,
Print vertical lines through vertices of I that fall in o

Given stream H of halfplanes, produce stream of halfplanes.

Filter(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = hyN---Nh,
Print halfplanes involved in 9(1 N o)

List and Filter work in one pass, in O(r) space and O(nlogr) time.
25



Sublinear time LP in R?

Parameter: r

Invariant: solution is in o; and defined by halfplanes in H;

26



Pseudocode

LP(r,o, H)

oo -— R2

for i =0,1,... do Preserves invariant v/
if |H;| =0(1) then

return brute force solution for H;

Divide o; into r slabs with roughly same # of lines from List, ., (H;)
Decide which subslab has the solution, let that be ;4.
H,L'_|_1 = Filt@rr,aiﬂ (Hz)
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Pseudocode

LP(r, o, H)
oo -— RQ
fori=0,1,... do Preserves invariant v’
if |H;| =0(1) then
return brute force solution for H;

Divide o; into r slabs with roughly same # of lines from List, ., (H;)
Decide which subslab has the solution, let that be o;..
Hi_|_1 = FiltGTT’UiH (HfL)

Issue: H; can't be stored. We need to recompute it every time.

LP(r,o, H)
opg -— R2
fori =0,1,... do
if |Filter, . (... (Filter, ., (H)))| = O(1) then
return brute force solution for Filter, ,, (... (Filter, ,, (H)))

Divide o; into 7 slabs with roughly same # of lines from
List, o, (Filter, . (... (Filter, ,,(H))))
Decide which subslab has the solution, let that be 0,1

27



Pseudocode

LP(r, o, H)
oo -— RQ
fori=0,1,... do Preserves invariant v’
if |H;| =0(1) then
return brute force solution for H;

Divide o; into r slabs with roughly same # of lines from List, ., (H;)
Decide which subslab has the solution, let that be o;..
Hi_|_1 = FiltGTT’JiH (HfL)

Issue: H; can't be stored. We need to recompute it every time.

LP(r,o, H)
opg -— R2
fori =0,1,... do
if |Filter, . (... (Filter, ., (H)))| = O(1) then
return brute force solution for Filter, ,, (... (Filter, ,, (H)))

Divide o; into 7 slabs with roughly same # of lines from
List, o, (Filter, . (... (Filter, ,,(H))))
sDecide which subslab has the solution, let that be o,

g One pass, maintain » — 1 minima at inner slab walls

27
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Space-efficient pipeline of streams

How to execute P;(P;_1(...(Pi(x))))
if P; are single-pass processes with worksapce s; and time ¢;?

Pipeline:

Each P; is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
o if all P; are waiting for input, execute P
e otherwise, pick largest j ready to execute, and execute one step.

Space: ). s; + O(1) Time (mini-hw): O(_, t;)

28



Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1
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Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(rlog, n) space, O(nglogr +---+n;_1logr) = O(nlogr) time

ApproxQuant needs O(rlog” n;) space and O(n; log(rlogn;)) time. see later!

Subslab selection needs O(r) space and O(nr) time.

29



Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(rlog, n) space, O(nglogr +---+n;_1logr) = O(nlogr) time

ApproxQuant needs O(rlog” n;) space and O(n; log(rlogn;)) time. see later!

Subslab selection needs O(r) space and O(nr) time.

Altogether: O(rlog, n + rlog® n) space and O(nrlog,. n) time.
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Chan-Chen simple LP wrap-up

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

e O(3n'™?) time
e O(3n’) space
e with O(1/6) passes.

Altogether: O(rlog, n + rlog® n) space and O(nrlog, n) time.
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Chan-Chen simple LP wrap-up

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

e O(3n'™?) time
e O(3n’) space
e with O(1/6) passes.

Altogether: O(rlog, n + rlog® n) space and O(nrlog, n) time.

Set r = nd/2.

O(né/z L2+ n%/210g? n) = O0(in%) O(n . nd/2 M) = O(ipl+d

" lognd/2

=

)
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Approximate quantiles
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