Linear programming with limited workspace

Sándor Kisfaludi-Bak

Geometric algorithms with limited resources Summer semester 2021

Overview

-
- A classic deterministic algorithm in \mathbb{R}^2 $\qquad \qquad$ Low-dim line: • Sorting with few passes
• A classic deterministic algorithm in $\mathbb F$
• Sublinear space LP (Chan–Chen '07)
-

Low-dim linear

Sorting in sublinear space

Theorem (Munro, Paterson 1980) Given x and an unsorted array A , we can find the s smallest elements greater than x in A in a single pass, in $O(s)$ space and $O(n)$ time. We can also sort in

- $O(n^2/s + n \log s)$ time
- \bullet $O(s)$ space
- with n/s passes.

Theorem (Munro, Paterson 1980) A p-pass sorting algorithm needs $\Omega(n/p)$ space.

Linear Programming in low-dimensional space

A: $n \times d$ matrix. (d variables, n cosntraints.) max cx subject to $Ax \leq b$.

• Fourier-Motzkin elimination slow

A: $n \times d$ matrix. (d variables, n cosntraints.) max cx subject to $Ax \leq b$.

- Fourier-Motzkin elimination • Fourier-Motzkin elimination slow
• Simplex method **state in practice, slow in worst-case**
-

A: $n \times d$ matrix. (d variables, n cosntraints.) max cx subject to $Ax \leq b$.

- Fourier-Motzkin elimination
- Simplex method
-

• Fourier-Motzkin elimination slow
• Simplex method fast in practice, slow in worst-case
• Ellipsoid method slow in practice, poly time in worst-case

A: $n \times d$ matrix. (d variables, n cosntraints.) max cx subject to $Ax \leq b$.

- Fourier-Motzkin elimination • Fourier-Motzkin elimination slow

• Simplex method fast in practice, slow in worst-case

• Ellipsoid method slow in practice, poly time in worst-case

• Interior point mehtods poly time and practical
- Simplex method
- Ellipsoid method
-

These use bit complexity!

A: $n \times d$ matrix. (d variables, n cosntraints.) $\max cx$ subject to $Ax \leq b$.

- Fourier-Motzkin elimination • Fourier-Motzkin elimination slow

• Simplex method fast in practice, slow in worst-case

• Ellipsoid method slow in practice, poly time in worst-case

• Interior point mehtods poly time and practical
- Simplex method
- Ellipsoid method
-

These use bit complexity!

Open: poly LP solver for number of arithmetic operations. (e.g. Real RAM) Best known by Clarkson, Matousek, Sharir, Welzl, Gärtner, Kalai (1996)

> $O(d^2n) + 2^{O($ √ $\overline{d\log d})$

LP with 2 variables: halfplanes in \mathbb{R}^2

Given:

 $\max c_1 x + c_2 y$ subject to $a_{11}x + a_{12}y \leq b_1$ $a_{21}x + a_{22}y \leq b_2$ $\bullet \quad \bullet \quad \bullet$

 $a_{n1}x + a_{n2}y \leq b_n$

LP with 2 variables: halfplanes in \mathbb{R}^2

Given:

 $\max c_1 x + c_2 y$ subject to $a_{11}x + a_{12}y \leq b_1$ $a_{21}x + a_{22}y \leq b_2$. . .

 $a_{n1}x + a_{n2}y \leq b_n$

Given set H of n halfplanes, find extreme point in direction c .

LP with 2 variables: halfplanes in \mathbb{R}^2

Given:

 $\max c_1 x + c_2 y$ subject to $a_{11}x + a_{12}y \leq b_1$ $a_{21}x + a_{22}y \leq b_2$. . .

 $a_{n1}x + a_{n2}y \leq b_n$

Given set H of n halfplanes, find extreme point in direction c .

Dual Graham's scan solves it in $O(n \log n)$

Intro/reminder on geometrc duality

Deterministic method: paired halfplanes

Lemma [Megiddo, Dyer 1984] Assuming that $\bigcap_{h\in H}h\neq\emptyset$ is bounded from below, we can find OPT in $O(n)$ time.

Sublinear space low-dimensional LP

We prove:

Theorem (Chan–Chen 2007) Fix $\delta > 0$. Given n half-planes in \mathbb{R}^2 , the lowest point of their intersection can be computed in

- \bullet $O(\frac{1}{\delta})$ $\frac{1}{\delta}n^{1+\delta})$ time
- \bullet $O(\frac{1}{\delta})$ $\frac{1}{\delta}n^{\delta})$ space
- with $O(1/\delta)$ passes.

Sublinear space low-dimensional LP

We prove:

Theorem (Chan–Chen 2007) Fix $\delta > 0$. Given n half-planes in \mathbb{R}^2 , the lowest point of their intersection can be computed in

- \bullet $O(\frac{1}{\delta})$ $\frac{1}{\delta}n^{1+\delta})$ time
- \bullet $O(\frac{1}{\delta})$ $\frac{1}{\delta}n^{\delta})$ space
- with $O(1/\delta)$ passes.

Theorem (Chan–Chen 2007)

Given n half-spaces in \mathbb{R}^d and $\delta > 0$, the lowest point of their intersection can be computed in

- \bullet $O_d(\frac{1}{\delta^{O(1)}})$ $\frac{1}{\delta^{O(1)}}n)$ time
- \bullet $O_d(\frac{1}{\delta^{O(1)}})$ $\frac{1}{\delta^{O(1)}} n^{\delta})$ space
- with $O(1/\delta^{d-1})$ passes.

Theorem (Chan–Chen 2007)

Given n half-spaces in \mathbb{R}^d , the lowest point of their intersection can be computed in $O_d(n)$ time and $O_d(\log n)$ space.

Given stream H of halfplanes, produce stream of vertical lines.

¹⁰ Towards sublinear space LP: filtering and listing $List(r, \sigma, H)$ while H not read through do $h_1, \ldots, h_r := \text{next } r$ halfplanes from H Compute $I = h_1 \cap \cdots \cap h_r$ Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of vertical lines.

Towards sublinear space LP: filtering and listing

n stream *H* of halfplanes, produce stream of vertical lines.
 \overrightarrow{H}

11

11 not read through **do**

11..., $h_r := \text{next } r$ halfplanes from *II*

npute $I = h_1 \cap \cdots \cap h_r$

n $List(r, \sigma, H)$ while H not read through do $h_1, \ldots, h_r := \text{next } r$ halfplanes from H Compute $I = h_1 \cap \cdots \cap h_r$ Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of halfplanes.

Filter (r, σ, H) while H not read through do $h_1, \ldots, h_r := \text{next } r$ halfplanes from H Compute $I = h_1 \cap \cdots \cap h_r$ Print halfplanes involved in $\partial(I \cap \sigma)$

Given stream H of halfplanes, produce stream of vertical lines.

Towards sublinear space LP: filtering and listing

n stream *H* of halfplanes, produce stream of vertical lines.
 \overrightarrow{H}

11

11 not read through **do**

11..., $h_r := \text{next } r$ halfplanes from *II*

npute $I = h_1 \cap \cdots \cap h_r$

n $List(r, \sigma, H)$ while H not read through do $h_1, \ldots, h_r := \text{next } r$ halfplanes from H Compute $I = h_1 \cap \cdots \cap h_r$ Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of halfplanes.

Filter (r, σ, H) while H not read through do $h_1, \ldots, h_r := \text{next } r$ halfplanes from H Compute $I = h_1 \cap \cdots \cap h_r$ Print halfplanes involved in $\partial(I \cap \sigma)$

List and Filter work in one pass, in $O(r)$ space and $O(n \log r)$ time.

Sublinear time LP in \mathbb{R}^2
 r_i and defined by halfplanes in H_i
11 Sublinear time LP in \mathbb{R}^2

Parameter: r

Invariant: solution is in σ_i and defined by halfplanes in H_i

Pseudocode

Preserves invariant \checkmark

tion for H_i

roughly same # of lines from $List_{r,\sigma_i}(H_i)$

the solution, let that be σ_{i+1} .

12 $\mathsf{LP}(r,\sigma,H)$ $\sigma_0 \vcentcolon= \mathbb{R}^2$ for $i = 0, 1, ...$ do if $|H_i|=O(1)$ then return brute force solution for H_i Divide σ_i into r slabs with roughly same $\#$ of lines from $List_{r,\sigma_i}(H_i)$ Decide which subslab has the solution, let that be σ_{i+1} . $H_{i+1} := Filter_{r, \sigma_{i+1}}(H_i)$

Pseudocode

Preserves invariant \checkmark

tion for H_i

roughly same # of lines from $List_{r,\sigma_i}(H_i)$

the solution, let that be σ_{i+1} .

eed to recompute it every time.

12 $\mathsf{LP}(r,\sigma,H)$ $\sigma_0 \vcentcolon= \mathbb{R}^2$ for $i = 0, 1, ...$ do if $|H_i|=O(1)$ then return brute force solution for H_i Divide σ_i into r slabs with roughly same $\#$ of lines from $List_{r,\sigma_i}(H_i)$ Decide which subslab has the solution, let that be σ_{i+1} . $H_{i+1} := Filter_{r, \sigma_{i+1}}(H_i)$

Issue: H_i can't be stored. We need to recompute it every time.

Pseudocode

Preserves invariant \checkmark

tion for H_i

roughly same # of lines from $List_{r,\sigma_i}(H_i)$

the solution, let that be σ_{i+1} .

eed to recompute it every time.
 $\sigma_i(H))|| = O(1)$ then

tion for $Filter_{r,\sigma_i}(\ldots (Filter_{r,\sigma_1}(H)))$
 $LP(r, \sigma, H)$ $\sigma_0:=\mathbb{R}^2$ for $i = 0, 1, ...$ do if $|H_i|=O(1)$ then return brute force solution for H_i Divide σ_i into r slabs with roughly same $\#$ of lines from $List_{r,\sigma_i}(H_i)$ Decide which subslab has the solution, let that be σ_{i+1} . $H_{i+1} := Filter_{r, \sigma_{i+1}}(H_i)$

Issue: H_i can't be stored. We need to recompute it every time.

Is sue:
$$
H_i
$$
 can't be stored. We need to recompute it every time.

\n
$$
LP(r, \sigma, H)
$$

\n
$$
\sigma_0 := \mathbb{R}^2
$$

\nfor $i = 0, 1, \ldots$ do

\nif $|Filter_{r, \sigma_i}(\ldots(Filter_{r, \sigma_1}(H)))| = O(1)$ then

\nreturn brute force solution for $Filter_{r, \sigma_i}(\ldots(Filter_{r, \sigma_1}(H)))$

\nDivide σ_i into r slabs with roughly same $\#$ of lines from

\n $List_{r, \sigma_i}(Filter_{r, \sigma_i}(\ldots(Filter_{r, \sigma_1}(H))))$

\nDecide which subslab has the solution, let that be σ_{i+1}

 $LP(r, \sigma, H)$ $\sigma_0:=\mathbb{R}^2$ for $i = 0, 1, ...$ do if $|H_i|=O(1)$ then return brute force solution for H_i Divide σ_i into r slabs with roughly same $\#$ of lines from $List_{r,\sigma_i}(H_i)$ Decide which subslab has the solution, let that be σ_{i+1} . $H_{i+1} := Filter_{r, \sigma_{i+1}}(H_i)$

Issue: H_i can't be stored. We need to recompute it every time.

Pseudocode

Preserves invariant \checkmark

tion for H_i

roughly same # of lines from $List_{r,\sigma_i}(H_i)$

the solution, let that be σ_{i+1} .

eed to recompute it every time.
 $\sigma_i(H))|| = O(1)$ then

tion for $Filter_{r,\sigma_i}(\ldots (Filter_{r,\sigma_1}(H)))$
 $\mathsf{LP}(r, \sigma, H)$ $\sigma_0 := \mathbb{R}^2$ for $i = 0, 1, ...$ do if $|Filter_{r, \sigma_i}(\dots (Filter_{r, \sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_{i}}(\dots(Fitter_{r,\sigma_{1}}(H)))$ Divide σ_i into r slabs with roughly same $\#$ of lines from $List_{r,\sigma_i}(Filter_{r,\sigma_i}(\dots(Fitter_{r,\sigma_1}(H))))$ **Issue:** H_i can't be stored. We need to recompute it every tim
 $\mathsf{LP}(r, \sigma, H)$
 $\sigma_0 := \mathbb{R}^2$
 for $i = 0, 1, ...$ **do**
 if $|Filter_{r, \sigma_i}(... (Filter_{r, \sigma_1}(H))] = O(1)$ **then**
 return brute force solution for $Filter_{r, \sigma_i}(... (Filter_{r, \sigma_1}($ \blacktriangleright One pass, maintain $r-1$ minima at inner slab walls

if P_j are single-pass processes with worksapce s_j and time $t_j?$

Pipeline:

if P_j are single-pass processes with worksapce s_j and time $t_j?$

Pipeline:

Each P_j is either waiting for input, or ready to excute. Init: all waiting for input

if P_j are single-pass processes with worksapce s_j and time $t_j?$

Pipeline:

Each P_i is either waiting for input, or ready to excute. Init: all waiting for input

Simulation:

- $\bullet\,$ if all P_j are waiting for input, execute P_1
- \bullet otherwise, pick largest j ready to execute, and execute one step.

if P_j are single-pass processes with worksapce s_j and time $t_j?$

Pipeline:

Each P_i is either waiting for input, or ready to excute. Init: all waiting for input

Simulation:

- $\bullet\,$ if all P_j are waiting for input, execute P_1
- otherwise, pick largest j ready to execute, and execute one step.

Space: $\sum_j s_j + O(1)$

if P_j are single-pass processes with worksapce s_j and time $t_j?$

Pipeline:

Each P_i is either waiting for input, or ready to excute. Init: all waiting for input

Simulation:

- $\bullet\,$ if all P_j are waiting for input, execute P_1
- otherwise, pick largest j ready to execute, and execute one step.

Space: \sum_j $s_j + O(1)$ Time (mini-hw): $O(\sum_j t_j)$

Time and space needs

 $\begin{aligned} \textit{filter}_{r,\sigma_1}(H))] &= O(1) \text{ then} \\ \textit{see solution for Filter}_{r,\sigma_i}(\ldots (Filter_{r,\sigma_1}(H))) \\ \textit{s:} \\ \textit{Quant}_{r}(List_{r,\sigma_i}(Filter_{r,\sigma_i}(\ldots (Filter_{r,\sigma_1}(H))))) \\ \textit{b has the solution, let that be σ_{i+1}} \end{aligned}$ Filter (r, σ, H) $\sigma_0 \vcentcolon= \mathbb{R}^2$ for $i = 0, 1, ...$ do if $|Filter_{r, \sigma_i}(\dots(Fitter_{r, \sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_{i}}(\dots(Fitter_{r,\sigma_{1}}(H)))$ Divide σ_i into r slabs: $\mathbf{ApproxQuant_r}\big(List_{r, \sigma_i}(Filter_{r, \sigma_i}(... (Filter_{r, \sigma_1}(H))))\big)$ Decide which subslab has the solution, let that be σ_{i+1}

Time and space needs

ilter_{r, $\sigma_1(H))$} $| = O(1)$ then

ice solution for $Filter_{r,\sigma_i}(\ldots(Fitter_{r,\sigma_1}(H)))$

s:
 Quant_r(*List<sub>r,* σ_i (*Filter<sub>r,* σ_i (...(*Filter<sub>r,* σ_1 (*H*)))))

b has the solution, let that be σ_{i+1}

</sub></sub></sub> Filter (r, σ, H) $\sigma_0 \vcentcolon= \mathbb{R}^2$ for $i = 0, 1, ...$ do if $|Filter_{r, \sigma_i}(\dots(Fitter_{r, \sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_{i}}(\dots(Fitter_{r,\sigma_{1}}(H)))$ Divide σ_i into r slabs: $\mathbf{ApproxQuant_r}\big(List_{r, \sigma_i}(Filter_{r, \sigma_i}(... (Filter_{r, \sigma_1}(H))))\big)$ Decide which subslab has the solution, let that be σ_{i+1}

Let $n_i = |H_i|$. There are $\log_r(n)$ iterations, $O(\log_r n)$ passes.

Time and space needs
 $ilter_{r,\sigma_1}(H))| = O(1)$ then

te solution for $Filter_{r,\sigma_i}(\ldots(Fitter_{r,\sigma_1}(H)))$

s:
 $\text{Quant}_{r}(List_{r,\sigma_i}(Filter_{r,\sigma_i}(\ldots(Fitter_{r,\sigma_1}(H)))))$

b has the solution, let that be σ_{i+1}
 $e \log_r(n)$ iterations, $O(\log_r n)$ passes.

in it Filter (r, σ, H) $\sigma_0 \vcentcolon= \mathbb{R}^2$ for $i = 0, 1, ...$ do if $|Filter_{r, \sigma_i}(\dots(Fitter_{r, \sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_{i}}(\dots(Fitter_{r,\sigma_{1}}(H)))$ Divide σ_i into r slabs: $\mathbf{ApproxQuant_r}\big(List_{r, \sigma_i}(Filter_{r, \sigma_i}(... (Filter_{r, \sigma_1}(H))))\big)$ Decide which subslab has the solution, let that be σ_{i+1}

Let $n_i = |H_i|$. There are $\log_r(n)$ iterations, $O(\log_r n)$ passes.

Filter pipeline (plus List) in iteration i needs: $O(ri) = O(r\log_r n)$ space, $O(n_0\log r + \cdots + n_{i-1}\log r) = O(n\log r)$ time

Time and space needs
 $ilter_{r,\sigma_1}(H))| = O(1)$ then

te solution for $Filter_{r,\sigma_i}(\ldots(Fitter_{r,\sigma_1}(H)))$

s:
 $\text{Quant}_{r}(List_{r,\sigma_i}(Filter_{r,\sigma_i}(\ldots(Fitter_{r,\sigma_1}(H)))))$

b has the solution, let that be σ_{i+1}
 $e \log_r(n)$ iterations, $O(\log_r n)$ passes.

in it Filter (r, σ, H) $\sigma_0 \vcentcolon= \mathbb{R}^2$ for $i = 0, 1, ...$ do if $|Filter_{r, \sigma_i}(\dots(Fitter_{r, \sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_{i}}(\dots(Fitter_{r,\sigma_{1}}(H)))$ Divide σ_i into r slabs: $\mathbf{ApproxQuant_r}\big(List_{r, \sigma_i}(Filter_{r, \sigma_i}(... (Filter_{r, \sigma_1}(H))))\big)$ Decide which subslab has the solution, let that be σ_{i+1}

Let $n_i = |H_i|$. There are $\log_r(n)$ iterations, $O(\log_r n)$ passes.

Filter pipeline (plus List) in iteration i needs: $O(ri) = O(r\log_r n)$ space, $O(n_0\log r + \cdots + n_{i-1}\log r) = O(n\log r)$ time

ApproxQuant needs $O(r\log^2 n_i)$ space and $O(n_i\log(r\log n_i))$ time. see later!

Time and space needs
 $ilter_{r,\sigma_1}(H))| = O(1)$ then

te solution for $Filter_{r,\sigma_i}(\ldots (Filter_{r,\sigma_1}(H)))$

s:
 $\text{Quant}_{r}(List_{r,\sigma_i}(Filter_{r,\sigma_i}(\ldots (Filter_{r,\sigma_1}(H)))))$

b has the solution, let that be σ_{i+1}
 $e \log_r(n)$ iterations, $O(\log_r n)$ passes.

in it Filter (r, σ, H) $\sigma_0 \vcentcolon= \mathbb{R}^2$ for $i = 0, 1, ...$ do if $|Filter_{r, \sigma_i}(\dots(Fitter_{r, \sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_{i}}(\dots(Fitter_{r,\sigma_{1}}(H)))$ Divide σ_i into r slabs: $\mathbf{ApproxQuant_r}\big(List_{r, \sigma_i}(Filter_{r, \sigma_i}(... (Filter_{r, \sigma_1}(H))))\big)$ Decide which subslab has the solution, let that be σ_{i+1}

Let $n_i = |H_i|$. There are $\log_r(n)$ iterations, $O(\log_r n)$ passes.

Filter pipeline (plus List) in iteration i needs: $O(ri) = O(r\log_r n)$ space, $O(n_0\log r + \cdots + n_{i-1}\log r) = O(n\log r)$ time ApproxQuant needs $O(r\log^2 n_i)$ space and $O(n_i\log(r\log n_i))$ time. see later! Subslab selection needs $O(r)$ space and $O(nr)$ time.

Time and space needs
 $\begin{aligned} \textit{filter}_{r,\sigma_1}(H))|&=O(1)\text{ then}\\ \textit{tree solution for Filter}_{r,\sigma_i}(\ldots (Filter_{r,\sigma_1}(H)))\\ \textit{ss:}\\ \textit{Quant}_{r}(List_{r,\sigma_i}(Filter_{r,\sigma_i}(\ldots (Filter_{r,\sigma_1}(H)))))\\ \textit{b has the solution, let that be σ_{i+1}}\\ \textit{log}_{r}(n)\text{ iterations, }O(\log_r n)\text{ passes.}\\ \textit{in iteration i needs:}\\ \textit{ce, $O(n_0\log r+\cdots+n_{i-1}\log r)=O(n\log r)$ time}\\ \log$ Filter (r, σ, H) $\sigma_0 \vcentcolon= \mathbb{R}^2$ for $i = 0, 1, ...$ do if $|Filter_{r, \sigma_i}(\dots(Fitter_{r, \sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_{i}}(\dots(Fitter_{r,\sigma_{1}}(H)))$ Divide σ_i into r slabs: $\mathbf{ApproxQuant_r}\big(List_{r, \sigma_i}(Filter_{r, \sigma_i}(... (Filter_{r, \sigma_1}(H))))\big)$ Decide which subslab has the solution, let that be σ_{i+1}

Let $n_i = |H_i|$. There are $\log_r(n)$ iterations, $O(\log_r n)$ passes.

Filter pipeline (plus List) in iteration i needs: $O(ri) = O(r\log_r n)$ space, $O(n_0\log r + \cdots + n_{i-1}\log r) = O(n\log r)$ time ApproxQuant needs $O(r\log^2 n_i)$ space and $O(n_i\log(r\log n_i))$ time. see later! Subslab selection needs $O(r)$ space and $O(nr)$ time.

Altogether: $O(r\log_r n + r\log^2 n)$ space and $O(nr\log_r n)$ time.

Approximate quantiles

of *n* numbers, output *r* entries $a_1 \leq \cdots \leq a_r$ so that

the sorting of *S* differ by at most $O(n/r)$.

15 Given unsorted stream S of n numbers, output r entries $a_1 \leq \cdots \leq a_r$ so that the rank of a_i and a_{i+1} in the sorting of S differ by at most $O(n/r)$.

Given unsorted stream S of n numbers, output r entries $a_1 \leq \cdots \leq a_r$ so that the rank of a_i and a_{i+1} in the sorting of S differ by at most $O(n/r)$.

Fix $k > 0$ even, suppose n/k is power of 2.

Approximate quantiles

of *n* numbers, output *r* entries $a_1 \leq \cdots \leq a_r$ so that

the sorting of *S* differ by at most $O(n/r)$.
 n/k is power of 2.

ce: $O(k)$, Time: $O(\frac{n}{k} \cdot k \log k) = O(n \log k)$

ce: $O(k)$, Time: $O(\frac{n}{k} \cdot k$ $PartSort_k$: Repeatedly read next k elements, output them in sorted order. Space: $O(k)$, Time: $O(\frac{n}{k})$ $\frac{n}{k} \cdot k \log k$) = $O(n \log k)$

Given unsorted stream S of n numbers, output r entries $a_1 \leq \cdots \leq a_r$ so that the rank of a_i and a_{i+1} in the sorting of S differ by at most $O(n/r)$.

Fix $k > 0$ even, suppose n/k is power of 2.

 $PartSort_k$: Repeatedly read next k elements, output them in sorted order. Space: $O(k)$, Time: $O(\frac{n}{k})$ $\frac{n}{k} \cdot k \log k$) = $O(n \log k)$

Approximate quantiles

of *n* numbers, output *r* entries $a_1 \leq \cdots \leq a_r$ so that

the sorting of *S* differ by at most $O(n/r)$.
 \lnot/k is power of 2.

ce: $O(k)$, Time: $O(\frac{n}{k} \cdot k \log k) = O(n \log k)$

n next $k + k$ elements a_1 $SampleMerge_k$: Read in next $k + k$ elements $a_1, \ldots, a_k, b_1, \ldots, b_k$ (a and b are sorted). Merge the sequences a_2, a_4, \ldots, a_k and b_2, b_4, \ldots, b_k . Output sorted merged sequence. Space: $O(k)$, Time: $O(n)$

Given unsorted stream S of n numbers, output r entries $a_1 \leq \cdots \leq a_r$ so that the rank of a_i and a_{i+1} in the sorting of S differ by at most $O(n/r)$.

Fix $k > 0$ even, suppose n/k is power of 2.

 $PartSort_k$: Repeatedly read next k elements, output them in sorted order. Space: $O(k)$, Time: $O(\frac{n}{k})$ $\frac{n}{k} \cdot k \log k$) = $O(n \log k)$

Approximate quantiles

of *n* numbers, output *r* entries $a_1 \leq \cdots \leq a_r$ so that

the sorting of *S* differ by at most $O(n/r)$.
 \lnot/k is power of 2.

ce: $O(k)$, Time: $O(\frac{n}{k} \cdot k \log k) = O(n \log k)$

n next $k + k$ elements a_1 $SampleMerge_k$: Read in next $k + k$ elements $a_1, \ldots, a_k, b_1, \ldots, b_k$ (a and b are sorted). Merge the sequences a_2, a_4, \ldots, a_k and b_2, b_4, \ldots, b_k . Output sorted merged sequence. Space: $O(k)$, Time: $O(n)$

Idea:

Do $PartSort_k$, then repeatedly run $SampleMerge_k$ to get sample of size k.

 $\log(n/k)$

 $SampleMerge_k(SampleMerge_k(...((PartSort_k(S)))...)$

Lemma (assignment)

Approximate quantiles as a pipeline

ent)

the result of $Sort_k$ and $\log(n/k)$ runs of $SampleMerge_k$.
 a_i and a_{i+1} differ by at most $O(\frac{n}{k} \log n)$ for all $i \in [k-1]$.

16 Let a_1, \ldots, a_k be the result of $Sort_k$ and $\log(n/k)$ runs of $SampleMerge_k$. Then the rank of a_i and a_{i+1} differ by at most $O(\frac{n}{k})$ $\frac{n}{k} \log n$) for all $i \in [k-1]$.

Approximate quantiles as a pipeline

ent)

the result of $Sort_k$ and $\log(n/k)$ runs of $SampleMerge_k$.
 a_i and a_{i+1} differ by at most $O(\frac{n}{k} \log n)$ for all $i \in [k-1]$.

16 Lemma (assignment) Let a_1, \ldots, a_k be the result of $Sort_k$ and $\log(n/k)$ runs of $SampleMerge_k$. Then the rank of a_i and a_{i+1} differ by at most $O(\frac{n}{k})$ $\frac{n}{k} \log n$) for all $i \in [k-1]$.

Set $k = r \log n$. $PostSelect_r$:

Lemma (assignment) Let a_1, \ldots, a_k be the result of $Sort_k$ and $\log(n/k)$ runs of $SampleMerge_k$. Then the rank of a_i and a_{i+1} differ by at most $O(\frac{n}{k})$ $\frac{n}{k} \log n$) for all $i \in [k-1]$.

Set $k = r \log n$. $PostSelect_r$:

 $ApproxQuant_r$:

\nApproximate quantiles as a pipeline\n\n
$$
\text{mma} \text{ (assignment)} \\
\text{... } a_1, \ldots, a_k \text{ be the result of } Sort_k \text{ and } \log(n/k) \text{ runs of } SampleMerge_k. \\
\text{en the rank of } a_i \text{ and } a_{i+1} \text{ differ by at most } O(\frac{n}{k} \log n) \text{ for all } i \in [k-1]. \\
\text{... } k = r \log n.\n\text{...} \\
\text{...} \\
$$

Time: $O(n \log k + n + n/2 + n/4 + \cdots + k + n \log k) = O(n \log(r \log n))$

Space: $O(k + k + \dots + k + k) = O(k \log(n/k)) = O(r \log^2 n)$

Chan-Chen simple LP wrap-up

en 2007)

alf-planes in \mathbb{R}^2 , the lowest point of their intersection can

ses.
 $n + r \log^2 n$) space and $O(nr \log_r n)$ time.

17 Theorem (Chan–Chen 2007) Fix $\delta > 0$. Given n half-planes in \mathbb{R}^2 , the lowest point of their intersection can be computed in

- \bullet $O(\frac{1}{\delta})$ $\frac{1}{\delta}n^{1+\delta})$ time
- \bullet $O(\frac{1}{\delta})$ $\frac{1}{\delta}n^{\delta})$ space
- with $O(1/\delta)$ passes.

Altogether: $O(r\log_r n + r\log^2 n)$ space and $O(nr\log_r n)$ time.

- \bullet $O(\frac{1}{\delta})$ $\frac{1}{\delta}n^{\delta})$ space
- with $O(1/\delta)$ passes.

Altogether: $O(r\log_r n + r\log^2 n)$ space and $O(nr\log_r n)$ time.

17 Chan-Chen simple LP wrap-up Set r = n δ/2 . O n δ/2 · 2 δ + n δ/2 log² n = O(1 δ n δ) O n · n δ/2 · log n log nδ/² = O(1 δ n 1+δ)