Linear programming with limited workspace

Sándor Kisfaludi-Bak

Geometric algorithms with limited resources Summer semester 2021

Overview

- Sorting with few passes
- A classic deterministic algorithm in \mathbb{R}^2
- Sublinear space LP (Chan–Chen '07)

Low-dim linear programming

Sorting in sublinear space

Theorem (Munro, Paterson 1980) Given x and an unsorted array A, we can find the s smallest elements greater than x in A in a single pass, in O(s) space and O(n) time. We can also sort in

- $O(n^2/s + n\log s)$ time
- O(s) space
- with n/s passes.

Theorem (Munro, Paterson 1980) A *p*-pass sorting algorithm needs $\Omega(n/p)$ space.

Linear Programming in low-dimensional space

A: $n \times d$ matrix. (d variables, n cosntraints.) max cx subject to $Ax \leq b$.

• Fourier-Motzkin elimination slow

A: $n \times d$ matrix. (d variables, n cosntraints.) max cx subject to $Ax \leq b$.

- Fourier-Motzkin elimination slow
- Simplex method

fast in practice, slow in worst-case

A: $n \times d$ matrix. (d variables, n cosntraints.) max cx subject to $Ax \leq b$.

- Fourier-Motzkin elimination slow
- Simplex method
- Ellipsoid method

fast in practice, slow in worst-case slow in practice, poly time in worst-case

A: $n \times d$ matrix. (d variables, n cosntraints.) max cx subject to $Ax \leq b$.

- Fourier-Motzkin elimination slow
- Simplex method
- Ellipsoid method
- Interior point mehtods

fast in practice, slow in worst-case

slow in practice, poly time in worst-case

poly time and practical

These use bit complexity!

A: $n \times d$ matrix. (d variables, n cosntraints.) max cx subject to $Ax \leq b$.

- Fourier-Motzkin elimination slow
- Simplex method
- Ellipsoid method
- Interior point mehtods

fast in practice, slow in worst-case

slow in practice, poly time in worst-case

poly time and practical

These use bit complexity!

Open: poly LP solver for number of arithmetic operations. (e.g. Real RAM) Best known by Clarkson, Matousek, Sharir, Welzl, Gärtner, Kalai (1996)

 $O(d^2n) + 2^{O(\sqrt{d\log d})}$

LP with 2 variables: halfplanes in \mathbb{R}^2

Given:

 $\max c_1 x + c_2 y \text{ subject to}$ $a_{11}x + a_{12}y \leq b_1$ $a_{21}x + a_{22}y \leq b_2$ \dots

 $a_{n1}x + a_{n2}y \le b_n$

LP with 2 variables: halfplanes in \mathbb{R}^2

Given:

 $\max c_1 x + c_2 y \text{ subject to}$ $a_{11}x + a_{12}y \leq b_1$ $a_{21}x + a_{22}y \leq b_2$ \dots

 $a_{n1}x + a_{n2}y \le b_n$

Given set H of n halfplanes, find extreme point in direction c.

LP with 2 variables: halfplanes in \mathbb{R}^2

Given:

 $\max c_1 x + c_2 y \text{ subject to}$ $a_{11}x + a_{12}y \leq b_1$ $a_{21}x + a_{22}y \leq b_2$ \dots

 $a_{n1}x + a_{n2}y \le b_n$

Given set H of n halfplanes, find extreme point in direction c.

Dual Graham's scan solves it in $O(n \log n)$

Intro/reminder on geometrc duality

Deterministic method: paired halfplanes

Lemma [Megiddo, Dyer 1984] Assuming that $\bigcap_{h \in H} h \neq \emptyset$ is bounded from below, we can find OPT in O(n) time.

Sublinear space low-dimensional LP

We prove:

Theorem (Chan–Chen 2007) Fix $\delta > 0$. Given n half-planes in \mathbb{R}^2 , the lowest point of their intersection can be computed in

- $O(\frac{1}{\delta}n^{1+\delta})$ time
- $O(\frac{1}{\delta}n^{\delta})$ space
- with $O(1/\delta)$ passes.

Sublinear space low-dimensional LP

We prove:

Theorem (Chan–Chen 2007) Fix $\delta > 0$. Given n half-planes in \mathbb{R}^2 , the lowest point of their intersection can be computed in

- $O(\frac{1}{\delta}n^{1+\delta})$ time
- $O(\frac{1}{\delta}n^{\delta})$ space
- with $O(1/\delta)$ passes.

Theorem (Chan–Chen 2007)

Given n half-spaces in \mathbb{R}^d and $\delta > 0$, the lowest point of their intersection can be computed in

- $O_d(\frac{1}{\delta^{O(1)}}n)$ time
- $O_d(rac{1}{\delta^{O(1)}}n^\delta)$ space
- with $O(1/\delta^{d-1})$ passes.

Theorem (Chan–Chen 2007)

Given n half-spaces in \mathbb{R}^d , the lowest point of their intersection can be computed in $O_d(n)$ time and $O_d(\log n)$ space.

Towards sublinear space LP: filtering and listing

Given stream H of halfplanes, produce stream of vertical lines.

List (r, σ, H) while H not read through do $h_1, \ldots, h_r := \text{next } r$ halfplanes from H Compute $I = h_1 \cap \cdots \cap h_r$ Print vertical lines through vertices of I that fall in σ Towards sublinear space LP: filtering and listing

Given stream H of halfplanes, produce stream of vertical lines.

List (r, σ, H) while H not read through do $h_1, \ldots, h_r := \text{next } r$ halfplanes from H Compute $I = h_1 \cap \cdots \cap h_r$ Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of halfplanes.

Filter (r, σ, H) while H not read through do $h_1, \ldots, h_r := \text{next } r \text{ halfplanes from } H$ Compute $I = h_1 \cap \cdots \cap h_r$ Print halfplanes involved in $\partial(I \cap \sigma)$ Towards sublinear space LP: filtering and listing

Given stream H of halfplanes, produce stream of vertical lines.

List (r, σ, H) while H not read through do $h_1, \ldots, h_r := \text{next } r$ halfplanes from H Compute $I = h_1 \cap \cdots \cap h_r$ Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of halfplanes.

Filter (r, σ, H) while H not read through do $h_1, \ldots, h_r := \text{next } r \text{ halfplanes from } H$ Compute $I = h_1 \cap \cdots \cap h_r$ Print halfplanes involved in $\partial(I \cap \sigma)$

List and Filter work in one pass, in O(r) space and $O(n \log r)$ time.

Sublinear time LP in \mathbb{R}^2

Parameter: r

Invariant: solution is in σ_i and defined by halfplanes in H_i

 $\begin{aligned} \mathsf{LP}(r,\sigma,H) \\ \sigma_0 &:= \mathbb{R}^2 \\ \text{for } i = 0, 1, \dots \text{ do } & \text{Preserves invariant } \checkmark \\ & \text{if } |H_i| = O(1) \text{ then } \\ & \text{ return brute force solution for } H_i \\ & \text{Divide } \sigma_i \text{ into } r \text{ slabs with roughly same } \# \text{ of lines from } List_{r,\sigma_i}(H_i) \\ & \text{Decide which subslab has the solution, let that be } \sigma_{i+1}. \\ & H_{i+1} &:= Filter_{r,\sigma_{i+1}}(H_i) \end{aligned}$

 $\begin{aligned} \mathsf{LP}(r,\sigma,H) \\ \sigma_0 &:= \mathbb{R}^2 \\ \text{for } i = 0, 1, \dots \text{ do } \\ \text{if } |H_i| &= O(1) \text{ then } \\ \text{return brute force solution for } H_i \\ \text{Divide } \sigma_i \text{ into } r \text{ slabs with roughly same } \# \text{ of lines from } List_{r,\sigma_i}(H_i) \\ \text{Decide which subslab has the solution, let that be } \sigma_{i+1}. \\ H_{i+1} &:= Filter_{r,\sigma_{i+1}}(H_i) \end{aligned}$

Issue: H_i can't be stored. We need to recompute it every time.

 $\begin{array}{ll} \mathsf{LP}(r,\sigma,H) \\ \sigma_0 := \mathbb{R}^2 \\ \textbf{for } i = 0,1,\dots \textbf{ do} \\ \textbf{if } |H_i| = O(1) \textbf{ then} \\ \textbf{return } brute \mbox{ force solution for } H_i \\ \mbox{ Divide } \sigma_i \mbox{ into } r \mbox{ slabs with roughly same } \# \mbox{ of lines from } List_{r,\sigma_i}(H_i) \\ \mbox{ Decide which subslab has the solution, let that be } \sigma_{i+1}. \\ H_{i+1} := Filter_{r,\sigma_{i+1}}(H_i) \end{array}$

Issue: H_i can't be stored. We need to recompute it every time.

$$\begin{split} \mathsf{LP}(r,\sigma,H) \\ \sigma_0 &:= \mathbb{R}^2 \\ \textbf{for } i = 0, 1, \dots \textbf{ do} \\ & \textbf{if } |Filter_{r,\sigma_i}(\dots(Filter_{r,\sigma_1}(H)))| = O(1) \textbf{ then} \\ & \textbf{return brute force solution for } Filter_{r,\sigma_i}(\dots(Filter_{r,\sigma_1}(H))) \\ & \mathsf{Divide } \sigma_i \textbf{ into } r \textbf{ slabs with roughly same } \# \textbf{ of lines from} \\ & List_{r,\sigma_i}(Filter_{r,\sigma_i}(\dots(Filter_{r,\sigma_1}(H)))) \\ & \mathsf{Decide which subslab has the solution, let that be } \sigma_{i+1} \end{split}$$

 $\begin{array}{ll} \mathsf{LP}(r,\sigma,H) \\ \sigma_0 := \mathbb{R}^2 \\ \textbf{for } i = 0,1,\dots \ \textbf{do} \\ \textbf{if } |H_i| = O(1) \ \textbf{then} \\ \textbf{return } \text{brute force solution for } H_i \\ \\ \text{Divide } \sigma_i \ \textbf{into } r \ \textbf{slabs with roughly same } \# \ \textbf{of lines from } List_{r,\sigma_i}(H_i) \\ \\ \text{Decide which subslab has the solution, let that be } \sigma_{i+1}. \\ \\ H_{i+1} := Filter_{r,\sigma_{i+1}}(H_i) \end{array}$

Issue: H_i can't be stored. We need to recompute it every time.

 $\mathsf{LP}(r, \sigma, H)$ $\sigma_0 := \mathbb{R}^2$ for $i = 0, 1, \dots$ do
if $|Filter_{r,\sigma_i}(\dots(Filter_{r,\sigma_1}(H)))| = O(1)$ then
return brute force solution for $Filter_{r,\sigma_i}(\dots(Filter_{r,\sigma_1}(H)))$ Divide σ_i into r slabs with roughly same # of lines from $List_{r,\sigma_i}(Filter_{r,\sigma_i}(\dots(Filter_{r,\sigma_1}(H))))$ Decide which subslab has the solution, let that be σ_{i+1} • One pass, maintain r - 1 minima at inner slab walls

How to execute $P_i(P_{i-1}(\ldots(P_1(x))))$

if P_j are single-pass processes with worksapce s_j and time t_j ?

Pipeline:

How to execute $P_i(P_{i-1}(\ldots(P_1(x))))$

if P_j are single-pass processes with worksapce s_j and time t_j ?

Pipeline:

Each P_j is either waiting for input, or ready to excute. Init: all waiting for input

How to execute $P_i(P_{i-1}(\ldots(P_1(x))))$

if P_j are single-pass processes with worksapce s_j and time t_j ?

Pipeline:

Each P_j is either waiting for input, or ready to excute. Init: all waiting for input

Simulation:

- if all P_j are waiting for input, execute P_1
- otherwise, pick largest j ready to execute, and execute one step.

How to execute $P_i(P_{i-1}(\ldots(P_1(x))))$

if P_j are single-pass processes with worksapce s_j and time t_j ?

Pipeline:

Each P_j is either waiting for input, or ready to excute. Init: all waiting for input

Simulation:

- if all P_j are waiting for input, execute P_1
- otherwise, pick largest j ready to execute, and execute one step.

Space: $\sum_j s_j + O(1)$

How to execute $P_i(P_{i-1}(\ldots(P_1(x))))$

if P_j are single-pass processes with worksapce s_j and time t_j ?

Pipeline:

Each P_j is either waiting for input, or ready to excute. Init: all waiting for input

Simulation:

- if all P_j are waiting for input, execute P_1
- otherwise, pick largest j ready to execute, and execute one step.

Space: $\sum_{j} s_j + O(1)$ Time (mini-hw): $O(\sum_{j} t_j)$

Filter (r, σ, H) $\sigma_0 := \mathbb{R}^2$ for i = 0, 1, ... do if $|Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))$ Divide σ_i into r slabs: ApproxQuant_r $(List_{r,\sigma_i}(Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))))$ Decide which subslab has the solution, let that be σ_{i+1}

Filter (r, σ, H) $\sigma_0 := \mathbb{R}^2$ for i = 0, 1, ... do if $|Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))$ Divide σ_i into r slabs: ApproxQuant_r $(List_{r,\sigma_i}(Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))))$ Decide which subslab has the solution, let that be σ_{i+1}

Let $n_i = |H_i|$. There are $\log_r(n)$ iterations, $O(\log_r n)$ passes.

Filter (r, σ, H) $\sigma_0 := \mathbb{R}^2$ for i = 0, 1, ... do if $|Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))$ Divide σ_i into r slabs: ApproxQuant_r $(List_{r,\sigma_i}(Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))))$ Decide which subslab has the solution, let that be σ_{i+1}

Let $n_i = |H_i|$. There are $\log_r(n)$ iterations, $O(\log_r n)$ passes.

Filter pipeline (plus List) in iteration i needs: $O(ri) = O(r \log_r n)$ space, $O(n_0 \log r + \dots + n_{i-1} \log r) = O(n \log r)$ time

Filter (r, σ, H) $\sigma_0 := \mathbb{R}^2$ for i = 0, 1, ... do if $|Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))$ Divide σ_i into r slabs: ApproxQuant_r $(List_{r,\sigma_i}(Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))))$ Decide which subslab has the solution, let that be σ_{i+1}

Let $n_i = |H_i|$. There are $\log_r(n)$ iterations, $O(\log_r n)$ passes.

Filter pipeline (plus List) in iteration i needs: $O(ri) = O(r \log_r n)$ space, $O(n_0 \log r + \dots + n_{i-1} \log r) = O(n \log r)$ time

ApproxQuant needs $O(r \log^2 n_i)$ space and $O(n_i \log(r \log n_i))$ time. see later!

Filter (r, σ, H) $\sigma_0 := \mathbb{R}^2$ for i = 0, 1, ... do if $|Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))$ Divide σ_i into r slabs: ApproxQuant_r $(List_{r,\sigma_i}(Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))))$ Decide which subslab has the solution, let that be σ_{i+1}

Let $n_i = |H_i|$. There are $\log_r(n)$ iterations, $O(\log_r n)$ passes.

Filter pipeline (plus List) in iteration i needs: $O(ri) = O(r \log_r n)$ space, $O(n_0 \log r + \dots + n_{i-1} \log r) = O(n \log r)$ time ApproxQuant needs $O(r \log^2 n_i)$ space and $O(n_i \log(r \log n_i))$ time. see later! Subslab selection needs O(r) space and O(nr) time.

Filter(r, σ, H) $\sigma_0 := \mathbb{R}^2$ for i = 0, 1, ... do if $|Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))| = O(1)$ then return brute force solution for $Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H)))$ Divide σ_i into r slabs: ApproxQuant_r($List_{r,\sigma_i}(Filter_{r,\sigma_i}(...(Filter_{r,\sigma_1}(H))))$) Decide which subslab has the solution, let that be σ_{i+1}

Let $n_i = |H_i|$. There are $\log_r(n)$ iterations, $O(\log_r n)$ passes.

Filter pipeline (plus List) in iteration i needs: $O(ri) = O(r \log_r n)$ space, $O(n_0 \log r + \dots + n_{i-1} \log r) = O(n \log r)$ time ApproxQuant needs $O(r \log^2 n_i)$ space and $O(n_i \log(r \log n_i))$ time. see later! Subslab selection needs O(r) space and O(nr) time.

Altogether: $O(r \log_r n + r \log^2 n)$ space and $O(nr \log_r n)$ time.

Goal:

Given unsorted stream S of n numbers, output r entries $a_1 \leq \cdots \leq a_r$ so that the rank of a_i and a_{i+1} in the sorting of S differ by at most O(n/r).

Goal:

Given unsorted stream S of n numbers, output r entries $a_1 \leq \cdots \leq a_r$ so that the rank of a_i and a_{i+1} in the sorting of S differ by at most O(n/r).

Fix k > 0 even, suppose n/k is power of 2.

PartSort_k :Repeatedly read next k elements, output them in sorted order.Space: O(k), Time: $O(\frac{n}{k} \cdot k \log k) = O(n \log k)$

Goal:

Given unsorted stream S of n numbers, output r entries $a_1 \leq \cdots \leq a_r$ so that the rank of a_i and a_{i+1} in the sorting of S differ by at most O(n/r).

Fix k > 0 even, suppose n/k is power of 2.

 $PartSort_k$:Repeatedly read next k elements, output them in sorted order.Space: O(k), Time: $O(\frac{n}{k} \cdot k \log k) = O(n \log k)$

 $\begin{array}{l} \textit{SampleMerge}_k: \ \text{Read in next } k+k \text{ elements } a_1, \ldots, a_k, b_1, \ldots, b_k \ (a \text{ and } b are sorted). \ \text{Merge the sequences } a_2, a_4, \ldots, a_k \text{ and} \\ b_2, b_4, \ldots, b_k. \ \text{Output sorted merged sequence.} \\ \text{Space: } O(k), \text{ Time: } O(n) \end{array}$

Goal:

Given unsorted stream S of n numbers, output r entries $a_1 \leq \cdots \leq a_r$ so that the rank of a_i and a_{i+1} in the sorting of S differ by at most O(n/r).

Fix k > 0 even, suppose n/k is power of 2.

 $PartSort_k$:Repeatedly read next k elements, output them in sorted order.Space: O(k), Time: $O(\frac{n}{k} \cdot k \log k) = O(n \log k)$

 $\begin{array}{l} \textit{SampleMerge}_k: \ensuremath{\text{Read}} in \ensuremath{\text{next}} k+k \ensuremath{\,\text{elements}} a_1,\ldots,a_k,b_1,\ldots,b_k \ensuremath{\,(a \mbox{ and } b \mbox{ are sorted}). \ensuremath{\,\text{Merge}} the sequences \ensuremath{a_2,a_4,\ldots,a_k} \ensuremath{\,\text{and}} b_2,b_4,\ldots,b_k. \ensuremath{\,\text{Output sorted}} \ensuremath{\,\text{merged sequence}}. \\ \ensuremath{\,\text{Space}}: \ensuremath{O(k)}, \ensuremath{\,\text{Time}}: \ensuremath{\,O(n)} \end{array}$

Idea:

Do $PartSort_k$, then repeatedly run $SampleMerge_k$ to get sample of size k.

 $\log(n/k)$

 $SampleMerge_k(SampleMerge_k(\dots((PartSort_k(S)))\dots))$

Approximate quantiles as a pipeline

Lemma (assignment)

Let a_1, \ldots, a_k be the result of $Sort_k$ and $\log(n/k)$ runs of $SampleMerge_k$. Then the rank of a_i and a_{i+1} differ by at most $O(\frac{n}{k} \log n)$ for all $i \in [k-1]$.

Approximate quantiles as a pipeline

Lemma (assignment) Let a_1, \ldots, a_k be the result of $Sort_k$ and $\log(n/k)$ runs of $SampleMerge_k$. Then the rank of a_i and a_{i+1} differ by at most $O(\frac{n}{k} \log n)$ for all $i \in [k-1]$.

Set $k = r \log n$. PostSelect_r:

Approximate quantiles as a pipeline

Lemma (assignment) Let a_1, \ldots, a_k be the result of $Sort_k$ and $\log(n/k)$ runs of $SampleMerge_k$. Then the rank of a_i and a_{i+1} differ by at most $O(\frac{n}{k} \log n)$ for all $i \in [k-1]$.

Set $k = r \log n$. $PostSelect_r$:

 $ApproxQuant_r$:

$$PostSelect_r(SampleMerge_k(SampleMerge_k(\dots ((PartSort_k(S)))\dots)))) \\ \underbrace{\log(n/k)}$$

Time: $O(n \log k + n + n/2 + n/4 + \dots + k + n \log k) = O(n \log(r \log n))$

Space: $O(k + k + \dots + k + k) = O(k \log(n/k)) = O(r \log^2 n)$

Chan-Chen simple LP wrap-up

Theorem (Chan–Chen 2007) Fix $\delta > 0$. Given *n* half-planes in \mathbb{R}^2 , the lowest point of their intersection can be computed in

- $O(\frac{1}{\delta}n^{1+\delta})$ time
- $O(\frac{1}{\delta}n^{\delta})$ space
- with $O(1/\delta)$ passes.

Altogether: $O(r \log_r n + r \log^2 n)$ space and $O(nr \log_r n)$ time.

Chan-Chen simple LP wrap-up

- $O(\frac{1}{\delta}n^{\delta})$ space
- with $O(1/\delta)$ passes.

Altogether: $O(r \log_r n + r \log^2 n)$ space and $O(nr \log_r n)$ time.

$$Set r = n^{\delta/2}.$$

$$O\left(n^{\delta/2} \cdot \frac{2}{\delta} + n^{\delta/2} \log^2 n\right) = O(\frac{1}{\delta}n^{\delta}) \qquad O\left(n \cdot n^{\delta/2} \cdot \frac{\log n}{\log n^{\delta/2}}\right) = O(\frac{1}{\delta}n^{1+\delta})$$