Linear programming with limited workspace

Sandor Kisfaludi-Bak

Geometric algorithms with limited resources
Summer semester 2021

l ' I I I max planck institut
informatik

Overview

e Sorting with few passes

e A classic deterministic algorithm in R? o
Low-dim linear

programming
e Sublinear space LP (Chan—Chen '07)

Sorting in sublinear space

Theorem (Munro, Paterson 1980)
Given = and an unsorted array A, we can find the s smallest elements greater
than z in A in a single pass, in O(s) space and O(n) time.
We can also sort in
e O(n?/s+nlogs) time
e O(s) space
e with n/s passes.

Theorem (Munro, Paterson 1980)
A p-pass sorting algorithm needs €2(n/p) space.

Linear Programming in low-dimensional space

Known LP algorithms

A: n x d matrix. (d variables, n cosntraints.)
max cx subject to Ax <b.

e Fourier-Motzkin elimination slow

Known LP algorithms

A: n x d matrix. (d variables, n cosntraints.)
max cx subject to Ax <b.

e Fourier-Motzkin elimination slow

e Simplex method fast in practice, slow in worst-case

Known LP algorithms

A: n x d matrix. (d variables, n cosntraints.)
max cx subject to Ax <b.

e Fourier-Motzkin elimination slow

e Simplex method fast in practice, slow in worst-case

e Ellipsoid method slow in practice, poly time in worst-case

Known LP algorithms

A: n x d matrix. (d variables, n cosntraints.)
max cx subject to Ax <b.

e Fourier-Motzkin elimination slow

e Simplex method fast in practice, slow in worst-case

e Ellipsoid method slow in practice, poly time in worst-case
e Interior point mehtods poly time and practical

These use bit complexity!

Known LP algorithms

A: n x d matrix. (d variables, n cosntraints.)
max cx subject to Ax <b.

e Fourier-Motzkin elimination slow

e Simplex method fast in practice, slow in worst-case

e Ellipsoid method slow in practice, poly time in worst-case
e Interior point mehtods poly time and practical

These use bit complexity!

Open: poly LP solver for number of arithmetic operations. (e.g. Real RAM)

Best known by Clarkson, Matousek, Sharir, Welzl, Gartner, Kalai (1996)

O(d2n) 4+ 9O (v/dlog d)

Given:

LP with 2 variables: halfplanes in R?

max c1x + coy subject to
a1 + a0y < by
21 + a2y < bo

An1T + an2y < by,

LP with 2 variables: halfplanes in R?

Given:

max c1x + coy subject to
a1 + a0y < by
21 + a2y < bo

An1T + an2y < by,

Given set H of n halfplanes, find extreme point in direction c.

\c

LP with 2 variables: halfplanes in R?

Given:

max c1x + coy subject to
a1 + a2y < by
a21x + a2y < bo

An1T + an2y < by,

Given set H of n halfplanes, find extreme point in direction c.

Dual Graham's scan solves it in O(nlogn)

Intro/reminder on geometrc duality

Deterministic method: paired halfplanes

Lemma [Megiddo, Dyer 1984]
Assuming that (), h # 0 is bounded from below, we can find
OPT in O(n) time.

Sublinear space low-dimensional LP

We prove:

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

° O(%n1+5) time
e O(3n’) space
e with O(1/9) passes.

Sublinear space low-dimensional LP

We prove:

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

° O(%n1+5) time
e O(3n’) space
e with O(1/9) passes.

Theorem (Chan—Chen 2007)

Given n half-spaces in R? and § > 0, the lowest point of their intersection can
be computed in

o Od((w%n) time

e O4(5547n°) space

e with O(1/6%7 1) passes.
Theorem (Chan—Chen 2007)

Given n half-spaces in R, the lowest point of their intersection can be
computed in Og4(n) time and Og4(logn) space.

Towards sublinear space LP: filtering and listing

Given stream H of halfplanes, produce stream of vertical lines.

List(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = h1N---N A,
Print vertical lines through vertices of I that fall in o

10

Towards sublinear space LP: filtering and listing

Given stream H of halfplanes, produce stream of vertical lines.

List(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = h1N---N A,
Print vertical lines through vertices of I that fall in o

Given stream H of halfplanes, produce stream of halfplanes.

Filter(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = hyN---Nh,
Print halfplanes involved in 9(1 N o)

10

Towards sublinear space LP: filtering and listing

Given stream H of halfplanes, produce stream of vertical lines.

List(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = h1N---N A,
Print vertical lines through vertices of I that fall in o

Given stream H of halfplanes, produce stream of halfplanes.

Filter(r, o, H)
while H not read through do
hi,...,h, := next r halfplanes from H

Compute I = hyN---Nh,
Print halfplanes involved in 9(1 N o)

List and Filter work in one pass, in O(r) space and O(nlogr) time.
10

Sublinear time LP in R?

Parameter: r

Invariant: solution is in o; and defined by halfplanes in H;

11

Pseudocode

LP(r,o, H)

oo -— R2

for i =0,1,... do Preserves invariant v/
if |H;| =0(1) then

return brute force solution for H;

Divide o; into r slabs with roughly same # of lines from List, ., (H;)
Decide which subslab has the solution, let that be ;4.
H,L'_|_1 = Filt@rr,aiﬂ (Hz)

12

Pseudocode

LP(r,o, H)

oo -— R2

for i =0,1,... do Preserves invariant v/
if |H;| =0(1) then

return brute force solution for H;

Divide o; into r slabs with roughly same # of lines from List, ., (H;)
Decide which subslab has the solution, let that be ;4.
H,L'_|_1 = Filt@rr,aiﬂ (Hz)

Issue: H; can't be stored. We need to recompute it every time.

12

Pseudocode

LP(r, o, H)
oo -— RQ
fori=0,1,... do Preserves invariant v’
if |H;| =0(1) then
return brute force solution for H;

Divide o; into r slabs with roughly same # of lines from List, ., (H;)
Decide which subslab has the solution, let that be o;..
Hi_|_1 = FiltGTT’UiH (HfL)

Issue: H; can't be stored. We need to recompute it every time.

LP(r,o, H)
opg -— R2
fori =0,1,... do
if |Filter, . (... (Filter, ., (H)))| = O(1) then
return brute force solution for Filter, ,, (... (Filter, ,, (H)))

Divide o; into 7 slabs with roughly same # of lines from
List, o, (Filter, . (... (Filter, ,,(H))))
Decide which subslab has the solution, let that be 0,1

12

Pseudocode

LP(r, o, H)
oo -— RQ
fori=0,1,... do Preserves invariant v’
if |H;| =0(1) then
return brute force solution for H;

Divide o; into r slabs with roughly same # of lines from List, ., (H;)
Decide which subslab has the solution, let that be o;..
Hi_|_1 = FiltGTT’JiH (HfL)

Issue: H; can't be stored. We need to recompute it every time.

LP(r,o, H)
opg -— R2
fori =0,1,... do
if |Filter, . (... (Filter, ., (H)))| = O(1) then
return brute force solution for Filter, ,, (... (Filter, ,, (H)))

Divide o; into 7 slabs with roughly same # of lines from
List, o, (Filter, . (... (Filter, ,,(H))))
sDecide which subslab has the solution, let that be o,

g One pass, maintain » — 1 minima at inner slab walls

12

Space-efficient pipeline of streams

How to execute P;(P;_1(...(Pi(x))))
if P; are single-pass processes with worksapce s; and time ¢;?

Pipeline:

13

Space-efficient pipeline of streams

How to execute P;(P;_1(...(Pi(x))))
if P; are single-pass processes with worksapce s; and time ¢;?

Pipeline:

Each P; is either waiting for input, or ready to excute.
Init: all waiting for input

13

Space-efficient pipeline of streams

How to execute P;(P;_1(...(Pi(x))))
if P; are single-pass processes with worksapce s; and time ¢;?

Pipeline:

Each P; is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
o if all P; are waiting for input, execute P
e otherwise, pick largest j ready to execute, and execute one step.

13

Space-efficient pipeline of streams

How to execute P;(P;_1(...(Pi(x))))
if P; are single-pass processes with worksapce s; and time ¢;?

Pipeline:

Each P; is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
o if all P; are waiting for input, execute P
e otherwise, pick largest j ready to execute, and execute one step.

Space:), s; +O(1)

13

Space-efficient pipeline of streams

How to execute P;(P;_1(...(Pi(x))))
if P; are single-pass processes with worksapce s; and time ¢;?

Pipeline:

Each P; is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
o if all P; are waiting for input, execute P
e otherwise, pick largest j ready to execute, and execute one step.

Space:). s; + O(1) Time (mini-hw): O(_, t;)

13

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

14

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

14

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(rlog, n) space, O(nglogr +---+n;_1logr) = O(nlogr) time

14

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(rlog, n) space, O(nglogr +---+n;_1logr) = O(nlogr) time

ApproxQuant needs O(rlog” n;) space and O(n; log(rlogn;)) time. see later!

14

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(rlog, n) space, O(nglogr +---+n;_1logr) = O(nlogr) time

ApproxQuant needs O(rlog” n;) space and O(n; log(rlogn;)) time. see later!

Subslab selection needs O(r) space and O(nr) time.

14

Time and space needs

Filter(r, o, H)
oo -— R2
for: =0,1,... do
if |Filter, . (... (Filter, -, (H)))| = O(1) then
return brute force solution for Filter, . (... (Filter, ,, (H)))

Divide o; into r slabs:
ApproxQuant, (List, ,, (Filter, ., (... (Filter, o, (H)))))
Decide which subslab has the solution, let that be 0,1

Let n; = |H;|. There are log,.(n) iterations, O(log, n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(rlog, n) space, O(nglogr +---+n;_1logr) = O(nlogr) time

ApproxQuant needs O(rlog” n;) space and O(n; log(rlogn;)) time. see later!

Subslab selection needs O(r) space and O(nr) time.

Altogether: O(rlog, n + rlog® n) space and O(nrlog,. n) time.

14

Approximate quantiles

Goal:

Given unsorted stream S of n numbers, output 7 entries a; < --- < a, so that
the rank of a; and a;y1 in the sorting of .S differ by at most O(n/r).

15

Approximate quantiles

Goal:
Given unsorted stream S of n numbers, output 7 entries a; < --- < a, so that
the rank of a; and a;y1 in the sorting of .S differ by at most O(n/r).

Fix £ > 0 even, suppose n/k is power of 2.

PartSorty, : Repeatedly read next k elements, output them in sorted order.

Space: O(k), Time: O(% - klogk) = O(nlogk)

15

Approximate quantiles

Goal:
Given unsorted stream S of n numbers, output 7 entries a; < --- < a, so that
the rank of a; and a;y1 in the sorting of .S differ by at most O(n/r).

Fix £ > 0 even, suppose n/k is power of 2.

PartSorty, : Repeatedly read next k elements, output them in sorted order.
Space: O(k), Time: O(% - klogk) = O(nlogk)
SampleMergey : Read in next k + k elements a1, ...,ar,b1,...,b; (a and b
are sorted). Merge the sequences a3, aq,...,ax and
ba, by, ..., bg. Output sorted merged sequence.

Space: O(k), Time: O(n)

15

Approximate quantiles

Goal:

Given unsorted stream S of n numbers, output 7 entries a; < --- < a, so that
the rank of a; and a;y1 in the sorting of .S differ by at most O(n/r).

Fix £ > 0 even, suppose n/k is power of 2.

PartSorty, : Repeatedly read next k elements, output them in sorted order.
Space: O(k), Time: O(% - klogk) = O(nlogk)

SampleMergey : Read in next k + k elements a1, ...,ar,b1,...,b; (a and b
are sorted). Merge the sequences a3, aq,...,ax and
ba, by, ..., bg. Output sorted merged sequence.

Space: O(k), Time: O(n)

|dea:
Do PartSorty, then repeatedly run SampleMerge;, to get sample of size k.

SampleMergey(SampleMergey(...((PartSort(S)))...)
— _/

Tog(n/k)

15

Approximate quantiles as a pipeline

Lemma (assignment)
Let a1, ...,ar be the result of Sort; and log(n/k) runs of SampleMerge;,.
Then the rank of a; and a;4 differ by at most O(% logn) for all ¢ € [k — 1].

16

Approximate quantiles as a pipeline

Lemma (assignment)
Let a1, ...,ar be the result of Sort; and log(n/k) runs of SampleMerge;,.

Then the rank of a; and a;4 differ by at most O(% logn) for all ¢ € [k — 1].

Set k = rlogn.
PostSelect,:

16

Approximate quantiles as a pipeline

Lemma (assignment)
Let a1, ...,ar be the result of Sort; and log(n/k) runs of SampleMerge;,.

Then the rank of a; and a;4 differ by at most O(% logn) for all ¢ € [k — 1].

Set k = rlogn.
PostSelect,:
ApproxQuant,.:
PostSelect,.(SampleMerger(SampleMergey(. .. (PartSorty(S))) ...)
— _/
——
log(n/k)

Time: O(nlogk+n+n/2+n/4+---+k+nlogk) = O(nlog(rlogn))

Space: O(k+k+---+k+k)=0(klog(n/k)) = O(rlog®n)

16

Chan-Chen simple LP wrap-up

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

e O(3n'™?) time
e O(3n’) space
e with O(1/6) passes.

Altogether: O(rlog, n + rlog® n) space and O(nrlog, n) time.

17

Chan-Chen simple LP wrap-up

Theorem (Chan—Chen 2007)

Fix 6 > 0. Given n half-planes in R?, the lowest point of their intersection can
be computed in

e O(3n'™?) time
e O(3n’) space
e with O(1/6) passes.

Altogether: O(rlog, n + rlog® n) space and O(nrlog, n) time.

Set r = nd/2.

O(né/z L2+ n%/210g? n) = O0(in%) O(n . nd/2 M) = O(ipl+d

" lognd/2

=

)

17

