
1

Linear programming with limited workspace

Sándor Kisfaludi-Bak

Geometric algorithms with limited resources
Summer semester 2021

2

Overview

Low-dim linear
programming

• A classic deterministic algorithm in R2

• Sublinear space LP (Chan–Chen ’07)

• Sorting with few passes

3

Sorting in sublinear space

Theorem (Munro, Paterson 1980)
Given x and an unsorted array A, we can find the s smallest elements greater
than x in A in a single pass, in O(s) space and O(n) time.
We can also sort in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

Theorem (Munro, Paterson 1980)
A p-pass sorting algorithm needs Ω(n/p) space.

4

Linear Programming in low-dimensional space

5

Known LP algorithms

• Fourier-Motzkin elimination slow

A: n× d matrix. (d variables, n cosntraints.)
max cx subject to Ax ≤ b.

5

Known LP algorithms

• Fourier-Motzkin elimination

• Simplex method

slow

fast in practice, slow in worst-case

A: n× d matrix. (d variables, n cosntraints.)
max cx subject to Ax ≤ b.

5

Known LP algorithms

• Fourier-Motzkin elimination

• Simplex method

• Ellipsoid method

slow

fast in practice, slow in worst-case

slow in practice, poly time in worst-case

A: n× d matrix. (d variables, n cosntraints.)
max cx subject to Ax ≤ b.

5

Known LP algorithms

• Fourier-Motzkin elimination

• Simplex method

• Ellipsoid method

• Interior point mehtods

slow

fast in practice, slow in worst-case

slow in practice, poly time in worst-case

poly time and practical

These use bit complexity!

A: n× d matrix. (d variables, n cosntraints.)
max cx subject to Ax ≤ b.

5

Known LP algorithms

• Fourier-Motzkin elimination

• Simplex method

• Ellipsoid method

• Interior point mehtods

slow

fast in practice, slow in worst-case

slow in practice, poly time in worst-case

poly time and practical

These use bit complexity!

A: n× d matrix. (d variables, n cosntraints.)
max cx subject to Ax ≤ b.

Open: poly LP solver for number of arithmetic operations. (e.g. Real RAM)

Best known by Clarkson, Matousek, Sharir, Welzl, Gärtner, Kalai (1996)

O(d2n) + 2O(
√
d log d)

6

LP with 2 variables: halfplanes in R2

Given:

max c1x+ c2y subject to
a11x+ a12y ≤ b1
a21x+ a22y ≤ b2

. . .

an1x+ an2y ≤ bn

6

LP with 2 variables: halfplanes in R2

Given:

max c1x+ c2y subject to
a11x+ a12y ≤ b1
a21x+ a22y ≤ b2

. . .

an1x+ an2y ≤ bn

c

Given set H of n halfplanes, find extreme point in direction c.

6

LP with 2 variables: halfplanes in R2

Given:

max c1x+ c2y subject to
a11x+ a12y ≤ b1
a21x+ a22y ≤ b2

. . .

an1x+ an2y ≤ bn

c

Given set H of n halfplanes, find extreme point in direction c.

c

OPT

Dual Graham’s scan solves it in O(n log n)

7

Intro/reminder on geometrc duality

8

Deterministic method: paired halfplanes
Lemma [Megiddo, Dyer 1984]
Assuming that

⋂
h∈H h 6= ∅ is bounded from below, we can find

OPT in O(n) time.

9

Sublinear space low-dimensional LP
We prove:

Theorem (Chan–Chen 2007)
Given n points in R2, the convex hull can be computed in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

Theorem (Chan–Chen 2007)
Given n points in R2, the convex hull can be computed in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O(1

δn
1+δ) time

• O(1
δn

δ) space
• with O(1/δ) passes.

9

Sublinear space low-dimensional LP
We prove:

Theorem (Chan–Chen 2007)
Given n points in R2, the convex hull can be computed in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

Theorem (Chan–Chen 2007)
Given n points in R2, the convex hull can be computed in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O(1

δn
1+δ) time

• O(1
δn

δ) space
• with O(1/δ) passes.

Theorem (Chan–Chen 2007)
Given n half-spaces in Rd and δ > 0, the lowest point of their intersection can
be computed in
• Od(

1
δO(1)n) time

• Od(
1

δO(1)n
δ) space

• with O(1/δd−1) passes.
Theorem (Chan–Chen 2007)
Given n half-spaces in Rd, the lowest point of their intersection can be
computed in Od(n) time and Od(log n) space.

10

Towards sublinear space LP: filtering and listing

List(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of vertical lines.

10

Towards sublinear space LP: filtering and listing

List(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of vertical lines.

Given stream H of halfplanes, produce stream of halfplanes.

Filter(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print halfplanes involved in ∂(I ∩ σ)

10

Towards sublinear space LP: filtering and listing

List(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of vertical lines.

Given stream H of halfplanes, produce stream of halfplanes.

Filter(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print halfplanes involved in ∂(I ∩ σ)

List and Filter work in one pass, in O(r) space and O(n log r) time.

11

Sublinear time LP in R2

Parameter: r
Invariant: solution is in σi and defined by halfplanes in Hi

12

Pseudocode

Preserves invariant X

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Hi| = O(1) then

return brute force solution for Hi

Divide σi into r slabs with roughly same # of lines from Listr,σi(Hi)
Decide which subslab has the solution, let that be σi+1.
Hi+1 := Filterr,σi+1

(Hi)

12

Pseudocode

Preserves invariant X

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Hi| = O(1) then

return brute force solution for Hi

Divide σi into r slabs with roughly same # of lines from Listr,σi(Hi)
Decide which subslab has the solution, let that be σi+1.
Hi+1 := Filterr,σi+1

(Hi)

Issue: Hi can’t be stored. We need to recompute it every time.

12

Pseudocode

Preserves invariant X

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Hi| = O(1) then

return brute force solution for Hi

Divide σi into r slabs with roughly same # of lines from Listr,σi(Hi)
Decide which subslab has the solution, let that be σi+1.
Hi+1 := Filterr,σi+1

(Hi)

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs with roughly same # of lines from
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
Decide which subslab has the solution, let that be σi+1

Issue: Hi can’t be stored. We need to recompute it every time.

12

Pseudocode

Preserves invariant X

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Hi| = O(1) then

return brute force solution for Hi

Divide σi into r slabs with roughly same # of lines from Listr,σi(Hi)
Decide which subslab has the solution, let that be σi+1.
Hi+1 := Filterr,σi+1

(Hi)

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs with roughly same # of lines from
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
Decide which subslab has the solution, let that be σi+1

Issue: Hi can’t be stored. We need to recompute it every time.

One pass, maintain r − 1 minima at inner slab walls

13

Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si

13

Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si

Each Pj is either waiting for input, or ready to excute.
Init: all waiting for input

13

Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si

Each Pj is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
• if all Pj are waiting for input, execute P1

• otherwise, pick largest j ready to execute, and execute one step.

13

Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si

Each Pj is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
• if all Pj are waiting for input, execute P1

• otherwise, pick largest j ready to execute, and execute one step.

Space:
∑
j sj +O(1)

13

Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si

Each Pj is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
• if all Pj are waiting for input, execute P1

• otherwise, pick largest j ready to execute, and execute one step.

Space:
∑
j sj +O(1) Time (mini-hw): O(

∑
j tj)

14

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

14

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

Let ni = |Hi|. There are logr(n) iterations, O(logr n) passes.

14

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

Let ni = |Hi|. There are logr(n) iterations, O(logr n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(r logr n) space, O(n0 log r + · · ·+ ni−1 log r) = O(n log r) time

14

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

Let ni = |Hi|. There are logr(n) iterations, O(logr n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(r logr n) space, O(n0 log r + · · ·+ ni−1 log r) = O(n log r) time

ApproxQuant needs O(r log2 ni) space and O(ni log(r log ni)) time. see later!

14

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

Let ni = |Hi|. There are logr(n) iterations, O(logr n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(r logr n) space, O(n0 log r + · · ·+ ni−1 log r) = O(n log r) time

ApproxQuant needs O(r log2 ni) space and O(ni log(r log ni)) time. see later!

Subslab selection needs O(r) space and O(nr) time.

14

Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

Let ni = |Hi|. There are logr(n) iterations, O(logr n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(r logr n) space, O(n0 log r + · · ·+ ni−1 log r) = O(n log r) time

ApproxQuant needs O(r log2 ni) space and O(ni log(r log ni)) time. see later!

Subslab selection needs O(r) space and O(nr) time.

Altogether: O(r logr n+ r log2 n) space and O(nr logr n) time.

15

Approximate quantiles

Goal:
Given unsorted stream S of n numbers, output r entries a1 ≤ · · · ≤ ar so that
the rank of ai and ai+1 in the sorting of S differ by at most O(n/r).

15

Approximate quantiles

Goal:
Given unsorted stream S of n numbers, output r entries a1 ≤ · · · ≤ ar so that
the rank of ai and ai+1 in the sorting of S differ by at most O(n/r).

Fix k > 0 even, suppose n/k is power of 2.
PartSortk : Repeatedly read next k elements, output them in sorted order.

Space: O(k), Time: O(nk · k log k) = O(n log k)

15

Approximate quantiles

Goal:
Given unsorted stream S of n numbers, output r entries a1 ≤ · · · ≤ ar so that
the rank of ai and ai+1 in the sorting of S differ by at most O(n/r).

Fix k > 0 even, suppose n/k is power of 2.
PartSortk : Repeatedly read next k elements, output them in sorted order.

Space: O(k), Time: O(nk · k log k) = O(n log k)

SampleMergek : Read in next k + k elements a1, . . . , ak, b1, . . . , bk (a and b
are sorted). Merge the sequences a2, a4, . . . , ak and
b2, b4, . . . , bk. Output sorted merged sequence.

Space: O(k), Time: O(n)

15

Approximate quantiles

Goal:
Given unsorted stream S of n numbers, output r entries a1 ≤ · · · ≤ ar so that
the rank of ai and ai+1 in the sorting of S differ by at most O(n/r).

Fix k > 0 even, suppose n/k is power of 2.
PartSortk : Repeatedly read next k elements, output them in sorted order.

Space: O(k), Time: O(nk · k log k) = O(n log k)

SampleMergek : Read in next k + k elements a1, . . . , ak, b1, . . . , bk (a and b
are sorted). Merge the sequences a2, a4, . . . , ak and
b2, b4, . . . , bk. Output sorted merged sequence.

Space: O(k), Time: O(n)

Idea:
Do PartSortk, then repeatedly run SampleMergek to get sample of size k.

SampleMergek(SampleMergek(. . . ((PartSortk(S))) . . .)

log(n/k)

16

Approximate quantiles as a pipeline

Lemma (assignment)
Let a1, . . . , ak be the result of Sortk and log(n/k) runs of SampleMergek.
Then the rank of ai and ai+1 differ by at most O(nk log n) for all i ∈ [k − 1].

16

Approximate quantiles as a pipeline

Lemma (assignment)
Let a1, . . . , ak be the result of Sortk and log(n/k) runs of SampleMergek.
Then the rank of ai and ai+1 differ by at most O(nk log n) for all i ∈ [k − 1].

Set k = r log n.
PostSelectr:

16

Approximate quantiles as a pipeline

Lemma (assignment)
Let a1, . . . , ak be the result of Sortk and log(n/k) runs of SampleMergek.
Then the rank of ai and ai+1 differ by at most O(nk log n) for all i ∈ [k − 1].

Set k = r log n.
PostSelectr:

ApproxQuantr:

PostSelectr(SampleMergek(SampleMergek(. . . ((PartSortk(S))) . . .)

log(n/k)

Time: O(n log k + n+ n/2 + n/4 + · · ·+ k + n log k) = O(n log(r log n))

Space: O(k + k + · · ·+ k + k) = O(k log(n/k)) = O(r log2 n)

17

Chan-Chen simple LP wrap-up

Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O(1

δn
1+δ) time

• O(1
δn

δ) space
• with O(1/δ) passes.

Altogether: O(r logr n+ r log2 n) space and O(nr logr n) time.

17

Chan-Chen simple LP wrap-up

Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O(1

δn
1+δ) time

• O(1
δn

δ) space
• with O(1/δ) passes.

Altogether: O(r logr n+ r log2 n) space and O(nr logr n) time.

Set r = nδ/2.

O
(
nδ/2 · 2δ + nδ/2 log2 n

)
= O(1

δn
δ) O

(
n · nδ/2 · logn

lognδ/2

)
= O(1

δn
1+δ)

