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Overview

Low-dim linear
programming

• A classic deterministic algorithm in R2

• Sublinear space LP (Chan–Chen ’07)

• Sorting with few passes
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Sorting in sublinear space

Theorem (Munro, Paterson 1980)
Given x and an unsorted array A, we can find the s smallest elements greater
than x in A in a single pass, in O(s) space and O(n) time.
We can also sort in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

Theorem (Munro, Paterson 1980)
A p-pass sorting algorithm needs Ω(n/p) space.
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Linear Programming in low-dimensional space
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Known LP algorithms

• Fourier-Motzkin elimination slow

A: n× d matrix. (d variables, n cosntraints.)
max cx subject to Ax ≤ b.
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Known LP algorithms

• Fourier-Motzkin elimination

• Simplex method

• Ellipsoid method

• Interior point mehtods

slow

fast in practice, slow in worst-case

slow in practice, poly time in worst-case

poly time and practical

These use bit complexity!

A: n× d matrix. (d variables, n cosntraints.)
max cx subject to Ax ≤ b.

Open: poly LP solver for number of arithmetic operations. (e.g. Real RAM)

Best known by Clarkson, Matousek, Sharir, Welzl, Gärtner, Kalai (1996)

O(d2n) + 2O(
√
d log d)
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LP with 2 variables: halfplanes in R2

Given:

max c1x+ c2y subject to
a11x+ a12y ≤ b1
a21x+ a22y ≤ b2

. . .

an1x+ an2y ≤ bn
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LP with 2 variables: halfplanes in R2

Given:

max c1x+ c2y subject to
a11x+ a12y ≤ b1
a21x+ a22y ≤ b2

. . .

an1x+ an2y ≤ bn

c

Given set H of n halfplanes, find extreme point in direction c.

c

OPT

Dual Graham’s scan solves it in O(n log n)
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Intro/reminder on geometrc duality
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Deterministic method: paired halfplanes
Lemma [Megiddo, Dyer 1984]
Assuming that

⋂
h∈H h 6= ∅ is bounded from below, we can find

OPT in O(n) time.
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Sublinear space low-dimensional LP
We prove:

Theorem (Chan–Chen 2007)
Given n points in R2, the convex hull can be computed in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.
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Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O( 1

δn
1+δ) time

• O( 1
δn

δ) space
• with O(1/δ) passes.
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Theorem (Chan–Chen 2007)
Given n points in R2, the convex hull can be computed in
• O(n2/s+ n log s) time
• O(s) space
• with n/s passes.

Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O( 1

δn
1+δ) time

• O( 1
δn

δ) space
• with O(1/δ) passes.

Theorem (Chan–Chen 2007)
Given n half-spaces in Rd and δ > 0, the lowest point of their intersection can
be computed in
• Od(

1
δO(1)n) time

• Od(
1

δO(1)n
δ) space

• with O(1/δd−1) passes.
Theorem (Chan–Chen 2007)
Given n half-spaces in Rd, the lowest point of their intersection can be
computed in Od(n) time and Od(log n) space.
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Towards sublinear space LP: filtering and listing

List(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of vertical lines.
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Towards sublinear space LP: filtering and listing

List(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print vertical lines through vertices of I that fall in σ

Given stream H of halfplanes, produce stream of vertical lines.

Given stream H of halfplanes, produce stream of halfplanes.

Filter(r, σ,H)
while H not read through do

h1, . . . , hr := next r halfplanes from H
Compute I = h1 ∩ · · · ∩ hr
Print halfplanes involved in ∂(I ∩ σ)

List and Filter work in one pass, in O(r) space and O(n log r) time.
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Sublinear time LP in R2

Parameter: r
Invariant: solution is in σi and defined by halfplanes in Hi
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Pseudocode

Preserves invariant X

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Hi| = O(1) then

return brute force solution for Hi

Divide σi into r slabs with roughly same # of lines from Listr,σi(Hi)
Decide which subslab has the solution, let that be σi+1.
Hi+1 := Filterr,σi+1

(Hi)
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Pseudocode

Preserves invariant X

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Hi| = O(1) then

return brute force solution for Hi

Divide σi into r slabs with roughly same # of lines from Listr,σi(Hi)
Decide which subslab has the solution, let that be σi+1.
Hi+1 := Filterr,σi+1

(Hi)

LP(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs with roughly same # of lines from
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
Decide which subslab has the solution, let that be σi+1

Issue: Hi can’t be stored. We need to recompute it every time.

One pass, maintain r − 1 minima at inner slab walls
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Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si
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Space-efficient pipeline of streams
How to execute Pi(Pi−1(. . . (P1(x))))
if Pj are single-pass processes with worksapce sj and time tj?

Pipeline:

x P1 P2 P3 Pi. . .

s1 s2 s3 si

Each Pj is either waiting for input, or ready to excute.
Init: all waiting for input

Simulation:
• if all Pj are waiting for input, execute P1

• otherwise, pick largest j ready to execute, and execute one step.

Space:
∑
j sj +O(1) Time (mini-hw): O(

∑
j tj)
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Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1
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Time and space needs
Filter(r, σ,H)
σ0 := R2

for i = 0, 1, . . . do
if |Filterr,σi(. . . (Filterr,σ1

(H)))| = O(1) then
return brute force solution for Filterr,σi(. . . (Filterr,σ1(H)))

Divide σi into r slabs:
ApproxQuantr

(
Listr,σi(Filterr,σi(. . . (Filterr,σ1

(H))))
)

Decide which subslab has the solution, let that be σi+1

Let ni = |Hi|. There are logr(n) iterations, O(logr n) passes.

Filter pipeline (plus List) in iteration i needs:
O(ri) = O(r logr n) space, O(n0 log r + · · ·+ ni−1 log r) = O(n log r) time

ApproxQuant needs O(r log2 ni) space and O(ni log(r log ni)) time. see later!

Subslab selection needs O(r) space and O(nr) time.

Altogether: O(r logr n+ r log2 n) space and O(nr logr n) time.
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Approximate quantiles

Goal:
Given unsorted stream S of n numbers, output r entries a1 ≤ · · · ≤ ar so that
the rank of ai and ai+1 in the sorting of S differ by at most O(n/r).
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Approximate quantiles

Goal:
Given unsorted stream S of n numbers, output r entries a1 ≤ · · · ≤ ar so that
the rank of ai and ai+1 in the sorting of S differ by at most O(n/r).

Fix k > 0 even, suppose n/k is power of 2.
PartSortk : Repeatedly read next k elements, output them in sorted order.

Space: O(k), Time: O(nk · k log k) = O(n log k)

SampleMergek : Read in next k + k elements a1, . . . , ak, b1, . . . , bk (a and b
are sorted). Merge the sequences a2, a4, . . . , ak and
b2, b4, . . . , bk. Output sorted merged sequence.

Space: O(k), Time: O(n)

Idea:
Do PartSortk, then repeatedly run SampleMergek to get sample of size k.

SampleMergek(SampleMergek(. . . ((PartSortk(S))) . . . )

log(n/k)
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Approximate quantiles as a pipeline

Lemma (assignment)
Let a1, . . . , ak be the result of Sortk and log(n/k) runs of SampleMergek.
Then the rank of ai and ai+1 differ by at most O(nk log n) for all i ∈ [k − 1].
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Approximate quantiles as a pipeline

Lemma (assignment)
Let a1, . . . , ak be the result of Sortk and log(n/k) runs of SampleMergek.
Then the rank of ai and ai+1 differ by at most O(nk log n) for all i ∈ [k − 1].

Set k = r log n.
PostSelectr:

ApproxQuantr:

PostSelectr(SampleMergek(SampleMergek(. . . ((PartSortk(S))) . . . )

log(n/k)

Time: O(n log k + n+ n/2 + n/4 + · · ·+ k + n log k) = O(n log(r log n))

Space: O(k + k + · · ·+ k + k) = O(k log(n/k)) = O(r log2 n)
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Chan-Chen simple LP wrap-up

Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O( 1

δn
1+δ) time

• O( 1
δn

δ) space
• with O(1/δ) passes.

Altogether: O(r logr n+ r log2 n) space and O(nr logr n) time.
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Chan-Chen simple LP wrap-up

Theorem (Chan–Chen 2007)
Fix δ > 0. Given n half-planes in R2, the lowest point of their intersection can
be computed in
• O( 1

δn
1+δ) time

• O( 1
δn

δ) space
• with O(1/δ) passes.

Altogether: O(r logr n+ r log2 n) space and O(nr logr n) time.

Set r = nδ/2.

O
(
nδ/2 · 2δ + nδ/2 log2 n

)
= O( 1

δn
δ) O

(
n · nδ/2 · logn

lognδ/2

)
= O( 1

δn
1+δ)


