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Overview

• Searching in a jumbled sorted list optimally

• Intersection of convex polygons

• Testing if convex polytopes intersect with preprocessing

• Testing if convex polytopes intersect without preprocessing
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Searching in an unsorted list
Given:
Doubly linked sorted list L
Stored in a size-n array

Theorem
There is an algrithm that finds the successor of x in L in O(

√
n) expected time.
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Yao’s principle
Theorem (Yao’s principle, ’77)
The expected cost of a randomized algorithm on the worst-case input is at least
the expected cost of the best deterministic algorithm over the worst-case
distribution of inputs.
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Yao’s principle
Theorem (Yao’s principle, ’77)
The expected cost of a randomized algorithm on the worst-case input is at least
the expected cost of the best deterministic algorithm over the worst-case
distribution of inputs.

X : set of inputs, X: random input according to distribution q over X .
A: set of algorithms, A: random algorithm from distribution p over A.

max
x∈X

Ep(cost(A, x)) ≥ min
a∈A

Eq(cost(a,X))
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Lower bound for searching an unsorted list
Theorem
There is no o(

√
n) expected time algorithm for successor finding in unsorted

lists.
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Convex polygon intersection
Theorem (Chazelle, Liu, Magen ’06)
Given two convex polygons with cyclic list of vertices, we can decide if they
intersect in O(

√
n) expected time.
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Convex polygon intersection
Theorem (Chazelle, Liu, Magen ’06)
Given two convex polygons with cyclic list of vertices, we can decide if they
intersect in O(

√
n) expected time.

P,Q polygons of size n, Rp, Rq samples of size r.
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Lower bound for convex polygons
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Convex polytope in R3 via DCEL

p1
p2

p3

p4

p1
p2

p3

p4

DCEL = Doubly connected edge list,
facets are ccw cycles from outside
arcs know: opposite, next, prev arc

e

Opp(e)

Next(e)

Prev(e)
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Dobkin–Kirkpatrick hierarchy

Given convex polytope Q in R3, a polytope sequence Q1, Q2, . . . , Qk is a DK
hierarchy of Q if
1. Q1 = Q and Qk is a tetrahedron
2. Qi ⊃ Qi+1 and V (Qi) ⊃ V (Qi+1)
3. V (Qi) \ V (Qi+1) is an independent set in G(Qi).
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Dobkin–Kirkpatrick hierarchy
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Theorem Given Q via DCEL, a DK hierarchy of
• depth k = O(log n),
• size

∑k
i=1(|V (Qi)|) = O(n),

• and degree maxi max{degG(Qi)(v) | v ∈ V (Qi) \ V (Qi+1)} ≤ 11
can be computed in O(n) time.

Constructing the DK hierarchy
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Theorem Given Q via DCEL, a DK hierarchy of
• depth k = O(log n),
• size

∑k
i=1(|V (Qi)|) = O(n),

• and degree maxi max{degG(Qi)(v) | v ∈ V (Qi) \ V (Qi+1)} ≤ 11
can be computed in O(n) time.

Proof. Iteratively remove set S, a greedy maximal independent set among
vertices of degree ≤ 11.

Claim: |S| ≥ |V (Q)|/24.
Suppose not: |S| < |V (Q)|/24
⇒
⋃

s∈S N [s] < |V (Q)|/2
⇒ G(Q) has ≥ |V (Q)|/2 vertices of degree ≥ 12
⇒ G(Q) has ≥ (|V (Q)|/2) · 12/2 = 3|V (Q)| edges

Constructing the DK hierarchy
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Theorem Given Q via DCEL, a DK hierarchy of
• depth k = O(log n),
• size

∑k
i=1(|V (Qi)|) = O(n),

• and degree maxi max{degG(Qi)(v) | v ∈ V (Qi) \ V (Qi+1)} ≤ 11
can be computed in O(n) time.

Proof. Iteratively remove set S, a greedy maximal independent set among
vertices of degree ≤ 11.

Claim: |S| ≥ |V (Q)|/24.
Suppose not: |S| < |V (Q)|/24
⇒
⋃

s∈S N [s] < |V (Q)|/2
⇒ G(Q) has ≥ |V (Q)|/2 vertices of degree ≥ 12
⇒ G(Q) has ≥ (|V (Q)|/2) · 12/2 = 3|V (Q)| edges

Euler’s formula:
E(Q) ≤ 3|V (Q)|−6
Euler’s formula:

E(Q) ≤ 3|V (Q)|−6

Constructing the DK hierarchy
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Intersection of convex polytopes in R≤3 via DK hierarchy

Theorem (Dobkin, Kirkpatrick ’90)
Given the DK hierarchy of two convex polytopes with n and m vertices, a point
in their intersection or a separating plane can be found in O(log n · logm) time.

The separating pair of P and Q is a point pair p ∈ P and q ∈ Q s.t.

σ(P,Q) := min
x∈P,y∈Q

dist(x, y) = dist(p, q)

p, q have parallel supporting planes Hp and Hq.

qp

Hp Hq
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Maintaining separation via DK
Lemma
Given P with a DK-hierarchy P1, . . . , Pr and a plane H, σ(H,P ) can be found
in O(log n) time.
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Sublinear intersection of convex polytopes without preprocessing
Theorem (Chazelle, Liu, Magen ’06)
Given convex polyhedra P and Q by DCEL, and stored in a way that we can
sample an edge from either, we can decide if P and Q intersect in O(

√
n) time.
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Finding p1



15

Sampling lemma
Ground set S, (sample) set R ⊂ S of size r.
ϕ : 2S → R Let

V (R) :=
{
s ∈ S \R | ϕ(R ∪ {s} 6= ϕ(R))

}
X(R) :=

{
s ∈ R | ϕ(R \ {s}) 6= ϕ(R)

}
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Sampling lemma
Ground set S, (sample) set R ⊂ S of size r.
ϕ : 2S → R Let

V (R) :=
{
s ∈ S \R | ϕ(R ∪ {s} 6= ϕ(R))

}
X(R) :=

{
s ∈ R | ϕ(R \ {s}) 6= ϕ(R)

}
Set vr := E(V (R)) and xr := E(X(R)).

Lemma(Gärtner, Welzl ’01)
For 0 ≤ r < n, we have:

vr
n− r

=
xr+1

r + 1
.
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Perturbing and tweaking the sampling distribution


