Sublinear Intersection Testing

Sándor Kisfaludi-Bak

Geometric algorithms with limited resources Summer semester 2021

Overview

- Searching in a jumbled sorted list optimally
- Intersection of convex polygons
- Testing if convex polytopes intersect with preprocessing
- Testing if convex polytopes intersect without preprocessing

Searching in an unsorted list

Given: Doubly linked sorted list L Stored in a size- n array

Theorem

There is an algrithm that finds the successor of x in L in $O($ √ $\overline{n})$ expected time.

Yao's principle

Theorem (Yao's principle, '77)

The expected cost of a randomized algorithm on the worst-case input is at least the expected cost of the best deterministic algorithm over the worst-case distribution of inputs.

Yao's principle

Theorem (Yao's principle, '77)

The expected cost of a randomized algorithm on the worst-case input is at least the expected cost of the best deterministic algorithm over the worst-case distribution of inputs.

 \mathcal{X} : set of inputs, X: random input according to distribution q over X. A: set of algorithms, A: random algorithm from distribution p over A.

$$
\max_{x \in \mathcal{X}} \mathbf{E}_p(\text{cost}(A, x)) \ge \min_{a \in \mathcal{A}} \mathbf{E}_q(\text{cost}(a, X))
$$

Lower bound for searching an unsorted list

Theorem

There is no $o($ √ $\overline{n})$ expected time algorithm for successor finding in unsorted lists.

Convex polygon intersection

Theorem (Chazelle, Liu, Magen '06)

Given two convex polygons with cyclic list of vertices, we can decide if they intersect in $O(\sqrt{n})$ expected time. ∕⊃v
∕

Convex polygon intersection

Theorem (Chazelle, Liu, Magen '06)

Given two convex polygons with cyclic list of vertices, we can decide if they intersect in $O(\sqrt{n})$ expected time. ∕⊃v
∕

 P,Q polygons of size n , R_p, R_q samples of size r .

Lower bound for convex polygons

Convex polytope in \mathbb{R}^3 via DCEL

 $DCEL = Doubly connected edge list,$ facets are ccw cycles from outside

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

Theorem Given Q via DCEL, a DK hierarchy of

- depth $k = O(\log n)$,
- size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,
- $\bullet \ \ \textsf{and} \ \textsf{degree} \ \max_i \max \{ \deg_{G(Q_i)}(v) \ | \ v \in V(Q_i) \setminus V(Q_{i+1}) \} \leq 11$ **Theorem** Given Q via DCEL, a DK hierarchy of

• depth $k = O(\log n)$,

• size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,

• and degree $\max_i \max\{\deg_{G(Q_i)}(v) \mid v \in V(Q_i) \setminus V(Q_{i+1})\}$

can be computed in $O(n)$ time.

Theorem Given Q via DCEL, a DK hierarchy of

- depth $k = O(\log n)$,
- size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,
- $\bullet \ \ \textsf{and} \ \textsf{degree} \ \max_i \max \{ \deg_{G(Q_i)}(v) \ | \ v \in V(Q_i) \setminus V(Q_{i+1}) \} \leq 11$

can be computed in $O(n)$ time.

Proof. Iteratively remove set S, a greedy maximal independent set among vertices of degree ≤ 11 .

Claim: $|S| \geq |V(Q)|/24$. Suppose not: $|S| < |V(Q)|/24$ $\Rightarrow \bigcup_{s\in S} N[s] < |V(Q)|/2$ $\Rightarrow G(Q)$ has $\geq |V(Q)|/2$ vertices of degree ≥ 12 Constructing the DK hierarchy
 neorem Given Q via DCEL, a DK hierarchy of

depth $k = O(\log n)$,

size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,

and degree max_i max $\{\deg_{G(Q_i)}(v) \mid v \in V(Q_i) \setminus V(Q_i)$

n be computed in $O(n)$ time.

coof. Iterat

Constructing the DK hierarchy

Theorem Given Q via DCEL, a DK hierarchy of

- depth $k = O(\log n)$,
- size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,
- $\bullet \ \ \textsf{and} \ \textsf{degree} \ \max_i \max \{ \deg_{G(Q_i)}(v) \ | \ v \in V(Q_i) \setminus V(Q_{i+1}) \} \leq 11$

can be computed in $O(n)$ time.

Proof. Iteratively remove set S, a greedy maximal independent set among vertices of degree ≤ 11 .

Claim: $|S| \geq |V(Q)|/24$. Suppose not: $|S| < |V(Q)|/24$ $\Rightarrow \bigcup_{s\in S} N[s] < |V(Q)|/2$ $\Rightarrow G(Q)$ has $\geq |V(Q)|/2$ vertices of degree ≥ 12 $\Rightarrow G(Q)$ has $\geq (|V(Q)|/2) \cdot 12/2 = 3|V(Q)|$ edges Euler's formula: $E(Q) \leq 3|V(Q)|-6$

\leq ³ via DK hierarchy

Intersection of convex polytopes in $\mathbb{R}^{\leq 3}$ via DK hierarchy

neorem (Dobkin, Kirkpatrick '90)

nen the DK hierarchy of two convex polytopes with *n* and *m* vertices, a point

heir intersection or a separating pl Theorem (Dobkin, Kirkpatrick '90) Given the DK hierarchy of two convex polytopes with n and m vertices, a point in their intersection or a separating plane can be found in $O(\log n \cdot \log m)$ time.

The separating pair of P and Q is a point pair $p \in P$ and $q \in Q$ s.t.

$$
\sigma(P,Q) := \min_{x \in P, y \in Q} \text{dist}(x, y) = \text{dist}(p, q)
$$

 p,q have parallel supporting planes H_p and $H_q.$

Lemma

Maintaining separation via DK
nierarchy P_1, \ldots, P_r and a plane $H, \sigma(H, P)$ can be found
 12 Given P with a DK-hierarchy P_1,\ldots,P_r and a plane H , $\sigma(H,P)$ can be found in $O(\log n)$ time.

Theorem (Chazelle, Liu, Magen '06)

Sublinear intersection of convex polytopes without preprocessing

Theorem (Chazelle, Liu, Magen '06)

Given convex polyhedra P and Q by DCEL, and stored in a way that we can

sample an edge from either, we can decide if P Given convex polyhedra P and Q by DCEL, and stored in a way that we can sample an edge from either, we can decide if P and Q intersect in $O(\sqrt{n})$ time. vvt
⁄

Finding p_1
14 Finding p $\frac{1}{2}$
14 Finding points of the state of the state
14 Finding points of the state of the

Ground set S, (sample) set $R \subset S$ of size r. $\varphi:2^S\to\mathbb{R}$ Let

Sampling lemma

\nimple) set
$$
R \subset S
$$
 of size r .

\n
$$
V(R) := \{ s \in S \setminus R \mid \varphi(R \cup \{s\} \neq \varphi(R)) \}
$$

\n
$$
X(R) := \{ s \in R \mid \varphi(R \setminus \{s\}) \neq \varphi(R) \}
$$

\n15

Ground set S, (sample) set $R \subset S$ of size r. $\varphi:2^S\to\mathbb{R}$ Let

Sampling lemma

\nmple) set
$$
R \subset S
$$
 of size r .

\n
$$
V(R) := \{ s \in S \setminus R \mid \varphi(R \cup \{s\} \neq \varphi(R)) \}
$$

\n
$$
X(R) := \{ s \in R \mid \varphi(R \setminus \{s\}) \neq \varphi(R) \}
$$

\n(b) and $x_r := \mathbf{E}(X(R))$.

Set $v_r := \mathbf{E}(V(R))$ and $x_r := \mathbf{E}(X(R))$.

Ground set S, (sample) set $R \subset S$ of size r. $\varphi:2^S\to\mathbb{R}$ Let

Sampling lemma
\nmple) set
$$
R \subset S
$$
 of size r .
\n
$$
V(R) := \{ s \in S \setminus R \mid \varphi(R \cup \{s\} \neq \varphi(R)) \}
$$
\n
$$
X(R) := \{ s \in R \mid \varphi(R \setminus \{s\}) \neq \varphi(R) \}
$$
\n)) and $x_r := \mathbf{E}(X(R))$.
\nWelzl '01)
\ne have:
\n
$$
\frac{v_r}{n - r} = \frac{x_{r+1}}{r+1}.
$$

Set
$$
v_r := \mathbf{E}(V(R))
$$
 and $x_r := \mathbf{E}(X(R))$.

Lemma(Gärtner, Welzl '01) For $0 \le r < n$, we have:

$$
\frac{v_r}{n-r} = \frac{x_{r+1}}{r+1}.
$$

Perturbing and tweaking the sampling distribution
 $\frac{16}{16}$