Intersection test, ray shooting, and volume

Sándor Kisfaludi-Bak

Geometric algorithms with limited resources Summer semester 2021

Overview

- Finding an intersection point revisited
- Testing if convex polytopes intersect with preprocessing
- Testing if convex polytopes intersect without preprocessing
- Ray shooting, nearest neighbor
- Volume approximation

Finding an intersection point revisited

Theorem (Chazelle, Liu, Magen '06)

Given two convex polygons with cyclic list of vertices, we can decide if they intersect in $O(\sqrt{n})$ expected time. ∕⊃v
∕

Finding an intersection point revisited

Theorem (Chazelle, Liu, Magen '06)

Given two convex polygons with cyclic list of vertices, we can decide if they intersect in $O(\sqrt{n})$ expected time. ∕⊃v
∕

Needs: detecting separating line or intersection of sample polygons.

Convex polytope in \mathbb{R}^3 via DCEL

 $DCEL = Doubly connected edge list,$ facets are ccw cycles from outside

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i)\setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

Theorem Given Q via DCEL, a DK hierarchy of

- depth $k = O(\log n)$,
- size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,
- $\bullet \ \ \textsf{and} \ \textsf{degree} \ \max_i \max \{ \deg_{G(Q_i)}(v) \ | \ v \in V(Q_i) \setminus V(Q_{i+1}) \} \leq 11$ **Theorem** Given Q via DCEL, a DK hierarchy of

• depth $k = O(\log n)$,

• size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,

• and degree $\max_i \max\{\deg_{G(Q_i)}(v) \mid v \in V(Q_i) \setminus V(Q_{i+1})\}$

can be computed in $O(n)$ time.

Theorem Given Q via DCEL, a DK hierarchy of

- depth $k = O(\log n)$,
- size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,
- $\bullet \ \ \textsf{and} \ \textsf{degree} \ \max_i \max \{ \deg_{G(Q_i)}(v) \ | \ v \in V(Q_i) \setminus V(Q_{i+1}) \} \leq 11$

can be computed in $O(n)$ time.

Proof. Iteratively remove set S, a greedy maximal independent set among vertices of degree ≤ 11 .

Claim: $|S| \geq |V(Q)|/24$. Suppose not: $|S| < |V(Q)|/24$ $\Rightarrow \bigcup_{s\in S} N[s] < |V(Q)|/2$ $\Rightarrow G(Q)$ has $\geq |V(Q)|/2$ vertices of degree ≥ 12 Constructing the DK hierarchy
 neorem Given Q via DCEL, a DK hierarchy of

depth $k = O(\log n)$,

size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,

and degree max_i max $\{\deg_{G(Q_i)}(v) \mid v \in V(Q_i) \setminus V(Q_i)$

n be computed in $O(n)$ time.

coof. Iterat

Constructing the DK hierarchy

Theorem Given Q via DCEL, a DK hierarchy of

- depth $k = O(\log n)$,
- size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,
- $\bullet \ \ \textsf{and} \ \textsf{degree} \ \max_i \max \{ \deg_{G(Q_i)}(v) \ | \ v \in V(Q_i) \setminus V(Q_{i+1}) \} \leq 11$

can be computed in $O(n)$ time.

Proof. Iteratively remove set S, a greedy maximal independent set among vertices of degree ≤ 11 .

Claim: $|S| \geq |V(Q)|/24$. Suppose not: $|S| < |V(Q)|/24$ $\Rightarrow \bigcup_{s\in S} N[s] < |V(Q)|/2$ $\Rightarrow G(Q)$ has $\geq |V(Q)|/2$ vertices of degree ≥ 12 $\Rightarrow G(Q)$ has $\geq (|V(Q)|/2) \cdot 12/2 = 3|V(Q)|$ edges Euler's formula: $E(Q) \leq 3|V(Q)|-6$

Intersection of convex polytopes in $\mathbb{R}^{\leq 3}$ via DK hierarchy

Theorem (Dobkin, Kirkpatrick '90) Given the DK hierarchy of two convex polytopes with n and m vertices, a point in their intersection or a separating plane can be found in $O(\log n \cdot \log m)$ time.

The separating pair of P and Q is a point pair $p \in P$ and $q \in Q$ s.t.

$$
\sigma(P,Q) := \min_{x \in P, y \in Q} \text{dist}(x, y) = \text{dist}(p, q)
$$

 p,q have parallel supporting planes H_p and $H_q.$

Maintaining separation via DK

Lemma

Given P with a DK-hierarchy P_1,\ldots,P_r and a plane H , $\sigma(H,P)$ can be found in $O(\log n)$ time.

Sublinear intersection of convex polytopes without preprocessing

Theorem (Chazelle, Liu, Magen '06)

Given convex polyhedra P and Q by DCEL, and stored in a way that we can sample an edge from either, we can decide if P and Q intersect in $O(\sqrt{n})$ time. vvt
⁄

$\begin{aligned} &\mathsf{Finding}\ p_1 \end{aligned}$

Ground set S, (sample) set $R \subset S$ of size r. $\varphi:2^S\to\mathbb{R}$ Let

Sampling lemma

\nimple) set
$$
R \subset S
$$
 of size r .

\n
$$
V(R) := \{ s \in S \setminus R \mid \varphi(R \cup \{s\} \neq \varphi(R)) \}
$$

\n
$$
X(R) := \{ s \in R \mid \varphi(R \setminus \{s\}) \neq \varphi(R) \}
$$

\n11

Ground set S, (sample) set $R \subset S$ of size r. $\varphi:2^S\to\mathbb{R}$ Let

Sampling lemma

\nmple) set
$$
R \subset S
$$
 of size r .

\n
$$
V(R) := \{ s \in S \setminus R \mid \varphi(R \cup \{s\} \neq \varphi(R)) \}
$$

\n
$$
X(R) := \{ s \in R \mid \varphi(R \setminus \{s\}) \neq \varphi(R) \}
$$

\n(b) and $x_r := \mathbf{E}(X(R))$.

Set $v_r := \mathbf{E}(V(R))$ and $x_r := \mathbf{E}(X(R))$.

Ground set S, (sample) set $R \subset S$ of size r. $\varphi:2^S\to\mathbb{R}$ Let

Sampling lemma
\nmple) set
$$
R \subset S
$$
 of size r .
\n
$$
V(R) := \{ s \in S \setminus R \mid \varphi(R \cup \{s\} \neq \varphi(R)) \}
$$
\n
$$
X(R) := \{ s \in R \mid \varphi(R \setminus \{s\}) \neq \varphi(R) \}
$$
\n)) and $x_r := \mathbf{E}(X(R))$.
\nWelzl '01)
\ne have:
\n
$$
\frac{v_r}{n - r} = \frac{x_{r+1}}{r+1}.
$$

Set
$$
v_r := \mathbf{E}(V(R))
$$
 and $x_r := \mathbf{E}(X(R))$.

Lemma(Gärtner, Welzl '01) For $0 \le r < n$, we have:

$$
\frac{v_r}{n-r} = \frac{x_{r+1}}{r+1}.
$$

Perturbing and tweaking the sampling distribution M : multiset of vertices of $P \cup Q$, where p has $\log(p)$ copies P_2 : Choose $R_p \cup R_q$ by selecting each vertex of M indep, with prob. r/n
12:

M: multiset of vertices of $P ∪ Q$, where *p* has $deg(p)$ copies
 D_2 : Choose $R_p ∪ R_q$ by selecting each vertex of *M* indep. with prob. *r*/*n*

Theorem

Given a convex polytope (as DCEL) of n vertices and a directed line, their intersection can be computed in $O(\sqrt{n})$ time. √

Theorem

Ray shooting, Voronoi pt location

ytope (as DCEL) of *n* vertices and a directed line, their

computed in $O(\sqrt{n})$ time.

triangulation or a Voronoi diagram as DCEL, we can compute

identify the cell a given query point f Given a Delaunay triangulation or a Voronoi diagram as DCEL, we can compute point location (i.e., identify the cell a given query point falls into) in $O(\sqrt{n})$ ∣∪۔
⁄ time.

$$
p = (p_x, p_y) \to H_p : z = 2p_x x + 2p_y y - (p_x^2 + p_y^2)
$$

 $n_P(q)$: nearest point of P to q $\xi_P(\ell)$: point of largest ℓ -coordinate in P $\xi_P (H, \ell)$: point of largest ℓ -coordinate in $P \cap H$

Theorem

Nearest point of a polytope

f P to q
 ℓ -coordinate in P

est ℓ -coordinate in P ∩ H

be P (as DCEL) of n vertices, a point q and a directed
 $n_P(q), \xi_P(\ell), \xi_P(H, \ell)$ in $O(\sqrt{n})$ time.

 Given a convex polytope P (as DCEL) of n vertices, a point q and a directed line ℓ , we can compute $n_P (q), \xi_P (\ell), \xi_P (H, \ell)$ in $O(\sqrt{n})$ time. ∣ d
⁄

Theorem

Volume approximation

polyope P on n vertices, we can compute a

ts volume in $O(n/\varepsilon)$ time.

15 Given $\varepsilon > 0$ and a convex polyope P on n vertices, we can compute a $(1 + \varepsilon)$ -approximation of its volume in $O(n/\varepsilon)$ time.

Theorem

Volume approximation

polyope P on n vertices, we can compute a

ts volume in $O(n/\varepsilon)$ time.

all-like polytope

oximation with $O(1/\varepsilon)$ size polytope Q s.t.
 $\frac{1}{2}(1/\sqrt{\varepsilon})$ -net of sphere

15 Given $\varepsilon > 0$ and a convex polyope P on n vertices, we can compute a $(1 + \varepsilon)$ -approximation of its volume in $O(n/\varepsilon)$ time.

Stage 1. Reshaping into ball-like polytope

Stage 2. Coreset-like approximation with $O(1/\varepsilon)$ size polytope Q s.t. $P \subset Q \subset P_\varepsilon$ by projecting $(1/\sqrt{\varepsilon})$ -net of sphere dl
∕