Intersection test, ray shooting, and volume

Sándor Kisfaludi-Bak

Geometric algorithms with limited resources Summer semester 2021

Overview

- Finding an intersection point revisited
- Testing if convex polytopes intersect with preprocessing
- Testing if convex polytopes intersect without preprocessing
- Ray shooting, nearest neighbor
- Volume approximation

Finding an intersection point revisited

Theorem (Chazelle, Liu, Magen '06)

Given two convex polygons with cyclic list of vertices, we can decide if they intersect in $O(\sqrt{n})$ expected time.

Finding an intersection point revisited

Theorem (Chazelle, Liu, Magen '06)

Given two convex polygons with cyclic list of vertices, we can decide if they intersect in $O(\sqrt{n})$ expected time.

Needs: detecting separating line or intersection of sample polygons.

Convex polytope in \mathbb{R}^3 via DCEL

DCEL = Doubly connected edge list, facets are ccw cycles from outside arcs know: opposite, next, prev arc

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

Constructing the DK hierarchy

Theorem Given Q via DCEL, a DK hierarchy of

- depth $k = O(\log n)$,
- size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,
- and degree $\max_i \max\{\deg_{G(Q_i)}(v) \mid v \in V(Q_i) \setminus V(Q_{i+1})\} \le 11$

can be computed in O(n) time.

Constructing the DK hierarchy

Theorem Given Q via DCEL, a DK hierarchy of

- depth $k = O(\log n)$,
- size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,
- and degree $\max_i \max\{\deg_{G(Q_i)}(v) \mid v \in V(Q_i) \setminus V(Q_{i+1})\} \le 11$

can be computed in O(n) time.

Proof. Iteratively remove set S, a greedy maximal independent set among vertices of degree ≤ 11 .

 $\begin{array}{l} \mbox{Claim: } |S| \geq |V(Q)|/24. \\ \mbox{Suppose not: } |S| < |V(Q)|/24 \\ \Rightarrow \bigcup_{s \in S} N[s] < |V(Q)|/2 \\ \Rightarrow G(Q) \mbox{ has } \geq |V(Q)|/2 \mbox{ vertices of degree } \geq 12 \\ \Rightarrow G(Q) \mbox{ has } \geq (|V(Q)|/2) \cdot 12/2 = 3|V(Q)| \mbox{ edges} \end{array}$

Constructing the DK hierarchy

Theorem Given Q via DCEL, a DK hierarchy of

- depth $k = O(\log n)$,
- size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n)$,
- and degree $\max_i \max\{\deg_{G(Q_i)}(v) \mid v \in V(Q_i) \setminus V(Q_{i+1})\} \le 11$

can be computed in O(n) time.

Proof. Iteratively remove set S, a greedy maximal independent set among vertices of degree ≤ 11 .

 $\begin{array}{ll} \mathsf{Claim:} \ |S| \geq |V(Q)|/24. \\ \mathsf{Suppose not:} \ |S| < |V(Q)|/24 \\ \Rightarrow \bigcup_{s \in S} N[s] < |V(Q)|/2 \\ \Rightarrow G(Q) \ \mathsf{has} \geq |V(Q)|/2 \ \mathsf{vertices of degree} \geq 12 \\ \Rightarrow G(Q) \ \mathsf{has} \geq (|V(Q)|/2) \cdot 12/2 = 3|V(Q)| \ \mathsf{edges} \end{array} \begin{array}{l} \mathsf{Euler's formula:} \\ \mathbb{E}(Q) \leq 3|V(Q)|-6 \\ \mathcal{E}(Q) \leq 3|V($

Intersection of convex polytopes in $\mathbb{R}^{\leq 3}$ via DK hierarchy

Theorem (Dobkin, Kirkpatrick '90) Given the DK hierarchy of two convex polytopes with n and m vertices, a point in their intersection or a separating plane can be found in $O(\log n \cdot \log m)$ time.

The separating pair of P and Q is a point pair $p \in P$ and $q \in Q$ s.t.

$$\sigma(P,Q) := \min_{x \in P, y \in Q} \operatorname{dist}(x,y) = \operatorname{dist}(p,q)$$

p, q have parallel supporting planes H_p and H_q .

Maintaining separation via DK

Lemma

Given P with a DK-hierarchy P_1,\ldots,P_r and a plane H, $\sigma(H,P)$ can be found in $O(\log n)$ time.

Sublinear intersection of convex polytopes without preprocessing

Theorem (Chazelle, Liu, Magen '06)

Given convex polyhedra P and Q by DCEL, and stored in a way that we can sample an edge from either, we can decide if P and Q intersect in $O(\sqrt{n})$ time.

Finding p_1

Sampling lemma

Ground set S, (sample) set $R \subset S$ of size r. $\varphi: 2^S \to \mathbb{R}$ Let

$$V(R) := \left\{ s \in S \setminus R \mid \varphi(R \cup \{s\} \neq \varphi(R)) \right\}$$
$$X(R) := \left\{ s \in R \mid \varphi(R \setminus \{s\}) \neq \varphi(R) \right\}$$

Sampling lemma

Ground set S, (sample) set $R \subset S$ of size r. $\varphi: 2^S \to \mathbb{R}$ Let

$$V(R) := \{ s \in S \setminus R \mid \varphi(R \cup \{s\} \neq \varphi(R)) \}$$
$$X(R) := \{ s \in R \mid \varphi(R \setminus \{s\}) \neq \varphi(R) \}$$

Set $v_r := \mathbf{E}(V(R))$ and $x_r := \mathbf{E}(X(R))$.

Sampling lemma

Ground set S, (sample) set $R \subset S$ of size r. $\varphi: 2^S \to \mathbb{R}$ Let

$$V(R) := \{ s \in S \setminus R \mid \varphi(R \cup \{s\} \neq \varphi(R)) \}$$
$$X(R) := \{ s \in R \mid \varphi(R \setminus \{s\}) \neq \varphi(R) \}$$

Set
$$v_r := \mathbf{E}(V(R))$$
 and $x_r := \mathbf{E}(X(R))$.

Lemma(Gärtner, Welzl '01) For $0 \le r < n$, we have:

$$\frac{v_r}{n-r} = \frac{x_{r+1}}{r+1}.$$

Perturbing and tweaking the sampling distribution

M: multiset of vertices of $P\cup Q,$ where p has $\deg(p)$ copies

 \mathcal{D}_2 : Choose $R_p \cup R_q$ by selecting each vertex of M indep. with prob. r/n

Ray shooting, Voronoi pt location

Theorem

Given a convex polytope (as DCEL) of n vertices and a directed line, their intersection can be computed in $O(\sqrt{n})$ time.

Theorem

Given a Delaunay triangulation or a Voronoi diagram as DCEL, we can compute point location (i.e., identify the cell a given query point falls into) in $O(\sqrt{n})$ time.

$$p = (p_x, p_y) \rightarrow H_p : z = 2p_x x + 2p_y y - (p_x^2 + p_y^2)$$

Nearest point of a polytope

 $n_P(q)$: nearest point of P to q $\xi_P(\ell)$: point of largest ℓ -coordinate in P $\xi_P(H, \ell)$: point of largest ℓ -coordinate in $P \cap H$

Theorem

Given a convex polytope P (as DCEL) of n vertices, a point q and a directed line ℓ , we can compute $n_P(q), \xi_P(\ell), \xi_P(H, \ell)$ in $O(\sqrt{n})$ time.

Volume approximation

Theorem

Given $\varepsilon > 0$ and a convex polyope P on n vertices, we can compute a $(1 + \varepsilon)$ -approximation of its volume in $O(n/\varepsilon)$ time.

Volume approximation

Theorem

Given $\varepsilon > 0$ and a convex polyope P on n vertices, we can compute a $(1 + \varepsilon)$ -approximation of its volume in $O(n/\varepsilon)$ time.

Stage 1. Reshaping into ball-like polytope

Stage 2. Coreset-like approximation with $O(1/\varepsilon)$ size polytope Q s.t. $P \subset Q \subset P_{\varepsilon}$ by projecting $(1/\sqrt{\varepsilon})$ -net of sphere