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Overview

• Finding an intersection point — revisited

• Testing if convex polytopes intersect with preprocessing

• Testing if convex polytopes intersect without preprocessing

• Ray shooting, nearest neighbor

• Volume approximation
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Finding an intersection point revisited
Theorem (Chazelle, Liu, Magen ’06)
Given two convex polygons with cyclic list of vertices, we can decide if they
intersect in O(

√
n) expected time.
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Finding an intersection point revisited
Theorem (Chazelle, Liu, Magen ’06)
Given two convex polygons with cyclic list of vertices, we can decide if they
intersect in O(

√
n) expected time.

Needs: detecting separating line or intersection of sample polygons.
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Convex polytope in R3 via DCEL
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DCEL = Doubly connected edge list,
facets are ccw cycles from outside
arcs know: opposite, next, prev arc
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Dobkin–Kirkpatrick hierarchy

Given convex polytope Q in R3, a polytope sequence Q1, Q2, . . . , Qk is a DK
hierarchy of Q if
1. Q1 = Q and Qk is a tetrahedron
2. Qi ⊃ Qi+1 and V (Qi) ⊃ V (Qi+1)
3. V (Qi) \ V (Qi+1) is an independent set in G(Qi).
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Dobkin–Kirkpatrick hierarchy

Given convex polytope Q in R3, a polytope sequence Q1, Q2, . . . , Qk is a DK
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Theorem Given Q via DCEL, a DK hierarchy of
• depth k = O(log n),
• size

∑k
i=1(|V (Qi)|) = O(n),

• and degree maxi max{degG(Qi)(v) | v ∈ V (Qi) \ V (Qi+1)} ≤ 11
can be computed in O(n) time.

Constructing the DK hierarchy
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Theorem Given Q via DCEL, a DK hierarchy of
• depth k = O(log n),
• size

∑k
i=1(|V (Qi)|) = O(n),

• and degree maxi max{degG(Qi)(v) | v ∈ V (Qi) \ V (Qi+1)} ≤ 11
can be computed in O(n) time.

Proof. Iteratively remove set S, a greedy maximal independent set among
vertices of degree ≤ 11.

Claim: |S| ≥ |V (Q)|/24.
Suppose not: |S| < |V (Q)|/24
⇒
⋃

s∈S N [s] < |V (Q)|/2
⇒ G(Q) has ≥ |V (Q)|/2 vertices of degree ≥ 12
⇒ G(Q) has ≥ (|V (Q)|/2) · 12/2 = 3|V (Q)| edges

Constructing the DK hierarchy
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Theorem Given Q via DCEL, a DK hierarchy of
• depth k = O(log n),
• size

∑k
i=1(|V (Qi)|) = O(n),

• and degree maxi max{degG(Qi)(v) | v ∈ V (Qi) \ V (Qi+1)} ≤ 11
can be computed in O(n) time.

Proof. Iteratively remove set S, a greedy maximal independent set among
vertices of degree ≤ 11.

Claim: |S| ≥ |V (Q)|/24.
Suppose not: |S| < |V (Q)|/24
⇒
⋃

s∈S N [s] < |V (Q)|/2
⇒ G(Q) has ≥ |V (Q)|/2 vertices of degree ≥ 12
⇒ G(Q) has ≥ (|V (Q)|/2) · 12/2 = 3|V (Q)| edges

Euler’s formula:
E(Q) ≤ 3|V (Q)|−6
Euler’s formula:

E(Q) ≤ 3|V (Q)|−6

Constructing the DK hierarchy
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Intersection of convex polytopes in R≤3 via DK hierarchy

Theorem (Dobkin, Kirkpatrick ’90)
Given the DK hierarchy of two convex polytopes with n and m vertices, a point
in their intersection or a separating plane can be found in O(log n · logm) time.

The separating pair of P and Q is a point pair p ∈ P and q ∈ Q s.t.

σ(P,Q) := min
x∈P,y∈Q

dist(x, y) = dist(p, q)

p, q have parallel supporting planes Hp and Hq.

qp

Hp Hq
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Maintaining separation via DK
Lemma
Given P with a DK-hierarchy P1, . . . , Pr and a plane H, σ(H,P ) can be found
in O(log n) time.
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Sublinear intersection of convex polytopes without preprocessing
Theorem (Chazelle, Liu, Magen ’06)
Given convex polyhedra P and Q by DCEL, and stored in a way that we can
sample an edge from either, we can decide if P and Q intersect in O(

√
n) time.
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Finding p1
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Sampling lemma
Ground set S, (sample) set R ⊂ S of size r.
ϕ : 2S → R Let

V (R) :=
{
s ∈ S \R | ϕ(R ∪ {s} 6= ϕ(R))

}
X(R) :=

{
s ∈ R | ϕ(R \ {s}) 6= ϕ(R)

}
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Sampling lemma
Ground set S, (sample) set R ⊂ S of size r.
ϕ : 2S → R Let

V (R) :=
{
s ∈ S \R | ϕ(R ∪ {s} 6= ϕ(R))

}
X(R) :=

{
s ∈ R | ϕ(R \ {s}) 6= ϕ(R)

}
Set vr := E(V (R)) and xr := E(X(R)).

Lemma(Gärtner, Welzl ’01)
For 0 ≤ r < n, we have:

vr
n− r

=
xr+1

r + 1
.
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Perturbing and tweaking the sampling distribution

D2: Choose Rp ∪Rq by selecting each vertex of M indep. with prob. r/n
M : multiset of vertices of P ∪Q, where p has deg(p) copies
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Ray shooting, Voronoi pt location

Theorem
Given a convex polytope (as DCEL) of n vertices and a directed line, their
intersection can be computed in O(

√
n) time.

Theorem
Given a Delaunay triangulation or a Voronoi diagram as DCEL, we can compute
point location (i.e., identify the cell a given query point falls into) in O(

√
n)

time.

p = (px, py)→ Hp : z = 2pxx+ 2pyy − (p2x + p2y)
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Nearest point of a polytope
nP (q): nearest point of P to q
ξP (`): point of largest `-coordinate in P
ξP (H, `): point of largest `-coordinate in P ∩H

Theorem
Given a convex polytope P (as DCEL) of n vertices, a point q and a directed
line `, we can compute nP (q), ξP (`), ξP (H, `) in O(

√
n) time.
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Volume approximation

Theorem
Given ε > 0 and a convex polyope P on n vertices, we can compute a
(1 + ε)-approximation of its volume in O(n/ε) time.
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Volume approximation

Theorem
Given ε > 0 and a convex polyope P on n vertices, we can compute a
(1 + ε)-approximation of its volume in O(n/ε) time.

Stage 1. Reshaping into ball-like polytope

Stage 2. Coreset-like approximation with O(1/ε) size polytope Q s.t.
P ⊂ Q ⊂ Pε by projecting (1/

√
ε)-net of sphere


