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Overview

Finding an intersection point — revisited

Testing if convex polytopes intersect with preprocessing
Testing if convex polytopes intersect without preprocessing
Ray shooting, nearest neighbor

Volume approximation



Finding an intersection point revisited

Theorem (Chazelle, Liu, Magen '06)

Given two convex polygons with cyclic list of vertices, we can decide if they
intersect in O(y/n) expected time.



Finding an intersection point revisited

Theorem (Chazelle, Liu, Magen '06)

Given two convex polygons with cyclic list of vertices, we can decide if they
intersect in O(y/n) expected time.

Needs: detecting separating line or intersection of sample polygons.



Convex polytope in R? via DCEL

P2 D2
DCEL = Doubly connected edge list,

facets are ccw cycles from outside
arcs know: opposite, next, prev arc



Dobkin—Kirkpatrick hierarchy

Given convex polytope @ in R3, a polytope sequence Q1,Qs,...,Q is a DK
hierarchy of ) if
1. 1 = @ and @y is a tetrahedron

2. Qi O Qit1 and V(Q;) D V(Qi1)
3. V(Q;)\ V(Q;y1) is an independent set in G(Q;).
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Constructing the DK hierarchy

Theorem Given () via DCEL, a DK hierarchy of

e depth k£ = O(logn),

o size S0 ([V(Qi)]) = O(n),

e and degree max; max{degg(,)(v) | v € V(Q:) \ V(Qit1)} < 11
can be computed in O(n) time.
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Proof. lteratively remove set S, a greedy maximal independent set among
vertices of degree < 11.

Claim: |S| > |V(Q)]/24.

Suppose not: |S| < |[V(Q)|/24
= Uses Nis] < [V(Q)]/2
= G(Q) has > |V (Q)|/2 vertices of degree > 12
= G(Q) has > ([V(Q)|/2) - 12/2 = 3|V(Q)| edges
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Intersection of convex polytopes in R=? via DK hierarchy

Theorem (Dobkin, Kirkpatrick '90)

Given the DK hierarchy of two convex polytopes with n and m vertices, a point
in their intersection or a separating plane can be found in O(logn - logm) time.

The separating pair of P and () is a point pair p € P and g € @ s.t.

o(P,Q) = ,Jpin dist(z,y) = dist(p, g)

p, q have parallel supporting planes H, and H,.



Maintaining separation via DK

Lemma
Given P with a DK-hierarchy Pi, ..., P. and a plane H, o(H, P) can be found
in O(logn) time.



Sublinear intersection of convex polytopes without preprocessing

Theorem (Chazelle, Liu, Magen '06)
Given convex polyhedra P and () by DCEL, and stored in a way that we can
sample an edge from either, we can decide if P and @ intersect in O(y/n) time.



Finding p;
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Sampling lemma

Ground set .S, (sample) set R C S of size r.
@ :2° = R Let

V(R):={s € S\ R|p(RU{s} # p(R))}
X(R)={s € R|p(R\{s}) # o(R)}
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Sampling lemma

Ground set .S, (sample) set R C S of size r.
@ :2° = R Let

V(R):={s € S\ R|p(RU{s} # p(R))}
X(R)={s € R|p(R\{s}) # o(R)}

Set v, ;= E(V(R)) and z, := E(X(R)).

Lemma(Gartner, Welzl '01)

For 0 < r < n, we have:
Uy Lr41

n—r 7r+1
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Perturbing and tweaking the sampling distribution

M multiset of vertices of P U Q, where p has deg(p) copies
Dy: Choose R, U R, by selecting each vertex of M indep. with prob. r/n
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Ray shooting, Voronoi pt location

Theorem
Given a convex polytope (as DCEL) of n vertices and a directed line, their
intersection can be computed in O(y/n) time.

Theorem

Given a Delaunay triangulation or a Voronoi diagram as DCEL, we can compute
point location (i.e., identify the cell a given query point falls into) in O(y/n)
time.

p = (Pz,py) = Hp:2z=2p,x+2pyy— (p2 +p2)
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Nearest point of a polytope

np(q): nearest point of P to g
Ep(£): point of largest ¢-coordinate in P
Ep(H,0): point of largest /-coordinate in PN H

Theorem

Given a convex polytope P (as DCEL) of n vertices, a point ¢ and a directed
line ¢, we can compute np(q),{p(¢),Ep(H,£) in O(y/n) time.
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Volume approximation

Theorem
Given € > 0 and a convex polyope P on n vertices, we can compute a
(1 4+ &)-approximation of its volume in O(n/e) time.
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Volume approximation

Theorem
Given € > 0 and a convex polyope P on n vertices, we can compute a
(1 4+ &)-approximation of its volume in O(n/e) time.

Stage 1. Reshaping into ball-like polytope

Stage 2. Coreset-like approximation with O(1/¢) size polytope @ s.t.
P C Q C P. by projecting (1/+/¢)-net of sphere
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