Ray shooting and volume approximation

Sándor Kisfaludi-Bak

Geometric algorithms with limited resources Summer semester 2021

Overview

- Testing if convex polytopes intersect without preprocessing wrap-up
- Ray shooting, nearest neighbor
- Volume approximation

Sublinear intersection of convex polytopes without preprocessing

Theorem (Chazelle, Liu, Magen '06) Given convex polyhedra P and Q by DCEL, and stored in a way that we can sample an edge from either, we can decide if P and Q intersect in $O(\sqrt{n})$ time. vvt
⁄

Recall:

- sample from both of size $r =$ √ \overline{n}
- find separating plane H (if not, return intersection)
- $\bullet\,$ $p\in H\cap V(P)$ has neighbor p_1 on other side, find it by resampling

Sublinear intersection of convex polytopes without preprocessing

Theorem (Chazelle, Liu, Magen '06) Given convex polyhedra P and Q by DCEL, and stored in a way that we can sample an edge from either, we can decide if P and Q intersect in $O(\sqrt{n})$ time. vvt
⁄

Recall:

- sample from both of size $r =$ √ \overline{n}
- find separating plane H (if not, return intersection)
- $\bullet\,$ $p\in H\cap V(P)$ has neighbor p_1 on other side, find it by resampling

Todo: prove $\mathbf{E}(|C_p| + |C_q|) = O(n/r)$.

Sublinear intersection of convex polytopes without preprocessing

Theorem (Chazelle, Liu, Magen '06) Given convex polyhedra P and Q by DCEL, and stored in a way that we can sample an edge from either, we can decide if P and Q intersect in $O(\sqrt{n})$ time. vvt
⁄

Recall:

- sample from both of size $r =$ √ \overline{n}
- find separating plane H (if not, return intersection)
- $\bullet\,$ $p\in H\cap V(P)$ has neighbor p_1 on other side, find it by resampling

Todo: prove $\mathbf{E}(|C_p|+|C_q|)=O(n/r)$.

Last time: Ground set S , (sample) set $R\subset S$ of size $r.$ $\varphi:2^S\rightarrow \mathbb{R}$ Let $V(R) := \{ s \in S \setminus R \mid \varphi(R \cup \{s\} \neq \varphi(R)) \}$ $X(R) := \{ s \in R \mid \varphi(R \setminus \{s\}) \neq \varphi(R) \}$

Set $v_r := \mathbf{E}(V(R))$ and $x_r := \mathbf{E}(X(R))$.

Sampling Lemma(Gärtner, Welzl '01) For $0 \leq r < n$, we have:

$$
\frac{v_r}{n-r} = \frac{x_{r+1}}{r+1}.
$$

Perturbing and tweaking the sampling distribution

 M' : perturb M by moving infinitesimally randomly towards edge midpoints

M: multiset of vertices of $P ∪ Q$, where *p* has deg(*p*) copies
 M': perturb *M* by moving infinitesimally randomly towards edge midpoint
 *D*₃: Choose $R_p ∪ R_q$ by selecting each vertex of *M'* indep. with prob. \mathcal{D}_3 : Choose $R_p\cup R_q$ by selecting each vertex of M' indep. with prob. r/n

Ray shooting, Voronoi pt location

Theorem

Given a convex polytope (as DCEL) of n vertices and a directed line, their intersection can be computed in $O(\sqrt{n})$ time. √

Theorem

Given a Delaunay triangulation or a Voronoi diagram as DCEL, we can compute point location (i.e., identify the cell a given query point falls into) in $O(\sqrt{n})$ ∣∪۔
⁄ time.

$$
p = (p_x, p_y) \to H_p : z = 2p_x x + 2p_y y - (p_x^2 + p_y^2)
$$

Nearest point of a polytope

 $n_P(q)$: nearest point of P to q $\xi_P(\ell)$: point of largest ℓ -coordinate in P $\xi_P (H, \ell)$: point of largest ℓ -coordinate in $P \cap H$

Theorem

Given a convex polytope P (as DCEL) of n vertices, a point q and a directed line ℓ , we can compute $n_P (q), \xi_P (\ell), \xi_P (H, \ell)$ in $O(\sqrt{n})$ time. ∣ d
⁄

Volume approximation

Theorem

Given $\varepsilon > 0$ and a convex polyope P on n vertices, we can compute a $(1+\varepsilon)$ -approximation of its volume in $O(\sqrt{n}/\varepsilon)$ time. √

Volume approximation

Theorem

Given $\varepsilon > 0$ and a convex polyope P on n vertices, we can compute a $(1+\varepsilon)$ -approximation of its volume in $O(\sqrt{n}/\varepsilon)$ time. √

Stage 1. Reshaping into ball-like polytope

Stage 2. Coreset-like approximation with $O(1/\varepsilon)$ size polytope Q s.t. $P \subset Q \subset P_\varepsilon$ by projecting $(1/\sqrt{\varepsilon})$ -net of sphere dl
∕

Volume approximation

Theorem

Given $\varepsilon > 0$ and a convex polyope P on n vertices, we can compute a $(1+\varepsilon)$ -approximation of its volume in $O(\sqrt{n}/\varepsilon)$ time. √

Stage 1. Reshaping into ball-like polytope

Stage 2. Coreset-like approximation with $O(1/\varepsilon)$ size polytope Q s.t. $P \subset Q \subset P_\varepsilon$ by projecting $(1/\sqrt{\varepsilon})$ -net of sphere dl
∕

Stage 1 will use:

Theorem. Any compact convex object $K\subset \mathbb{R}^d$ has a unique maximum volume ellipsoid $\mathcal{E} \subseteq K$.

Theorem (John 1948). For any compact convex $K \subset \mathbb{R}^d$ with $\mathcal E$ centered at the origin, $\mathcal{E} \subseteq K \subseteq d\mathcal{E}$.