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Summary: Counting Graph Homomorphisms

Graph Homomorphism T

Mapping from graph H to G that preserves edges;
Write Hom(H — G) for the set of all graph hom'’s from H to G.
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph H to G that preserves edges;
Write Hom(H — G) for the set of all graph hom'’s from H to G.
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph H to G that preserves edges;
Write Hom(H — G) for the set of all graph hom'’s from H to G.
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BE000000000000000000d

Summary: Counting Graph Homomorphisms

Graph Homomorphism T

Mapping from graph H to G that preserves edges;
Write Hom(H — G) for the set of all graph hom'’s from H to G.
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#Hom(H — G) =16

lllpll

S I C gaarland Informatics Philip Wellnitz
ampus ) . 2_4
L Techniques for Counting Problems, Lecture 8




BE000000000000000000d

Summary: Counting Graph Homomorphisms

Graph Homomorphism T

Mapping from graph H to G that preserves edges;
Write Hom(H — G) for the set of all graph hom'’s from H to G.
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Summary: Counting Graph Homomorphisms

Graph Homomorphism T

Mapping from graph H to G that preserves edges;
Write Hom(H — G) for the set of all graph hom'’s from H to G.

o———o
T><T | / .
) ° .\ /
[ ]
H G
No homomorphisms from H to G.
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph H to G that preserves edges;
Write Hom(H — G) for the set of all graph hom'’s from H to G.
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Finding (counting) homomorphisms is important for finding patterns in graphs
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Summary: Counting Graph Homomorphisms

Graph Homomorphism T

Mapping from graph H to G that preserves edges;
Write Hom(H — G) for the set of all graph hom'’s from H to G.
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph H to G that preserves edges;
Write Hom(H — G) for the set of all graph hom'’s from H to G.
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H (G-colored) G
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Finding (counting) homomorphisms generalizes graph coloring problems
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Summary: Counting Graph Homomorphisms

Hom(H — G) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.
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Summary: Counting Graph Homomorphisms

Hom(H — G) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.
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Summary: Counting Graph Homomorphisms

Hom(H = G) |
Given graphs H € H and G € G, check if there is a graph hom from H to G.

(I

Graph classes
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All Graphs (T) All Bipartite Graphs All Cliques
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Summary: Counting Graph Homomorphisms

Hom(H = G) |
Given graphs H € H and G € G, check if there is a graph hom from H to G.

(I

Graph classes [<¢——— set of graphs

e o o—o ° e o
N N
° °
PN D
° ° ° ° ° °
1<) 1<)
All Graphs (T) All Bipartite Graphs All Cliques
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Summary: Known Results

Hom(H — G) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.
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Summary: Known Results

Hom(H — G) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.

NP-complete

Hom(T = T)
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Summary: Known Results

Hom(H — G) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.

NP-complete

Hom(T = T)
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Summary: Known Results

Hom(H — G) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.

NP-complete

Hom(T — {A)

I

| 3-COLORABLE |
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Summary: Known Results

Hom(H — G) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.

Are there fast algorithms for special cases of Hom(T - T)?
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Summary: Known Results

Hom(H — G) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.

What makes Hom(T — T) hard?

S I C gaarland Informatics Philip Wellnitz
ampus . R 7_2
L Techniques for Counting Problems, Lecture 8




EEEEEERCOO0000O0OOOO0

Summary: Known Results

Hom(H — Q) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.

poly-time solvable NP-complete
Hom(T - G) G contains only G contains a
bipartite graphs non-bipartite graph
[Hell, NeSetfil '90] [Hell, NeSetfil '90]
/ i p T " SIC 32;:‘1,\;?5(1 Informatics Philip Wellnitz 8
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Summary: Known Results

#Hom(tl > G) T

Given graphs H € H and G € G, count all graph homomorphisms from H to G.

poly-time solvable #P-complete
#HOM(T - QG) (explicit criterion exists) (explicit criterion exists)
[Dyer, Greenhill 'o0] [Dyer, Greenhill '00]
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Summary: Known Results

Hom(H — Q) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.

What about the other side, Hom(t — T)?
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Summary: Known Results

Hom(H — Q) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.

When is HoM(H — T) easy?
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Summary: Known Results

Hom(H — G) T

Given graphs H € H and G € G, check if there is a graph hom from H to G.

When is Hom(H — T) easy?

Always in time O(|V(G)|"V®)!) (brute-force)
(fast if |[V(H)| bounded for all H € H, this is the boring case)
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Summary: Known Results

Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, check if there is a graph hom from H to G.

When is Hom(H — T) fixed-parameter tractable?
(in O(f(IV(H)I) - poly(IV(G)I)) time)

SIC & mromaties Phlip Wellnitz 1 )
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Summary: Known Results

Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, check if there is a graph hom from H to G.

FPT W[1]-hard
(FQV(H)I) - poly(|V(G)]) time) (not (much) faster than brute-force)
Hom(H — T) “H contains only graphs “H contains graphs with
with small treewidth” arbitrary large tw”
[Grohe '03] [Grohe '03]
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Summary: Known Results

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count all graph homomorphisms from H to G.

FPT #W[1]-hard
(F(JV(H)]) - poly(]V(G)]) time) (not (much) faster than brute-force)
#Hom(H — T) “H contains only graphs “H contains a graph
with small treewidth” with large treewidth”
[Dalmau, Jonsson '04] [Dalmau, Jonsson '04]
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Summary: Known Results

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count all graph homomorphisms from H to G.

Complexity dichotomies when restricting either G or H.
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Summary: Known Results

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count all graph homomorphisms from H to G.

Complexity dichotomies when restricting either G or H.

What if we restrict both sides?
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Summary: Known Results

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count all graph homomorphisms from H to G.

Complexity dichotomies when restricting either G or H.

What if we restrict both sides?

This lecture.
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Main Result

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count all graph homomorphisms from H to G.

Theorem |

For any problem P in #W[1] (or W[1]), there are graph classes H, and G, such that P
is equivalent to #Hom(H, — G,) (or Hom(H, - G,)).
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Main Result

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count all graph homomorphisms from H to G.

Theorem |

For any problem P in #W[1] (or W[1]), there are graph classes H, and G, such that P
is equivalent to #Hom(H, — G,) (or Hom(H, - G,)).

= Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H, G)

(recall Ladner’s Theorem: If P #NP, there are NP-intermediate problems;
similar results by Downey and Fellows for FPT/W[1])
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Proof Ideas

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count all graph homomorphisms from H to G.

Theorem |

For any problem P in #W[1] (or W[1]), there are graph classes H, and G, such that P
is equivalent to #Hom(H, — G,) (or Hom(H, - G,)).
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Proof Ideas

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count all graph homomorphisms from H to G.

Theorem |

For any problem P in #W[1] (or W[1]), there are graph classes H, and G, such that P
is equivalent to #Hom(H, — G,) (or Hom(H, - G,)).

Recall: #HoM(II — T) is #W[1]-hard if H has “unbounded treewidth” [Daljon’os]
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Proof Ideas

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count the number of graph hom’s from H to G.

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, —» G,).

#W[1]-hard

H w/ unbounded
#K-CLIQUE - #Hom(H - T)
treewidth

;
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Proof Ideas

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count the number of graph hom’s from H to G.

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, —» G,).

#W[1]-hard

H w/ unbounded

Problem P #K-CLIQUE - #Hom(H » T)
treewidth
?
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Proof Ideas

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count the number of graph hom’s from H to G.

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, —» G,).

#W[1]-hard

H w/ unbounded
#K-CLIQUE - #Hom(H - T)
treewidth

x J

;
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Proof Ideas

Theorem e

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

#W[1]-hard

H w/ unbounded

Problem P #K-CLIQUE #Hom(H —» T
_ E treewidth ( - )
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

 Problem P g #Hom(H - T)
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

Instance Graphs
of P J Problem P e #HOM(H — T) u pG
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

Instance Graphs
of P J Problem P e #HOM(H — T) u pG

H, :={H, | instance J of P}

Approach: G, :={G, | instance ] of P}
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

Instance Graphs
of P J Problem P e #HOM(H — T) u pG

H, :={H, | instance J of P}

Approach: G, :={G, | instance ] of P}

P < #HoM(H, - G,) v/
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

st Graphs
nsoz:\cn;el Problem P pemmmgd #HoM(H — T) f

H, :={H, | instance J of P}

Approach: G, :={G, | instance ] of P}

P < #HOM(H, - G,) v #Hom(H, —» G,) <P
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

Instance Graphs
of P J Problem P e #HOM(H — T) u pG

H, :={H, | instance J of P}

Approach: G, :={G, | instance ] of P}
Px #HOM(HP - GP) v’ #HOM(HP - GP) P
How do we obtain instance J from (H,, G))?
. SIC Siand nformatics Philip Wellnitz 17-7
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

Instance Graphs
- J [ Problem p M 110 (H — T) s
)
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

Instance Graphs
of P J Problem P fammmed #tHOM(H — T) y PG
I

H, :={H, | instance J of P}
G, :={G,u () | instance J of P}

Approach:
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

et Graphs
I

H, :={H, | instance J of P}
G, :={G,u () | instance J of P}

Approach:

P<#Hom(H, » G,) v~
(ensure #Hom(H, = ())) = 0)
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

Instance Graphs
of P J Problem P fammmed #tHOM(H — T) y DG
I

H, :={H, | instance J of P}

A h: .
bproac G, :={G,u () | instance J of P}
P<#Hom(H, » G,) v~ #tHom(H, - GP);; P
(ensure #Hom(H, - (J)) = 0)
JEPEE g e iy vtz 1
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

Instance Graphs
of P J Problem P e #tHOM(H — T) y DG
I

H, :={H, | instance J of P}

A h: .
bproac G, :={G,u () | instance J of P}
P< #HOM(H, —» G,) v #Hom(E, > G,) < P
(ensure #Hom(H, - (J)) = 0) How do we handle malformed input (H,, G,)?
JLLLT C1 LT 1 (o Pty el 1
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Proof Ideas

Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, — G,).

Instance Graphs
- J [ Problem p M 110 (H — T) s
)

H, :={H, | instance J of P}

Approach: .
PP G, :={G,u () | instance J of P}
P< #Hom(H, —» G,) v/ #Hom(H, > G,) < P
(ensure #Hom(H, - (J)) = 0) How do we ensure #Hom(H, —» G, u (L)) = 0?
JLLLT VLLR (o gt 1
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Theorem e

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, —» G,).

P< #Hom(H, - G,) #Hom(H, — G,) <P

Can solve instance J with (H, G, u {J}) by Can extract instance J from pair (H, G, U {J))
computing #Hom(Hj - Gu Uy

(ensuring #Hom(Hj - (J)) =0) How do we ensure #Hom(H] - G, u(L))=0?
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Theorem |

For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, —» G,).

P< #Hom(H, - G,) #Hom(H, — G,) <P

Can solve instance J with (H, G, u {J}) by Can extract instance J from pair (H, G, U {J))
computing #Hom(H, - G, u (J))

(ensuring #Hom(Hj - (J)) =0) How do we ensure #Hom(Hj - G, u(L))=0?

Instance Graphs
of P / Problem P e #HOM(H — T) p pG
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Theorem
For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, —» G,).

P< #Hom(H, - G,) #Hom(H, — G,) <P

Can solve instance J with (H, G, u {J}) by Can extract instance J from pair (H, G, U {J))
computing #Hom(H, - G, u (J))

(ensuring #Hom(Hj - (J)) =0) How do we ensure #Hom(Hj - G, u(L))=0?
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Theorem
For any P in #W[1], there are H,, G, such that P is equivalent to #Hom(H, —» G,).

P< #Hom(H, - G,) #Hom(H, — G,) <P

Can solve instance J with (H, G, u {J}) by Can extract instance J from pair (H, G, U {J))
computing #Hom(H, - G, u (J))

(ensuring #Hom(Hj - (J)) =0) How do we ensure #Hom(Hj - G, u(L))=0?

@ ‘}0 S
\ o /
F)—)

s I C (S:aarland Informatics Philip Wellnitz
ampus ) )
Techniques for Counting Problems, Lecture 8

18-4



(]
1
[ ]
1
L[] (]
1 1
L N ) L[]
[ 1
e o (]
[ | 1
e o L]
® 6 o o o o o
U.H)
s
o
Lo
&
s ®
&
s e%
5 %
%
& @
G

19



Main Result

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count all graph homomorphisms from H to G.

Theorem |

For any problem P in #W[1] (or W[1]), there are graph classes H, and G, such that P
is equivalent to #Hom(H, — G,) (or Hom(H, - G,)).

= Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H, G)
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Main Result

#Hom(H — Q) Parameter: |V(H)|
Given graphs H € H and G € G, count all graph homomorphisms from H to G.

Theorem |

For any problem P in #W[1] (or W[1]), there are graph classes H, and G, such that P
is equivalent to #Hom(H, — G,) (or Hom(H, - G,)).

= Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H, G)
~~ Need to look at specific pairs of graph classes

. SIC Syt miomaties Phllp Wellniz )
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Thank you!

TikZ code for Kneser graphs available on GitHub
github.com/PH111P/tikz-kneser
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github.com/PH111P/tikz-kneser
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