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Techniques for Counting Problems, Lecture 8
Limitations of Counting Dichotomies

Philip Wellnitz
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph 𝐻 to 𝐺 that preserves edges;
Write Hom(𝐻 → 𝐺) for the set of all graph hom’s from 𝐻 to 𝐺.

Φ = bipartite𝐻
|𝑉(𝐻)| = 4

𝐺
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph 𝐻 to 𝐺 that preserves edges;
Write Hom(𝐻 → 𝐺) for the set of all graph hom’s from 𝐻 to 𝐺.

Φ = bipartite𝐻
|𝑉(𝐻)| = 4

𝐺
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph 𝐻 to 𝐺 that preserves edges;
Write Hom(𝐻 → 𝐺) for the set of all graph hom’s from 𝐻 to 𝐺.

Φ = bipartite𝐻
|𝑉(𝐻)| = 4

𝐺
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph 𝐻 to 𝐺 that preserves edges;
Write Hom(𝐻 → 𝐺) for the set of all graph hom’s from 𝐻 to 𝐺.

Φ = bipartite𝐻
|𝑉(𝐻)| = 4

𝐺

#Hom(𝐻 → 𝐺) = 16
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph 𝐻 to 𝐺 that preserves edges;
Write Hom(𝐻 → 𝐺) for the set of all graph hom’s from 𝐻 to 𝐺.

Φ = bipartite𝐻
|𝑉(𝐻)| = 4

𝐺
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph 𝐻 to 𝐺 that preserves edges;
Write Hom(𝐻 → 𝐺) for the set of all graph hom’s from 𝐻 to 𝐺.

Φ = bipartite𝐻
|𝑉(𝐻)| = 4

𝐺

No homomorphisms from 𝐻 to 𝐺.
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph 𝐻 to 𝐺 that preserves edges;
Write Hom(𝐻 → 𝐺) for the set of all graph hom’s from 𝐻 to 𝐺.

Φ = bipartite𝐻
|𝑉(𝐻)| = 4

𝐺

Finding (counting) homomorphisms is important for finding patterns in graphs
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph 𝐻 to 𝐺 that preserves edges;
Write Hom(𝐻 → 𝐺) for the set of all graph hom’s from 𝐻 to 𝐺.

Φ = bipartite𝐻 (𝐺-colored)𝐻
|𝑉(𝐻)| = 4

𝐺

Philip Wellnitz
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Summary: Counting Graph Homomorphisms

Graph Homomorphism
Mapping from graph 𝐻 to 𝐺 that preserves edges;
Write Hom(𝐻 → 𝐺) for the set of all graph hom’s from 𝐻 to 𝐺.

Φ = bipartite𝐻 (𝐺-colored)

|𝑉(𝐻)| = 4

𝐺

Finding (counting) homomorphisms generalizes graph coloring problems
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Summary: Counting Graph Homomorphisms

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.
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Summary: Counting Graph Homomorphisms

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

Graph classes
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Summary: Counting Graph Homomorphisms

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

⋯ ⋯

All Graphs (⊤⊤⊤⊤⊤⊤⊤⊤⊤)

⋯ ⋯

All Bipartite Graphs

⋯ ⋯

All Cliques

Graph classes

Philip Wellnitz
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Summary: Counting Graph Homomorphisms

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

⋯ ⋯

All Graphs (⊤⊤⊤⊤⊤⊤⊤⊤⊤)

⋯ ⋯

All Bipartite Graphs

⋯ ⋯

All Cliques

Graph classes set of graphs

Philip Wellnitz
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Summary: Known Results

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.
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Summary: Known Results

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

Hom(⊤⊤⊤⊤⊤⊤⊤⊤⊤ → {𝐾3})

3-colorable

3-colorableHom(⊤⊤⊤⊤⊤⊤⊤⊤⊤ → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

NP-complete
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Summary: Known Results

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

Hom(⊤⊤⊤⊤⊤⊤⊤⊤⊤ → {𝐾3})3-colorableHom(⊤⊤⊤⊤⊤⊤⊤⊤⊤ → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

3-colorable

NP-complete
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Summary: Known Results

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

Hom(⊤⊤⊤⊤⊤⊤⊤⊤⊤ → {𝐾3})Hom(⊤⊤⊤⊤⊤⊤⊤⊤⊤ → { })

3-colorable

NP-complete

Philip Wellnitz
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Summary: Known Results

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

Are there fast algorithms for special cases of Hom(⊤⊤⊤⊤⊤⊤⊤⊤⊤ → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)?

Philip Wellnitz
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Summary: Known Results

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

What makes Hom(⊤⊤⊤⊤⊤⊤⊤⊤⊤ → ⊤⊤⊤⊤⊤⊤⊤⊤⊤) hard?

Philip Wellnitz
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Summary: Known Results

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

poly-time solvable NP-complete

Hom(⊤⊤⊤⊤⊤⊤⊤⊤⊤ → G) G contains only G contains a
bipartite graphs non-bipartite graph
[Hell, Nešetřil ’90] [Hell, Nešetřil ’90]

Philip Wellnitz
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Summary: Known Results

#Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count all graph homomorphisms from 𝐻 to 𝐺.

poly-time solvable #P-complete

#Hom(⊤⊤⊤⊤⊤⊤⊤⊤⊤ → G) (explicit criterion exists) (explicit criterion exists)
[Dyer, Greenhill ’00] [Dyer, Greenhill ’00]

Philip Wellnitz
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Summary: Known Results

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

What about the other side, Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)?

Philip Wellnitz
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Summary: Known Results

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

When is Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤) easy?

Philip Wellnitz
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Summary: Known Results

Hom(H → G)
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

When is Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤) easy?

Always in time 𝑂(|𝑉(𝐺)||𝑉(𝐻)|) (brute-force)
(fast if |𝑉(𝐻)| bounded for all 𝐻 ∈ H, this is the boring case)

Philip Wellnitz
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Summary: Known Results

Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

When is Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤) fixed-parameter tractable?
(in 𝑂(𝑓(|𝑉(𝐻)|) ⋅ 𝑝𝑜𝑙𝑦(|𝑉(𝐺)|)) time)

Philip Wellnitz
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Summary: Known Results

Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, check if there is a graph hom from 𝐻 to 𝐺.

FPT W[1]-hard
(𝑓(|𝑉(𝐻)|) ⋅ 𝑝𝑜𝑙𝑦(|𝑉(𝐺)|) time) (not (much) faster than brute-force)

Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤) ‶H contains only graphs “H contains graphs with
with small treewidth” arbitrary large tw”

[Grohe ’03] [Grohe ’03]

Philip Wellnitz
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Summary: Known Results

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count all graph homomorphisms from 𝐻 to 𝐺.

FPT #W[1]-hard
(𝑓(|𝑉(𝐻)|) ⋅ 𝑝𝑜𝑙𝑦(|𝑉(𝐺)|) time) (not (much) faster than brute-force)

#Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤) ‶H contains only graphs “H contains a graph
with small treewidth” with large treewidth”
[Dalmau, Jonsson ’04] [Dalmau, Jonsson ’04]

Philip Wellnitz
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Summary: Known Results

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count all graph homomorphisms from 𝐻 to 𝐺.

Complexity dichotomies when restricting either G or H.

Philip Wellnitz
Techniques for Counting Problems, Lecture 8
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Summary: Known Results

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count all graph homomorphisms from 𝐻 to 𝐺.

Complexity dichotomies when restricting either G or H.

What if we restrict both sides?

Philip Wellnitz
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Summary: Known Results

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count all graph homomorphisms from 𝐻 to 𝐺.

Complexity dichotomies when restricting either G or H.

What if we restrict both sides?

This lecture.

Philip Wellnitz
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Main Result

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count all graph homomorphisms from 𝐻 to 𝐺.

Theorem
For any problem 𝑃 in #W[1] (or W[1]), there are graph classes H𝑃 and G𝑃 such that 𝑃
is equivalent to #Hom(H𝑃 → G𝑃) (or Hom(H𝑃 → G𝑃)).

Philip Wellnitz
Techniques for Counting Problems, Lecture 8
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Main Result

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count all graph homomorphisms from 𝐻 to 𝐺.

Theorem
For any problem 𝑃 in #W[1] (or W[1]), there are graph classes H𝑃 and G𝑃 such that 𝑃
is equivalent to #Hom(H𝑃 → G𝑃) (or Hom(H𝑃 → G𝑃)).

Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H,G)
(recall Ladner’s Theorem: If P ≠NP, there are NP-intermediate problems;
similar results by Downey and Fellows for FPT/W[1])

Philip Wellnitz
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Proof Ideas

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count all graph homomorphisms from 𝐻 to 𝐺.

Theorem
For any problem 𝑃 in #W[1] (or W[1]), there are graph classes H𝑃 and G𝑃 such that 𝑃
is equivalent to #Hom(H𝑃 → G𝑃) (or Hom(H𝑃 → G𝑃)).

Philip Wellnitz
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Proof Ideas

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count all graph homomorphisms from 𝐻 to 𝐺.

Theorem
For any problem 𝑃 in #W[1] (or W[1]), there are graph classes H𝑃 and G𝑃 such that 𝑃
is equivalent to #Hom(H𝑃 → G𝑃) (or Hom(H𝑃 → G𝑃)).

Recall: #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤) is #W[1]-hard if H has “unbounded treewidth” [DalJon’04]

Philip Wellnitz
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Proof Ideas

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count the number of graph hom’s from 𝐻 to 𝐺.

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #k-Clique #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

#W[1] #W[1]-hard
H w/ unbounded

treewidth

Philip Wellnitz
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Proof Ideas

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count the number of graph hom’s from 𝐻 to 𝐺.

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #k-Clique #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

#W[1] #W[1]-hard
H w/ unbounded

treewidth

?

Philip Wellnitz
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Proof Ideas

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count the number of graph hom’s from 𝐻 to 𝐺.

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #k-Clique #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

#W[1] #W[1]-hard
H w/ unbounded

treewidth

Philip Wellnitz
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #k-Clique #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

#W[1] #W[1]-hard
H w/ unbounded

treewidth

Philip Wellnitz
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

encode Graph ⟨𝐽⟩

How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

P ≼ #Hom(H𝑃 → G𝑃)
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Philip Wellnitz
Techniques for Counting Problems, Lecture 8
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

encode Graph ⟨𝐽⟩

How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

P ≼ #Hom(H𝑃 → G𝑃)
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Philip Wellnitz
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

encode Graph ⟨𝐽⟩

How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

P ≼ #Hom(H𝑃 → G𝑃)
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Approach:
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}
G𝑃 ∶= {𝐺𝐽 ∣ instance 𝐽 of 𝑃}

Philip Wellnitz
Techniques for Counting Problems, Lecture 8



17-5

Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

encode Graph ⟨𝐽⟩

How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

P ≼ #Hom(H𝑃 → G𝑃)
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Approach:
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}
G𝑃 ∶= {𝐺𝐽 ∣ instance 𝐽 of 𝑃}

P ≼ #Hom(H𝑃 → G𝑃)

Philip Wellnitz
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

encode Graph ⟨𝐽⟩

How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

P ≼ #Hom(H𝑃 → G𝑃)
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Approach:
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}
G𝑃 ∶= {𝐺𝐽 ∣ instance 𝐽 of 𝑃}

P ≼ #Hom(H𝑃 → G𝑃) #Hom(H𝑃 → G𝑃)
?
≼ P

Philip Wellnitz
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

encode Graph ⟨𝐽⟩

How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

P ≼ #Hom(H𝑃 → G𝑃)
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Approach:
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}
G𝑃 ∶= {𝐺𝐽 ∣ instance 𝐽 of 𝑃}

P ≼ #Hom(H𝑃 → G𝑃) #Hom(H𝑃 → G𝑃) ⋠ P

How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

Philip Wellnitz
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).
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How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

P ≼ #Hom(H𝑃 → G𝑃)
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

encodeencode Graph ⟨𝐽⟩
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

encode Graph ⟨𝐽⟩

How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

P ≼ #Hom(H𝑃 → G𝑃)
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G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

encodeencode Graph ⟨𝐽⟩

Approach:
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

encode Graph ⟨𝐽⟩

How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

P ≼ #Hom(H𝑃 → G𝑃)
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)
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Instance 𝐽
of 𝑃
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𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

encodeencode Graph ⟨𝐽⟩

Approach:
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

P ≼ #Hom(H𝑃 → G𝑃)
(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Philip Wellnitz
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).
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How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

encodeencode Graph ⟨𝐽⟩

Approach:
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

P ≼ #Hom(H𝑃 → G𝑃)
(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

#Hom(H𝑃 → G𝑃)
?
≼ P
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

encode Graph ⟨𝐽⟩

How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

P ≼ #Hom(H𝑃 → G𝑃)
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

encodeencode Graph ⟨𝐽⟩

Approach:
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

P ≼ #Hom(H𝑃 → G𝑃)
(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

#Hom(H𝑃 → G𝑃)
?
≼ P

How do we handle malformed input (𝐻𝐽, 𝐺𝐿)?
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Proof Ideas

Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

encode Graph ⟨𝐽⟩

How do we obtain instance 𝐽 from (𝐻𝐽, 𝐺𝐽)?

P ≼ #Hom(H𝑃 → G𝑃)
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)

How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Graphs
𝐻𝐽, 𝐺𝐽

Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

encodeencode Graph ⟨𝐽⟩

Approach:
H𝑃 ∶= {𝐻𝐽 ∣ instance 𝐽 of 𝑃}

G𝑃 ∶= {𝐺𝐽 ∪ ⟨𝐽⟩ ∣ instance 𝐽 of 𝑃}

P ≼ #Hom(H𝑃 → G𝑃)
(ensure #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0)

#Hom(H𝑃 → G𝑃)
?
≼ P

How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?
Philip Wellnitz
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Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

P ≼ #Hom(H𝑃 → G𝑃) #Hom(H𝑃 → G𝑃) ≼ P

Can solve instance 𝐽 with (𝐻𝐽, 𝐺𝐽 ∪ ⟨𝐽⟩) by
computing #Hom(𝐻𝐽 → 𝐺𝐽 ∪ ⟨𝐽⟩)

Can extract instance 𝐽 from pair (𝐻𝐽, 𝐺𝐽 ∪ ⟨𝐽⟩)

(ensuring #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0) How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?
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Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

P ≼ #Hom(H𝑃 → G𝑃) #Hom(H𝑃 → G𝑃) ≼ P

Can solve instance 𝐽 with (𝐻𝐽, 𝐺𝐽 ∪ ⟨𝐽⟩) by
computing #Hom(𝐻𝐽 → 𝐺𝐽 ∪ ⟨𝐽⟩)

Can extract instance 𝐽 from pair (𝐻𝐽, 𝐺𝐽 ∪ ⟨𝐽⟩)

(ensuring #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0) How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?

Problem 𝑃 #Hom(H → ⊤⊤⊤⊤⊤⊤⊤⊤⊤)
Instance 𝐽
of 𝑃

Graphs
𝐻𝐽, 𝐺𝐽

Philip Wellnitz
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Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

P ≼ #Hom(H𝑃 → G𝑃) #Hom(H𝑃 → G𝑃) ≼ P

Can solve instance 𝐽 with (𝐻𝐽, 𝐺𝐽 ∪ ⟨𝐽⟩) by
computing #Hom(𝐻𝐽 → 𝐺𝐽 ∪ ⟨𝐽⟩)

Can extract instance 𝐽 from pair (𝐻𝐽, 𝐺𝐽 ∪ ⟨𝐽⟩)

(ensuring #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0) How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?
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Theorem
For any 𝑃 in #W[1], there are H𝑃, G𝑃 such that 𝑃 is equivalent to #Hom(H𝑃 → G𝑃).

P ≼ #Hom(H𝑃 → G𝑃) #Hom(H𝑃 → G𝑃) ≼ P

Can solve instance 𝐽 with (𝐻𝐽, 𝐺𝐽 ∪ ⟨𝐽⟩) by
computing #Hom(𝐻𝐽 → 𝐺𝐽 ∪ ⟨𝐽⟩)

Can extract instance 𝐽 from pair (𝐻𝐽, 𝐺𝐽 ∪ ⟨𝐽⟩)

(ensuring #Hom(𝐻𝐽 → ⟨𝐽⟩) = 0) How do we ensure #Hom(𝐻𝐽 → 𝐺𝐿 ∪ ⟨𝐿⟩) = 0?

No homomorphisms

Philip Wellnitz
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Hom(𝐻 𝐽
→ 𝐺 𝐽)

Aut(K(2𝜅(𝐽) + 3))

𝐻𝐽

K(2𝜅(𝐽) + 3)

𝐻̂𝐽

𝐺𝐽 (𝐻𝐽-colored)

⟨𝐽, 𝐻𝐽⟩

K(2𝜅(𝐽) + 3)
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Main Result

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count all graph homomorphisms from 𝐻 to 𝐺.

Theorem
For any problem 𝑃 in #W[1] (or W[1]), there are graph classes H𝑃 and G𝑃 such that 𝑃
is equivalent to #Hom(H𝑃 → G𝑃) (or Hom(H𝑃 → G𝑃)).

Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H,G)
 Need to look at specific pairs of graph classes

Philip Wellnitz
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Main Result

#Hom(H → G) Parameter: |𝑉(𝐻)|
Given graphs 𝐻 ∈ H and 𝐺 ∈ G, count all graph homomorphisms from 𝐻 to 𝐺.

Theorem
For any problem 𝑃 in #W[1] (or W[1]), there are graph classes H𝑃 and G𝑃 such that 𝑃
is equivalent to #Hom(H𝑃 → G𝑃) (or Hom(H𝑃 → G𝑃)).

Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H,G)
 Need to look at specific pairs of graph classes
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Thank you!

TikZ code for Kneser graphs available on GitHub
github.com/PH111P/tikz-kneser
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