Exercise 8: Don't get Lost

Task 1: ... Everything is (probably) going to be fine

An event occurs with high probability (w.h.p.), if its probability is, for any choice of $c \in \mathbb{R}_{\geq 1}$, at least $1 - n^{-c}$. Here n is the input size (in our case, n = |V|), and c is a (user-provided) parameter, very much like the ϵ in a $(1 + \epsilon)$ -approximation algorithm.

Algorithm 1 Code for generating a random ID at node v .	
1: $\operatorname{id}_v \leftarrow \lceil c \log n \rceil$ random bits	

- a) Suppose that some algorithm \mathcal{A} succeeds w.h.p. Pick c such that for $n \geq 10$, ten calls of \mathcal{A} all succeed with a probability of at least 0.999. (Hint: Union bound.)
- b) Let $\mathcal{E}_1, \ldots, \mathcal{E}_k$ be polynomially many events, i.e., $k \in n^{\mathcal{O}(1)}$, each of them occuring w.h.p. Show that $\mathcal{E} := \mathcal{E}_1 \cap \cdots \cap \mathcal{E}_k$, the event that all \mathcal{E}_i happen, occurs w.h.p.
- c) Consider Algorithm 1, which generates random node IDs. Fix two distinct nodes $v, w \in V$ and show that w.h.p., they have different IDs.
- d) Show that w.h.p., Algorithm 1 generates pairwise distinct node IDs.

Task 2: ... in the Steiner Forest!

In this exercise, we're going to find a 2-approximation for the Steiner Tree problem on a weighted graph G = (V, E, W), as defined in an earlier exercise; we use the CONGEST model. Denote by T the set of nodes that need to be connected, and by $G_T = (T, {T \choose 2}, W_T)$ the terminal graph.

- a) For each node v, denote by t_v the closest node in T. Show that all $v \in V$ can determine t_v along with $dist(v, t_v)$ in $\max_{v \in V} \{hop(v, t_v)\} + \mathcal{O}(D)$ rounds,¹ where $hop(v, t_v)$ denotes the minimum hop length of a shortest path from v to t_v . (Hint: This essentially is a single-source Moore-Bellman-Ford with a virtual source connected to all nodes in T.)
- b) Consider a terminal graph edge $\{t_v, t_w\}$ "witnessed" by *G*-neighbors v and w with $t_v \neq t_w$, i.e., v and w know that $\operatorname{dist}(t_v, t_w) \leq \operatorname{dist}(t_v v) + W(v, w) + \operatorname{dist}(w, t_w)$. Show that if there are no such v and w with $\operatorname{dist}(t_v, t_w) = \operatorname{dist}(v, t_v) + W(v, w) + \operatorname{dist}(w, t_w)$, then $\{t_v, t_w\}$ is not in the MST of G_T ! (Hint: Observe that G is partitioned into Voronoi cells $V_t = \{v \in V \mid t_v = t\}$, and that in the above case any shortest t_v - t_w path must contain a node u with $t_u \notin \{t_v, t_w\}$, i.e., cross a third Voronoi cell. Conclude that $\{t_v, t_w\}$ is the heaviest edge in the cycle (t_v, t_u, t_w, t_v) .)
- c) Show that the MST of G_T can be determined and made globally known in $\mathcal{O}(|T|+D)$ additional rounds. (Hint: Use the distributed variant of Kruskal's algorithm from the lecture.)
- d) Show how to construct a Steiner Tree of G of at most the same weight as the MST of the terminal graph in additional $\max_{v \in V} \{ \operatorname{hop}(v, t_v) \}$ rounds. (Hint: Modify the previous step so that the "detecting" pair v, w with $\operatorname{dist}(t_v, t_w) = \operatorname{dist}(v, t_v) + W(v, w) + \operatorname{dist}(w, t_w)$ is remembered. Then mark the respective edges $\{v, w\}$ and the leaf-root-paths from v to t_v and w to t_w for inclusion in the Steiner Tree.)
- e) Conclude that the result is a 2-approximate Steiner Tree. What is the running time of the algorithm? (Hint: Recall Task 2 from Exercise 6.)

¹These are partial shortest-path trees rooted in each $t \in T$.

color in tree	RGB
1	(255, 255, 0)
2	(34, 139, 34)
3	(165, 42, 42)
5	(255, 0, 0)
20	(193, 255, 244)

- a) Determine the MST of the graph given in Figure 1! The edge weights are given in the table above, i.e., an edge labeled 1 has weight (255, 255, 0) (lexicographical order).
- b) Color each MST edge according to its weight, reading it as an RGB code!
- c) Look for other Christmas trees in the computer science literature! (Hint: xkcd.)
- d) Have a Merry Christmas and a Happy New Year!

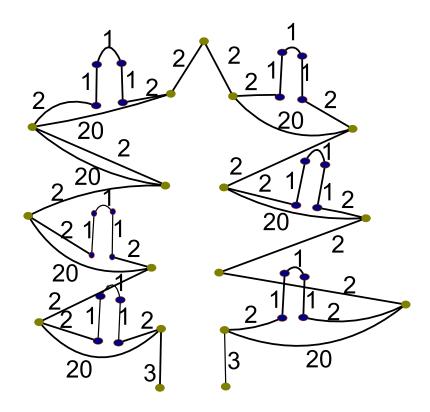


Figure 1: Poorly disguised Christmas Tree.