Exercise 2: Flirting with Synchrony and Asynchrony

Task 1: Growing Balls

Denote by B(v,r) the ball of radius r around v, i.e., $B(v,r) = \{u \in V : \operatorname{dist}(u,v) \leq r\}$. Consider the following partitioning algorithm.

Algorithm 1 Cluster construction. $\rho \geq 2$ is a given parameter.

```
1: while there are unprocessed nodes do
2: select an arbitrary unprocessed node v;
3: r := 0;
4: while |B(v, r + 1)| > \rho |B(v, r)| do
5: r := r + 1
6: end while
7: makeCluster(B(v, r)) // all nodes in B(v, r) are now processed
8: remove all cluster nodes from the current graph
9: end while
10: select intercluster edges
```

- a) Show that Algorithm 1 constructs clusters of radius at most $\log_{\rho} n$.
- b) Show that Algorithm 1 produces at most ρn intercluster edges.
- c) For $k \in \{1, ..., \lceil \log n \rceil \}$, determine an appropriate choice $\rho(k)$ and use it to prove Corollary 2.14!

Task 2: Showing Dijkstra, and Bellman & Ford the Ropes

- a) Show that if the asynchronous Bellman-Ford algorithm from the lecture is executed synchronously, it sends only $\mathcal{O}(|E|)$ messages.
- b) Use this to construct an asynchronous BFS tree construction algorithm of time complexity $\mathcal{O}(D)$ that uses $\mathcal{O}(|E|D)$ messages and terminates. You may assume that D is known here.
- c) Can you give an asynchronous Bellmann-Ford-based algorithm that sends $\mathcal{O}(|E| + nD)$ messages and runs for $\mathcal{O}(D^2)$ rounds? (Hint: Either answer is feasible, provided it is backed up by appropriate reasoning!)

Task 3*: Liaison with Leslie Lamport

- a) Look up what Lamport causality, Lamport clocks, and Lamport vector clocks are.
- b) Contemplate their relation to synchronizers and what you've learned in the lecture.
- c) Discuss your findings in the exercise session!