
Karl Bringmann, Erik Jan van Leeuwen Winter 2016/2017

Exercises for Algorithms and Data Structures
http://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter16/

algorithms-and-data-structures/

Exercise Sheet 3 Due: 14.11.2016

The homework must be handed in on Monday before the lecture. You may collaborate with other
students on finding the solutions for this problem set, but every student must hand in a writeup
in their own words. We also expect you to state your collaborators and sources (books, papers,
course notes, web pages, etc.) that you used to arrive at your solutions.

You need to collect at least 50% of all points on the first six exercise sheets, and at least 50%
of all points on the remaining exercise sheets.

Whenever you are asked to design an algorithm in this exercise sheet you have to give a proof
of its correctness as well as an asymptotic upper bound on its worst case running time.

Exercise 1 (10 points)

Let X = {x1 < x2 < . . . < xn} be n keys and consider a randomized search tree T for X.

a) Consider the node for xk in T for some k with 1 ≤ k ≤ n. What is the expected size of
the subtree rooted at that node?

b) What is the probability that the number of ancestors in T of the node for x1 is n?

c) What is the probability that the number of descendants in T of the node for x1 is n?

Exercise 2 (10 points)

When using randomized search trees it is assumed that the user cannot observe the random
priorities that are used in the treap. Show that if the random priorities in a randomized search
tree were observable, then a malicious user could make randomized search trees perform badly:
For instance, he could generate a sequence of Θ(n) insertions, deletions, and lookups, starting
with an initially empty treap that takes Ω(n

√
n) time instead of the expected O(n log n).

Exercise 3 (10 points)

In the lecture you saw how to use the function rand(N), that returns a random integer between
1 and N , to choose a pivot element during the execution of Quicksort. In this exercise we



want to investigate how we can implement rand(N), if we can call rand() only with restricted
parameters larger or smaller than N .

a) Show how to simulate a 12 sided dice using a 20 sided dice with only a constant number
of dice rolls in expectation.

b) Let M be a natural number much larger than 12. Show how to simulate a 12 sided dice
using a M sided dice with only a constant number of dice rolls in expectation.

c) Let N1 and N2 be two positive integers and N1 ≤ N2. Show how to implement rand(N1)
using rand(N2) in expected constant time.

c) Let
√
N1 ≤ N2 ≤ N1. Show how to implement rand(N1) using rand(N2) in expected

constant time.

Exercise 4 (10 points)

The university will open a new hallway with n desks for students to study at. Each desk
i = 1, . . . , n has a laptop stand, situated at distance di from the start of the hallway (You can
think of the hallway as a line segment). The university intends to provide wifi-service in the
hallway by hanging access points in the hallway. Each access point provides wireless service to
any laptop stand within distance R of the spot where that access point is placed.

Give a greedy algorithm that determines the smallest number of access points needed to provide
wireless service to each laptop stand. Your algorithm should also return the locations where
these access points must be hung. You may assume that all numbers are integers.


