
Lecture 3

Impossibility of Consensus

In the previous lecture, we saw that it is possible to simulate synchronous algo-
rithms in asynchronous systems. Today, we will see that a basic fault-tolerance
task, consensus, is unsolvable in asynchronous systems. In the exercises, we
will see that consensus is straightforward in synchronous systems, separating
synchronous and asynchronous systems beyond differences in efficiency.

3.1 The Problem

A standard formulation of the (binary) consensus problem is given as follows.
Each of n nodes is given a binary input bi, i ∈ {1, . . . , n}. Nodes may crash
during the execution. A node that crashes is faulty, while nodes that do not
crash are correct. Correct nodes i ∈ [n] are to compute an output oi such that
the following properties hold.

Agreement Correct nodes i output the same value o = oi.

Validity If all nodes have the same input b, then o = b.

Termination All correct nodes decide on an output and terminate.

Being able to solve this problem can, e.g., be useful for control of a plane. For
safety reasons, there are several computers in case some of them fail. Suppose
they need to decide between two possible courses for the plane, at least one of
which is safe. If the computers each compute an opinion bi based on the data
they have, you surely want the decision to satisfy all three properties:

Validity If the data clearly prefers one route over the other, this decision should
be taken! Otherwise: plane crash.

Agreement Some decision must be taken even if the data is inconclusive (the
computers compute different values bi). The plane must take one of the
two routes! Otherwise: plane crash.

Termination This decision must be taken at some point. In fact, probably
soon, which is why the time complexity of consensus algorithms is impor-
tant, too! Otherwise: plane crash.
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Figure 3.1: This is not supposed to happen!

Note that this problem is a no-brainer in absence of faults. Just pick a leader
(e.g., the node with smallest identifier) and decide on its input! But what if
this node crashes? In a synchronous system someone will notice, but in an
asynchronous system there is no way to be sure that it’s not just a bad case of
excruciatingly slow message delivery. . .

We need to specify the model in which we want to consider the problem. We
will use a model that is stronger than the message passing model (we will see
later why), the asynchronous shared memory model. Here, there is some com-
mon memory accessible by all n nodes that is used to communicate. Nodes read
and write registers of this memory atomically. This means that nodes read the
entire register in one go or (over)write the content of a register without anyone
else interfering. For convenience, we assume that all registers are initialized with
a special symbol ⊥. The catch now is that a scheduler decides who’s next – and
since we’re talking asynchrony here, it is under no obligation regarding which
other nodes it schedules (and how often) before it picks a specific node that
wants to read or write. However, it is required to schedule non-crashed nodes
eventually. Any node that intends to read or write is scheduled (or crashes)
after finitely many steps. This property is called fairness. The scheduler may
also decide to crash a node, simply meaning that it will not be scheduled again.

As usual, nodes have unique identifiers, initially know their input value only,
and local compuations are “free.” It’s convenient to assume that a node per-
forms all its initial local computations and those after a read/write instanta-
neously. Thus, a node is always either waiting to perform a read or write
operation, is crashed, or is terminated; local termination occurs when a node
decides at the end of a step that it’s done and outputs a value.
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Figure 3.2: Sample execution of shared memory system with 3 nodes and
2 shared registers. The depicted execution is (b1 = 0, b2 = 1, b3 =
0,write1(R1, 12), term1, read2(R2), crash3). The currently executed operation
is marked red, gray operations are already executed and black operations are
currently outstanding.
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Remarks:

• Dropping any of the requirements of agreement, validity, or termination
renders the problem trivial. Think of the respective “solutions!”

• Observe that fairness basically means that it’s not ok to crash a node
without saying so. This is relevant because a crashed node does not have
to decide or, if it already decided, have the same output as others.

• With fairness, one can define asynchronous rounds like for message pass-
ing: within one time unit, each node is guaranteed to be scheduled at least
once.

• We assume the powerful shared memory communication and benign faults
(there’s much worse than clean crashes out there, but that’s a tale for
another day!). This makes the impossibility we will show a strong result.

• On the other hand, we consider asynchronous communication and deter-
ministic algorithms, so do not despair!

3.2 Getting Started

Today’s main result was surprising and a big deal when it was shown first. It
was surprising both because it’s not easy to show and because quite a few people
believed that asynchronous consensus is possible. It will be much easier for us,
and that’s because the right definitions will point us in the right direction.1

Definition 3.1 (Executions). An execution of an algorithm is given by a se-
quence of read and write operations, crashes, and terminations, alongside the
initial inputs given to the nodes; naturally, the decision whether a node termi-
nates, reads, or writes (and if so what) in its next step is made by the algorithm.

Note that, since we require that all nodes that do not crash must terminate,
all executions that are relevant to us are of finite length. Also, as stated earlier,
we will consider fair executions only.

We now can state the main result.

Theorem 3.2 (FLP (Fischer, Lynch & Patterson)). There is no algorithm that
solves the consensus problem in all fair executions with at most one fault.

As mentioned, good definitions are pivotal. We will need two key concepts.
The first is called indistinguishability. Note that while Definition 3.1 is about
the entire network, the following definition is about how an execution looks like
at a specific node:

Definition 3.3 (Indistinguishable Executions). Two executions are indistin-
guishable at node i, iff in both executions i has the same input, performs the
same sequence of read and write operations, and all the read operations return
the same values in both executions.

1The professor of one of my math courses once said that definitions are even more important
than theorems, because the right definition tells us how to look at things and paves the way
for the big results.
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If two executions are indistinguishable at node i, it must behave the same
way in both executions.

Lemma 3.4. If two executions are indistinguishable at node i, the write oper-
ations of i in both executions are identical. If it terminated, the output values
are identical. If it hasn’t terminated yet, its next action is the same in both
executions.

Proof. By induction, the memory state of and values written by i are the same
in the respective steps of each execution. Hence i’s output value or next step,
respectively, is also the same.

The second definition looks even simpler.

Definition 3.5 (Bivalency and Univalency). For b ∈ {0, 1}, an execution of
a consensus algorithm is b-valent, if any possible continuation of the execution
results in output b. It is univalent, if it is b-valent for some b. Otherwise, it is
bivalent.

Combining these two notions, we obtain a crucial observation that will be
at the heart of our reasoning.

Corollary 3.6. If two executions are indistinguishable at all non-crashed nodes
and each shared register contains the same value at their end, they have the
same valency (i.e., both are 0-, both are 1-, or both are bivalent).

Proof. By (inductive use of) Lemma 3.4, any extension of one execution is
also a valid extension of the other, and the result will be two indistinguishable
executions: every read operation will return the same value in both executions.
Thus, outputs in such a pair of executions must be identical. Now the claim
readily follows from the definition of bi- and univalency.

Here’s the plan:

1. Show that there are bivalent executions or validity is violated.

(a) If validity holds, use it to show that there are 0- and 1-valent execu-
tions.

(b) Infer that there must be a configuration for which one node’s input
makes the difference.

(c) Conclude that crashing/not crashing the node must result in different
outputs in some execution.

2. For any node i, show that we can extend any bivalent execution to another
bivalent execution such that i takes another step; alternatively, there is
an execution violating agreement.

(a) For a bivalent execution that has no bivalent extension with another
step of i, there are 0- and 1-valent extensions involving another step
of i.

(b) Infer that there must be a configuration for which swapping the steps
of nodes i and some j 6= i makes the difference between 0- and 1-
valency.
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(c) Perform a case analysis proving that agreement is violated in some
execution (using Lemma 3.4, Corollary 3.6, and the 0-/1-valency of
the extensions).

3. Conclude that if agreement and validity hold, an infinite fair execution
exists (i.e., termination does not hold).

As you can see, many of the above statements require that some of the
properties of a consensus algorithm hold. For simplicity, we will assume that
we have an algorithm solving consensus and ultimately derive a contradiction.
Apart from this, the structure of the proof remains exactly as outlined above.

3.3 Step 1: Bivalent Executions Exist

In the following, let A be a consensus algorithm, i.e., one that satisfies agree-
ment, validity, and termination. First, we use validity to show that there must
be at least one bivalent execution.

Lemma 3.7. A has a bivalent execution without crashes.

Proof. For j ∈ [n + 1], consider the execution Ej that’s simply given by the
inputs bi = 0 for all i > j and bi = 1 for i ≤ j (i.e., nothing has happened
yet except for the inputs being specified). If any of these executions is bivalent,
we’re done, so let’s suppose for contradiction that they are all univalent.

If j = 0, bi = 0 for all i ∈ {1, . . . , n}, and validity implies that the output is
0. Likewise, the execution with j = n is 1-valent. Hence, there must be some
j ∈ [n] such that Ej is 0-valent and Ej+1 is 1-valent. Since nothing has happened
yet, both executions are indistinguishable to all nodes but j, which has different
input in both executions. Thus, crashing j yields two executions of different
valency that are indistinguishable at all non-crashed nodes, where the shared
registers haven’t been touched yet. This contradicts Corollary 3.6!

Remarks:

• We used the possibility of a fault to show that there is a bivalent execu-
tion. However, we didn’t “use up” the fault, we have a fault-free bivalent
execution!

3.4 Step 2: Extending Bivalent Executions

Next, we show that, given a bivalent execution and a node i, a “follow-up”
execution exists that is also bivalent and in which i performs a step. This last
bit is crucial, because it ensures that a bivalent execution can be “kept bivalent”
even in a fair schedule.

We start with a helper lemma ensuring that we can extend a bivalent exe-
cution to force either decision without crashing a node.

Lemma 3.8. Given a bivalent execution E of A and b ∈ {0, 1}, we can extend
E to a b-valent execution E ′ without any further crashes.
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Figure 3.3: Key argument of Lemma 3.7. Assuming that no bivalent execution
exists, validity implies that we can find a pair of “executions” (i.e., inputs) for
which only the input of a single node differs, but one execution is 1- and the
other 0-valent. Crashing this node, which is the only one knowing about the
difference, right away, yields a contradiction.

Proof. By definition of bivalency, there is some execution Eb extending E that
is b-valent. However, it might contain crashes. We extend Eb further to E ′b, in
which some node decides on b and terminates; this is feasible by termination of
A. Now we remove all crashes from E ′b, resulting in execution E ′. By Lemma 3.4
and the fact that the crashed nodes do not change the contents of registers in
either execution, the node still decides on b and terminates. Thus, E ′ must be
b-valent by agreement, and by construction it contains no further crashes.

Now we can proceed to extending (fault-free) bivalent executions in a way
keeping them bivalent (and fault-free).

Lemma 3.9. Given a bivalent execution E of A and a non-crashed node i ∈ [n],
we can construct a bivalent execution with an additional step of i. If E is fault-
free, so is the new execution.

Proof. Refer to Figure 3.4. Clearly, i cannot be terminated in E , as otherwise
the execution must be univalent by agreement. Let i take an additional step.
If the extended execution E0 is still bivalent, we’re done. Otherwise, assume
w.l.o.g. that E0 is 0-valent. Because E is bivalent, by Lemma 3.8 there is also
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Figure 3.4: By assumption there is no bivalent extension of E that contains an
additional step of node i. The switch from 0- to 1-valency happens between E`
and E`+1.

an extension of E that is 1-valent and contains no further crashes. Take such
an extension, denote by k the number of additional steps, and let Ek be this
extension plus an additional step of i.2 Note that Ek is 1-valent, as any extension
of a 1-valent execution is 1-valent. In summary, we have two extensions of E ,
both with a step of i at the end, and either 0 (E0) or k 6= 0 (Ek) intermediate
steps. E0 is 0-valent and Ek is 1-valent.

Next consider the executions E`, ` ∈ [k+1], which are E followed by the next
` steps that happen in Ek, and each of them with a final step of i (Figure 3.4). If
any of these are bivalent, we’re done. Otherwise, as we know that E0 is 0-valent
and Ek is 1-valent, there must be some ` ∈ [k] so that E` is 0-valent and E`+1 is
1-valent.

Suppose that j is the node that takes the final step before node i in execution
E`+1. Note that both executions are indistinguishable at all nodes but i and j,
and any difference must come from the final one or two steps. To complete the
proof, we go through all possible cases and lead each of them to a contradiction
with Corollary 3.6.

i = j: In this case, letting i take another step in E` results in E`+1. But one is
0- and the other is 1-valent. Contradiction!

j does not write: We crash j at the end of both E` and E`+1. The executions
are indistinguishable at all nodes but the crashed j, and i did the same
write (or read) in both executions, resulting in identical content of the
shared registers. However, one execution is 0- and the other 1-valent.
Contradiction!

i does not write: We let j take another step in E`, which is the same as the
one in E`+1; since i didn’t write, it is the only node that can distinguish
the two executions, and again the shared registers have identical contents
in both executions. Crashing i thus yields a contradiction.

2Again, as soon as i terminates, the execution must become univalent, so either i can still
take a step or i just terminated in the last step; in the latter case, we just use the execution
directly without adding a step of i.
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i and j write to different registers: We let j take its step in E` and obtain
an execution that is indistinguishable at all nodes. Since the two writes do
not interfere, the shared registers’ content is identical, too. One execution
is 0-, the other 1-valent. Contradiction!

i and j write to the same register: As i overwrites j’s write in E`+1, j is
the only node that can distinguish E` and E`+1, and the register contains
the value written by i at the end of both executions. Crashing j yields a
contradiction!

Since all possibilities lead to a contradiction, we must have had the situation
that we encountered a bivalent execution earlier on. Also, all the executions E`,
` ∈ [k + 1], contained at least one more step of i than E .

Remarks:

• This proof critically relies on the assumption that only a single register can
be written atomically. What happens if it’s possible to write concurrently
to several?

3.5 Step 3: Reaching Contradiction

All that remains is to wrap things up.

Proof of Theorem 3.2. Assume for contradiction that a consensus algorithm A
exists that tolerates a single fault, i.e., in all fair executions with at most one
crash agreement, validity, and termination hold. By Lemma 3.7, there is a bi-
valent execution of A without crashes. By Lemma 3.9, we can extend any such
execution to a bivalent execution without crashes that includes an additional
step of an arbitrary node i ∈ [n]. We apply the lemma inductively in a round-
robin fashion; in the kth step of the induction, we add a step of node k mod n.
The result is an infinite, fair, bivalent execution without crashes. This contra-
dicts the condition that the algorithm must terminate in all fair executions with
at most one crash!

3.6 How about Message Passing?

Fine, we can’t do it in this shared memory setting. But is consensus possible
in the asynchronous message passing model? At least for some graphs? To
answer this question, we need to specify what it means that a node crashes in
the message passing model.

Definition 3.10 (Crash Faults in the Message Passing Model). A node may
crash at any point in the execution, after which it does not respond to any further
events. It may also crash when responding to an event. In this case, it sends
an arbitrary subset of the messages it would send if it did not crash.

This definition takes into account that it’s virtually impossible to make sure
that a crashing node sends either everything or nothing – that would be very
similar to writing multiple registers atomically! Each individual message is
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sent and received “atomically,” which is justified since any message that is not
transmitted and received completely can simply be dropped.

It may not seem like it, but basically we already have the answer. We use a
simulation argument!

Lemma 3.11 (Simulation of Message Passing). If, for any simple graph G =
(V,E), an asynchronous message passing algorithm solving consensus with at
most one crash fault on G exists, then there is an asynchronous shared memory
algorithm on |V | nodes that solves consensus in all fair executions with at most
one fault.

Proof. We “translate” the message passing system to a shared memory system.
We use the same set of nodes. For each edge e = {v, w}, we add registers Rv,w,i
and Rw,v,i, i ∈ N, initialized to ⊥ (meaning not used). For each neighbor w, v
maintains two local counters sv,w and rv,w, the number of sent and received mes-
sages for this node, respectively (initially 0). We simulate the message passing
algorithm as follows. Initially, each node v performs its local computations and
decides on the messages to send. Then, for each neighbor w to which it sends
a message, it increases sv,w and writes the content of the message to Rv,w,sv,w .
Once this is complete, it executes a busy-wait. Cycling through its neighbors,
w, it keeps reading Rv,w,rv,w+1 until Rv,w,rv,w+1 6= ⊥ for some w. When this
happens, it executes the code of the asynchronous algorithm for reception of
a message with the content equal to that of Rv,w,rv,w+1 from w and increases
rv,w. Resulting messages are resolved as above and the busy-wait recommences
(unless the node terminates, of course).

It’s straightforward to see that each “sent message” is eventually “received”
(unless the receiving node terminates or crashes before this happens, which
is ok), and since the shared memory algorithm does the same computations
and “sends” the same messages, it will produce the same outputs as some corre-
sponding execution of the message passing algorithm. Thus, agreement, validity,
and termination of the shared memory version are inherited from the original
algorithm.

m1 m2 m3 ┴ 

sv,w = 3 

rw,v = 1 

v 

w 

Figure 3.5: Construction for simulation of a message passing algorithm in shared
memory. Depicted are only the registers for the edge {v, w} for the direction
from v to w. Node v will write each message to a new register using its local
counter sv,w. Node w will increase its counter rv,w whenever it reads a value
that is not ⊥, meaning it “received” the next message from v.
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This lemma extends the previous impossibility to the asynchronous message
passing model.

Corollary 3.12. There is no algorithm that solves the consensus problem in
the asynchronous message passing model with at most one crash fault.

Proof. If such an algorithm existed, by Lemma 3.11 there would also be an
algorithm solving consensus in all fair executions of the asynchronous shared
memory model with at most one crash fault. By Theorem 3.2, such an algorithm
does not exist.

Remarks:

• We’re doing something that might seem weird here. In the simulation, we
use infinitely many shared registers (as there can be an unbounded number
of messages under way in the message passing system), and these registers
have infinite size (as messages may be arbitrarily large). However, we’re
talking about an impossibility result here: Even with such an impossible-
to-build system, we still couldn’t solve the problem!

• Note also that the simulation will actually ensure FIFO (first-in-first-out)
order of message reception. Again, this makes the impossibility result only
stronger. Also if message delivery is guaranteed to happen in FIFO order,
the problem cannot be solved!

• Originally, the FLP theorem was shown for the message passing model.
Showing it for shared memory and then using a simulation argument as
done here is much simpler, yet we get the result for the more powerful
shared memory model along the way!

What to take Home

• Knowing that certain things cannot be done is really important, as it keeps
us from trying to do these things.

• Actually, it will not really keep us from trying, as it’s important to solve
these problems. However, such results show where one can change the
model (i.e., add some helpful, hopefully realizable assumptions), so that
they become solvable.

• Finding the right definitions can be the most important part of the job.

• Simulation arguments are also very powerful tools for lower bounds. FLP
is a great example for this, as it’s much easier to prove the result for
shared memory and transfer it to message passing than taking the message
passing model head on!

Bibliographic notes

Fischer, Lynch, and Patterson showed the original theorem about message pass-
ing systems, in a model slightly, but insubstantially different from the asyn-
chronous message passing model given in Lecture 2 [FLP85]. Loui and Abu-
Amara [LAA87] extended the result to the shared memory setting; strictly
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speaking, Theorem 3.2 is to be attributed to them, but Fischer, Lynch, and
Patterson developed the underlying technique. Later it was discovered that the
impossibility of consensus and generalizations can be shown using topological
tools [HS99].
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