
Appendix A

Notation and Preliminaries

This appendix sums up important notation, definitions, and key lemmas that
are not the main focus of the lecture.

A.1 Numbers and Sets

In this lecture, zero is not a natural number: 0 /∈ N; we just write N0 := N∪{0}
whenever we need it. Z denotes the integers, Q the rational numbers, and R
the real numbers. We use R+ = {x ∈ R | x > 0} and R+

0 = {x ∈ R | x ≥ 0},
with similar notation for Z and Q.

Rounding down x ∈ R is denoted by bxc := max{z ∈ Z | z ≤ x} and
rounding up by dxe := min{z ∈ Z | z ≥ x}.

For n ∈ N0, we define [n] := {0, . . . , n − 1}, and for a set M and k ∈ N0,(
M
k

)
:= {N ⊆ M | |N | = k} is the set of all subsets of M that contain exactly

k elements.

A.2 Graphs

A finite set of vertices, also referred to as nodes V together with edges E ⊆
(
V
2

)
defines a graph G = (V,E). Unless specified otherwise, G has n = |V | vertices
and m = |E| edges. Since edges are sets of exactly two vertices e = {v, w} ⊆
V ,1 our graphs have no loops, are undirected and have no parallel edges. This
definition does not include edge weights, either. All of this together is equivalent
of saying that we deal with simple graphs.

If e = {v, w} ∈ E, the vertices v and w are adjacent, and e is incident to v
and w, furthermore, e′ ∈ E is adjacent to e if e ∩ e′ 6= ∅. The neighboorhood of
v is

Nv := {w ∈ V | {v, w} ∈ E}, (A.1)

i.e., the set of vertices adjacent to v. The degree of v is

δv := |Nv|, (A.2)

1Still, we occasionally write edges as tuples: e = (v, w).

163

164 APPENDIX A. NOTATION AND PRELIMINARIES

the size of v’s neighborhood. We denote by

∆ := max
v∈V

δv (A.3)

the maximum degree in G.
A v1-vd-path p is a set of edges p = {{v1, v2}, {v2, v3}, . . . , {vd−1, vd}} such

that |{e ∈ p | v ∈ e}| ≤ 2 for all v ∈ V . p has |p| hops, and we call p a cycle if
it visits all of its nodes exactly twice. The distance between v, w ∈ V is

dist(v, w) := min{|p| | p is a v-w-path}, (A.4)

which gives rise to the diameter D of G,

D := max
v,w∈V

dist(v, w), (A.5)

the maximum pairwise distance between nodes.

A.2.1 Weighted Graphs

A weighted graph is a graph (V,E) together with weighting function W : E → R;
we write G = (V,E,W). An edge e ∈ E has weight W (e), and an edge set
E′ ⊆ E has weight W (E′) :=

∑
e∈E′W (e). Observe that since paths are sets of

edges, this definition captures the weight of a path p: W (p) =
∑
e∈pW (e).

In weighted graphs, distances are more complex than in simple graphs, be-
cause there are several measures: the smallest weight of a path, and the number
of hops. The distance between v, w ∈ V is the weight of a shortest v-w-path

dist(v, w) := min{W (p) | p is a v-w-path}, (A.6)

and the hop distance is the smallest number of hops required to attain a shortest
v-w-path is

hop(v, w) := min{|p| | p is v-w-path ∧W (p) = dist(v, w)}. (A.7)

Note that shortest paths can be very long in terms of hops, even if there is some
(non-shortest) path with few hops: Even if {v, w} ∈ E, hop(v, w) = n−1 is still
possible (think about a circle with one heavy and n− 1 light edges).

A.2.2 Trees and Forests

A forest is a cycle-free graph, and a tree is a connected forest. Trees have n− 1
edges and a unique path between any pair of vertices. The tree T = (V,E) is
rooted if it has a designated root node r ∈ V ; in which case it has a depth d

d := max
v∈V

dist(r, v), (A.8)

which is the maximum distance from any node to the root node.

A.2.3 Cuts

Given a graph G = (V,E) and distinct vertices s, t ∈ V , an s-t cut is a non-
trivial partition of the vertices Vs ∪̇ Vt = V , such that s ∈ Vs and t ∈ Vt. The
weight of the cut is |E ∩ (Vs × Vt)|, i.e., the number of the edges connecting a
vertex in Vs with to a vertex in Vt (in a weighted graph, the weight of the cut
is the sum of those edges’ weights). Alternatively, cuts can be represented as
only the set Vs (Vt = V \ Vs), or as the edge set E ∩ (Vs × Vt).

A.3. LOGARITHMS AND EXPONENTIATION 165

A.3 Logarithms and Exponentiation

Logarithms are base 2 logarithms, unless specified otherwise. Iterated exponen-
tiation is denoted by ab, which is the a-fold (a ∈ N0) exponentiation of b:

ab :=

{
1 if a = 0

b(
a−1b) otherwise.

(A.9)

This is commonly referred to as power tower a2 = 22·
··
2

. log∗b x answers the
inverse question of how often the logarithm has to be iteratively applied to end
up with a result of at most 1:

log∗b x :=

{
0 if x ≤ 1

1 + log∗b(logb x) otherwise.
(A.10)

A simple inductive check confirms log∗b
ab = a.

A.4 Probability Theory

We use some basic tools from probability theory in order to analyze randomized
algorithms. The first of these tools states that the probability that all of k
events occur is bounded by the sum of the individual events’ probabilities.

Theorem A.1 (Union Bound). Let Ei, i ∈ [k] be events. Then

P

 ⋃
i∈[k]

Ei

 ≤∑
i∈[k]

pi, (A.11)

which is tight if E[k] are disjoint.

Another key property is that expactation is compatible with summation:

Theorem A.2 (Linearity of Expectation). Let Xi for i ∈ [k] denote random
variables. Then

E

∑
i∈[k]

Xi

 =
∑
i∈[k]

E[Xi]. (A.12)

Markov’s inequality and Chernoff’s bound both bound the probability that
a random variable attains a very different value from its expected value. The
preconditions for Markov’s inequality are much weaker than those for Chernoff’s
bound, but the latter is stronger than the former.

Theorem A.3 (Markov’s Inequality). Let X be a positive random variable (in
fact, P [X ≥ 0] = 1 and P [X = 0] < 1 suffice). Then for any K > 1,

P [X ≥ KE[X]] ≤ 1

K
. (A.13)

166 APPENDIX A. NOTATION AND PRELIMINARIES

Theorem A.4 (Chernoff’s Bound). Let X =
∑
i∈[k]Xi be the sum of k indepen-

dent Bernoulli variables (i.e., 0-1-variables). Then we have, for any 0 < δ ≤ 1,

P [X ≥ (1 + δ)E[X]] ≤ e−δ2E[X]/3, and (A.14)

P [X ≤ (1− δ)E[X]] ≤ e−δ2E[X]/2. (A.15)

The concept of something happending with high probability (w.h.p.), i.e.,
with proability at least 1 − n−c, is the following. First, the larger your input
n, the larger the probability that the event occurs. Second, c can be picked at
will, meaning that the probabilities can be picked as close to 1 as desired. This
is useful for randomized algorithms. Suppose you have a randomized algorithm
A that succeeds with probability p. If you want to use A several times (e.g.
to construct a new algorithm) the probability that all of these calls succeed
decreases. But if each call of A succeeds w.h.p. and there only are polynomially
many of them, you can use the union bound and pick a large enough c to show
that all calls of A succeed w.h.p. as well.

Definition A.5 (With high Probability). The event E occurs with high prob-
ability (w.h.p.) if P [E] ≥ 1− 1/nc for any fixed choice of 1 ≤ c ∈ R. Note that
c typically is considered a constant in terms of the O-notation.

A.5 Asymptotic Notation

We require asymptotic notation to reason about the complexity of algorithms.
This section is adapted from Chapter 3 of Cormen et al. [CLR90]. Let f, g : N0 →
R be functions.

A.5.1 Definitions

O(g(n)) is the set containing all functions f that are bounded from above by
cg(n) for some constant c > 0 and for all sufficiently large n, i.e. f(n) is asymp-
totically bounded from above by g(n).

O(g(n)) := {f(n) | ∃c ∈ R+, n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ f(n) ≤ cg(n)}
(A.16)

The counterpart of O(g(n)) is Ω(g(n)), the set of functions asymptotically
bounded from below by g(n), again up to a postive scalar and for sufficiently
large n:

Ω(g(n)) := {f(n) | ∃c ∈ R+, n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ cg(n) ≤ f(n)}
(A.17)

If f(n) is bounded from below by c1g(n) and from above by c2g(n) for positive
scalars c1 and c2 and sufficiently large n, it belongs to the set Θ(g(n)); in this
case g(n) is an asymptotically tight bound for f(n). It is easy to check that
Θ(g(n)) is the intersection of O(g(n)) and Ω(g(n)).

Θ(g(n)) := {f(n) | ∃c1, c2 ∈ R+, n0 ∈ N0 : ∀n ≥ n0 :

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)} (A.18)

f(n) ∈ Θ(g(n)) ⇔ f ∈ (O(g(n)) ∩ Ω(g(n))) (A.19)

A.5. ASYMPTOTIC NOTATION 167

For example, n ∈ O(n2) but n /∈ Ω(n2) and thus n /∈ Θ(n2).2 But 3n2−n+ 5 ∈
O(n2), 3n2 − n + 5 ∈ Ω(n2), and thus 3n2 − n + 5 ∈ Θ(n2) for c1 = 1, c2 = 3,
and n0 = 4.

In order to express that an asymptotic bound is not tight, we require o(g(n))
and ω(g(n)). f(n) ∈ o(g(n)) means that for any postitive constant c, f(n) is
strictly smaller than cg(n) for sufficiently large n.

o(g(n)) := {f(n) | ∀c ∈ R+ : ∃n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ f(n) < cg(n)} (A.20)

As an example, consider 1
n . For arbitrary c ∈ R+, 1

n < c we have that for all
n ≥ 1

c + 1, so 1
n ∈ o(1). A similar concept exists for lower bounds that are not

asymptotically tight; f(n) ∈ ω(g(n)) if for any positive scalar c, cg(n) < f(n)
as soon as n is large enough.

ω(g(n)) := {f(n) | ∀c ∈ R+ : ∃n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ cg(n) < f(n)} (A.21)

f(n) ∈ ω(g(n)) ⇔ g(n) ∈ o(f(n)) (A.22)

A.5.2 Properties

We list some useful properties of asymptotic notation, all taken from Chap-
ter 3 of Cormen et al. [CLR90]. The statements in this subsection hold for all
f, g, h : N0 → R.

Transitivity

f(n) ∈ O(g(n)) ∧ g(n) ∈ O(h(n)) ⇒ f(n) ∈ O(h(n)), (A.23)

f(n) ∈ Ω(g(n)) ∧ g(n) ∈ Ω(h(n)) ⇒ f(n) ∈ Ω(h(n)), (A.24)

f(n) ∈ Θ(g(n)) ∧ g(n) ∈ Θ(h(n)) ⇒ f(n) ∈ Θ(h(n)), (A.25)

f(n) ∈ o(g(n)) ∧ g(n) ∈ o(h(n)) ⇒ f(n) ∈ o(h(n)), and (A.26)

f(n) ∈ ω(g(n)) ∧ g(n) ∈ ω(h(n)) ⇒ f(n) ∈ ω(h(n)). (A.27)

Reflexivity

f(n) ∈ O(f(n)), (A.28)

f(n) ∈ Ω(f(n)), and (A.29)

f(n) ∈ Θ(f(n)). (A.30)

Symmetry

f(n) ∈ Θ(g(n)) ⇔ g(n) ∈ Θ(f(n)). (A.31)

Transpose Symmetry

f(n) ∈ O(g(n)) ⇔ g(n) ∈ Ω(f(n)), and (A.32)

f(n) ∈ o(g(n)) ⇔ g(n) ∈ ω(f(n)). (A.33)

2We write f(n) ∈ O(g(n)) unlike some authors who, by abuse of notation, write f(n) =
O(g(n)). f(n) ∈ O(g(n)) emphasizes that we are dealing with sets of functions.

168 APPENDIX A. NOTATION AND PRELIMINARIES

Bibliography

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms. The MIT Press, Cambridge, MA, 1990.

