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Exercise Sheet 5 Due: Tuesday, January 9, 2018

Total points : 40 + 5 bonus points

You are allowed to collaborate on the exercise sheets, but you have to write down a solution on
your own, using your own words. Please indicate the names of your collaborators for each
exercise you solve. Further, cite all external sources that you use (books, websites, research
papers, etc.).

You need to collect at least 50% of all points on exercise sheets.

Exercise 1 (10 points) Recall the ZeroTriangle problem from the last exercise sheet and the
lecture:

ZeroTriangle: Given a weighted directed graph G = (V, E,w), |V| = n with edge weights
w:E— {—n° ..., n} (for some ¢ > 0), determine if there are three vertices i, j, k such that
w(i, j) +w(j, k) +w(k,i) = 0 holds.

Recall that in the lecture, we proved a tight reduction from 3SUM to ZeroTriangle.

Now, prove that there is a (non-tight) fine-grained reduction in the other direction, from Zero—
Weight Triangle to 3SUM, i.e., prove

(ZeroTriangle, n*) <;,, (3SUM, n'?).
(Note that we prove only a lower bound of n'*>=°M  instead of n>=°Y), for 3SUM here.)

Exercise 2 (10 points) Recall the k—Clique problem from the lecture:

k—Clique: Given an undirected, unweighted graph GG, determine whether GG contains a k—clique
(i.e., a set of k vertices which are pairwise adjacent).

Show that if 3 | k, then k—Clique can be solved in time O(n'% ).
What running time can you obtain when 3 { k7

Note: This is the best running time known for this problem.
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Exercise 3 (10 points) In the lecture we proved a subcubic reduction from All-Pairs Neg-
ative Triangle to Negative Triangle. Adapt this reduction to obtain a “combinatorial”
subcubic reduction from All-Pairs Triangle to Triangle, i.e. prove

(All-Pairs Triangle,n®) <;,, (Triangle, n®).

Why does this reduction not prove an n“~°1) lower bound for Triangle under the BMM
hypothesis?

Exercise 4 (15 points) Consider the following problem on directed acyclic graphs (DAGs):

All-Pairs Lowest Common Ancestor in DAGs (DAG-AP-LCA): Given a DAG
G = (V, E), determine for all vertices i,j € V' any lowest common ancestor v € V.

Here, a vertex u € V' is a common ancestor of the vertices ¢ and j if there is a path in G from
u to i and from wu to j (i.e., ¢ and j are descendants of u). The vertex w is a lowest common
ancestor of the vertices ¢ and j if no descendant of u is a common ancestor of i and j.

Note that in DAGs (as opposed to trees), the vertices ¢ and j might have more than one lowest
common ancestor. (In this case, the problem just asks for any lowest common ancestor.)

a) (3 points) Show that DAG—AP-LCA has no algorithm running in time O(n“~¢) (and
no “combinatorial” algorithm running in time O(n3 ¢)) for any € > 0, unless the BMM
hypothesis fails.

This lower bound suggests that to obtain strongly subcubic algorithms, we should use “non-
combinatorial” tools, i.e., fast matrix multiplication. Indeed, we will see how to do this in the
remaining parts of this exercise.

We will use the following intermediate problem:

BMM-MaxWitness: Given Boolean matrices A = (a;;), B = (b;;) € {0,1}"*", determine for
all 1 < 4,7 < n the maximum index k such that a;, = by; = 1 if such a k exists (and L
otherwise).

b) (3 points) Show that the transitive closure of a graph G can be computed using O(log(n))
Boolean matrix multiplications.

¢) (4 points) Prove that there is a (subcubic) fine-grained reduction from DAG-AP-LCA
to BMM—-MaxW.itness, i.e., prove

(DAG-AP-LCA,n?%) <;,, (BMM-MaxWitness, n’).
(Hint: Use a topological sort and part b).)
d) (5 points) Solve BMM—-MaxWitness in subcubic time.

(Hint: Use (rectangular) matriz multiplication on suitably-sized subproblems.)

In total, this yields a strongly subcubic time algorithm for DAG—-AP—-LCA.



