SAARLAND

iIfl p J oo plenckinsiit UNIVERSITY

COMPUTER SCIENCE

Karl Bringmann and Marvin Kiinnemann Winter 2017/18

Exercises for Fine-Grained Complexity Theory
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter17/fine-complexity/

Exercise Sheet 7 (Exam Preparation Sheet) Due: Someday in the Rain

Total points : 20 bonus points

You are allowed to collaborate on the exercise sheets, but you have to write down a solution on your
own, using your own words. Please indicate the names of your collaborators for each exercise you
solve. Further, cite all external sources that you use (books, websites, research papers, etc.).

You need to collect at least 50% of all points on exercise sheets. The points on this exercise sheet are
bonus points in case you did not collect a sufficient number of points on the reqular exercise sheets. In
that case only, you may submit your solutions to Philip directly.

Exercise 1 (9 bonus points) For each of the following problems, determine whether it can be
solved in strongly subquadratic time (i.e. in time O(n*~¢) for some & > 0).

Prove your claims by giving either an algorithm running in strongly subquadratic time or a
hardness proof that rules out such an algorithm under some conjecture discussed in the course.

a) (8 bonus points) Longest Palindrome Subsequence: Given a string S of length n,
find the longest subsequence that is a palindrome (i.e., a sequence of characters which
reads the same backwards and forwards).

b) (3 bonus points) Non-Dominating Vectors (Constant Dimension): Given a set
A C 74 of n integer vectors, d = O(1), compute the set A’ C A of non-dominated vectors.
(A vector a € A dominates another vector o’ € A if a; > a} for all 1 <i < d and a # d'.)

¢) (3 bonus points) Non-Dominating Vectors (Low Dimension): Given a set A C Z4
of n integer vectors, d = log® n, compute the set A’ C A of non-dominated vectors.

Exercise 2 (6 bonus points) The Minimum Consecutive Sums Problem is defined as
follows:

MCSP: Given n integers x1, o, ..., x,, determine for any 1 < k < n the minimal sum of any
k consecutive of these integers, i.e., compute for any 1 < k£ < n the number

min{z; + ...+ g1 | 1 <i<n—k+1}.

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter17/fine-complexity/

Prove that (min,+)—Convolution and MICSP are equivalent in the following sense:

(MCSP,n?) <, ((min,+)—Convolution, n*) <;,. (MCSP,n?).

Exercise 3 (5 bonus points) From your algorithms classes you may know the problem of
finding a string P (often called pattern) in another string 7' (often called text). This well-
known problem is often called Pattern Matching, there are algorithms for this problem that
run in time O(|P| + |T))*.

Instead of finding a single pattern string P, we are now interested in finding any substring of T
that can be generated by a given reqular expression. Formally, consider the following problem:

RegExPatternMatching: Given a regular expression R of size m, and a text T' of size n,
determine if any substring P of T' can be derived from R.

In general, there is no algorithm running in time O((mn)'~¢) (for any £ > 0) for RegExPat-
ternMatching unless OVH fails. However, for specific classes of regular expressions, there
are faster algorithms to solve this problem. Consider homogeneous reqular expressions:

A regular expression R is called homogeneous of type “0109...0,” (where o; € {o,*,+,|}) if
there exist a4, ..., a,, characters or homogeneous regular expressions of type os ... 0;, such that
R = 01(&1, c. ,ap).

For example, the regular expression [(a o bo ¢)|b]|(a o b)]* is homogeneous of type “x|o”, the
regular expression (a*) | (b") is not homogeneous.

a) (1 bonus point) Give an O(m + n) time algorithm for RegExPatternMatching where
the regular expression is homogeneous of type “o” or of type “xo”.

b) (4 bonus points) Prove that there is no O((mn)'~¢) algorithm (for any € > 0) for Reg-
ExPatternMatching where the regular expression is homogeneous of type “| o | unless
OVH fails.

Prove the same result for homogeneous regular expressions of type “| o x”.

1See for example Knuth, Morris, and Pratt’s algorithm.

