
Lecture 6

Minimum Spanning Trees

In this lecture, we study another classic graph problem from the distributed
point of view: minimum spanning tree construction.

Definition 6.1 (Minimum Spanning Tree (MST)). Given a simple weighted
connected graph G = (V,E,W), W : E → {1, . . . , nO(1)}, a minimum spanning
tree T ⊆ E minimizes

∑
e∈tW (e) among all spanning trees of G. Here spanning

means that all nodes are connected by the respective edge set.

Our goal today is to develop efficient MST algorithms in the Congest
model, on an arbitrary simple weighted connected graph G. The Congest
model is identical to the synchronous message passing model, but with the ad-
ditional restriction that O(log n) bits are sent in each round along each edge.

Remarks:

• In the Congest model (for a connected graph), essentially every problem
can be solved in O(|E|) rounds by collecting and distributing to all nodes
the entire topology, and then having each node solve the problem at hand
locally.

• Initially nodes know the weights of their incident edges. In the end, nodes
need to know which of their incident edges are in the MST.

• If you’re wondering about the weird constraint on the range of the weight
function: This is so we can encode an edge weight in a message. Fractional
edge weights are fine; we simply multiply all weights by the smallest num-
ber that is an integer multiple of the denominators of all fractions (where
w.l.o.g. we assume that all fractions are reduced).

• One can handle weights with range 1, . . . , 2n
O(1)

by rounding up to the
next integer power of 1 + ε for ε > n−O(1). Then an edge weight can be
encoded with⌈

log log1+ε 2n
O(1)
⌉

= log

(
nO(1)

log(1 + ε)

)
⊆ O

(
log n+ log

1

ε

)
= O(log n)

bits as well. However, then we will get only (1+ε)-approximate solutions.

73

74 LECTURE 6. MINIMUM SPANNING TREES

6.1 MST is a Global Problem

Recall that in the message passing model without restrictions on message size,
an r-round algorithm is some mapping from r-neighborhoods1 labeled by in-
puts, identifiers, and, for randomized algorithms, the random strings to out-
puts. Thus, r puts a bound on the locality of a problem: If topology or inputs
are locally changed, the outputs of the algorithm change only up to distance r
(both in the new and old graph). In contrast, if no r-round algorithm exists for
r ∈ o(D), a problem is global.

Theorem 6.2. MST is a global problem, i.e., any distributed algorithm com-
puting an MST must run for Ω(D) rounds. This holds even when permitting
outputs that are merely spanning subgraphs (i.e., not necessarily trees) and, for
any 1 ≤ α ∈ nO(1), α-approximate.

Proof. Consider the cycle consisting of n nodes, and denote by e1 and e2 two
edges on opposite sides of the cycle (i.e., in maximal distance from each other).
For 1 ≤ α ∈ nO(1), define

W1(e) :=

2α2n if e = e1

αn if e = e2

1 else
W2(e) :=

{
αn if e = e2

1 else.

On the cycle with weights W1, the MST consists of all edges but e1. In fact,
any solution containing e1 has approximation ratio at least

W1(e1)

W2(e2) + n− 2
>

2α2n

(α+ 1)n
≥ α.

Thus, any α-approximate solution must output all edges but e1. Likewise, on
the cycle with weights W2, the MST consists of all edges but e2, and any solution
containing e1 has approximation ratio at least

αn

n− 1
> α.

Thus, any α-approximate solution must output all edges but e2. As by con-
struction the nodes of e1 and those of e2 are in distance Ω(D) = Ω(n), finding
any spanning subgraph that is by at most factor α heavier than an MST is a
global problem.

Remarks:

• The restriction that α ∈ nO(1) is only a formality in this theorem. We
decided that only polynomial edge weights are permitted in the problem
description, so we will be able to talk about the weights. But if they are
so large that we can’t talk about them, this doesn’t make our job easier!

• W.l.o.g., we assume in the following that all edge weights are distinct, i.e.,
W (e) 6= W (e′) for e 6= e′. This is achieved by attaching the identifiers of
the endpoints of e to its weight and use them to break symmetry in case
of identical weights. This also means that we can talk of the MST of G
from now on, as it must be unique.

1Here, edges connecting two nodes that are both exactly in distance r are not included.

6.2. BEING GREEDY: KRUSKAL’S ALGORITHM 75

2

15

13
11

12

3

10

9

8

7

64

14

Figure 6.1: Snapshot of Kruskal’s algorithm. Solid black edges have been added
to T , the solid gray edges have been discarded. The dashed black edge is being
processed and will be added to T since it does not close a cycle; the dashed gray
edges will be processed in later iterations.

6.2 Being Greedy: Kruskal’s Algorithm

Considering greedy strategies is always a good starting point. In the case of an
MST, this means to always add the cheapest useful edge first! As closing cycles
is pointless, this yields Kruskal’s algorithm, compare Figure 6.1:

Algorithm 13 Kruskal’s algorithm (centralized version)

1: sort E in ascending order of weights; denote the result by (e1, . . . , e|E|)
2: T := ∅
3: for i = 1, . . . , |E| do
4: if T ∪ {ei} is a forest then
5: T := T ∪ {ei}
6: end if
7: end for
8: return T

Lemma 6.3. If an edge is heaviest in a cycle, it is not in the MST. If all
such edges are deleted, the MST remains. In particular, Kruskal’s algorithm
computes the MST.

Proof. Denote the MST by M and suppose for contradiction that e ∈ M is
heaviest in a cycle C. As C \ {e} connects the endpoints of e, there must be an
edge e′ ∈ C so that (M \ {e})∪ {e′} is a spanning tree (i.e., e′ connects the two
components of M \ {e}). However, as W (e′) < W (e), (M \ {e})∪ {e′} is lighter
than M , contradicting that M is the MST.

Thus, when deleting all edges that are heaviest in some cycle, no MST edge
is deleted. As this makes sure that there is no cycle contained in the obtained
edge set, the result is a forest. As this forest contains the MST, but a tree is a
maximal forest, the forest must in fact be the MST.

Let’s make this into a distributed algorithm! Of course we don’t simply
collect all edges and execute the algorithm locally. Still, we need to somehow
collect the information to compare. We do this, but drop all edges which are
certainly “unnecessary” on the fly.

76 LECTURE 6. MINIMUM SPANNING TREES

Algorithm 14 Kruskal’s algorithm (distributed version)

1: compute an (unweighted) BFS, its depth d, and n; denote the root by R
2: for each v ∈ V in parallel do
3: Ev := {{v, w} ∈ E}
4: Sv := ∅ // sent edges
5: end for
6: for i = 1, . . . , n+ d− 2 do
7: for each v ∈ V \ {R} in parallel do
8: e := argmine′∈Ev\Sv

{W (e′)} // lightest unsent edge
9: send (e,W (e)) to v’s parent in the BFS tree

10: Sv := Sv ∪ {e}
11: end for
12: for each v ∈ V in parallel do
13: for each received (e,W (e)) do
14: Ev := Ev ∪ {e} // also remember W (e) for later use
15: end for
16: for each cycle C in Ev do
17: e := argmaxe′∈C{W (e′)} // heaviest edge in cycle
18: Ev := Ev \ {e}
19: end for
20: end for
21: end for
22: R broadcasts ER over the BFS tree
23: return ER

Intuitively, MST edges will never be deleted, and MST edges can only be
“delayed,” i.e., stopped from moving towards the root, by other MST edges.
However, this is not precisely true: There may be other lighter edges that go
first, as the respective senders do not know that they are not MST edges. The
correct statement is that for the kth-lightest MST edge, at most k − 1 lighter
edges can keep it from propagating towards the root. Formalizing this intuition
is a bit tricky.

Definition 6.4. Denote by Bv the subtree of the BFS tree rooted at node v ∈ V ,
by dv its depth, by EBv

:=
⋃
w∈Bv

{{w, u} ∈ Ew} the set of edges known to some
node in Bv, and by FBv ⊆ EBv the lightest maximal forest that is a subset of
EBv .

Lemma 6.5. For any node v and any E′ ⊆ EBv
, the result of Algorithm 13

applied to E′ contains FBv
∩ E′.

Proof. By the same argument as for Lemma 6.3, Kruskal’s algorithm deletes
exactly all edges from a given edge set that are heaviest in some cycle. FBv

is the set of edges that survive this procedure when it is applied to EBv , so
FBv ∩ E′ survives for any E′ ⊆ EBv .

Lemma 6.6. For any k ∈ {0, 1, . . . , |FBv
|}, after dv+k−1 rounds of the second

FOR loop of the algorithm, the lightest k edges of FBv
are in EBv

, and have
been sent to the parent by the end of round dv + k.

6.2. BEING GREEDY: KRUSKAL’S ALGORITHM 77

Proof. We prove the claim by double induction over the depth dv of the subtrees
and k. The claim holds trivially true for dv = 0 and all k, as for leaves v we
have EBv

= FBv
. Now consider v ∈ V and assume that the claim holds for all

w ∈ V with dw < dv and all k. It is trivial for dv and k = 0, so assume it also
holds for dv and some k ∈ {0, . . . , |FBv | − 1} and consider index k + 1.

Because
EBv = {{v, w} ∈ Ev} ∪

⋃
w child of v

EBw ,

we have that the (k + 1)th lightest edge in FBv
is already known to v or it is

in EBw for some child w of v. By the induction hypothesis for index k + 1 and
dw < dv, each child w of v has sent the k + 1 lightest edges in FBw to v by the
end of round dw + k + 1 ≤ dv + k. The (k + 1)th lightest edge of FBv

must
be contained in these sent edges: Otherwise, we can take the sent edges (which
are a forest) and edges k + 1, . . . , |FBv

| out of FBv
to either obtain a cycle in

which an edge from FBv is heaviest or a forest with more edges than FBv , in
both cases contained in EBv . In the former case, this contradicts Lemma 6.5,
as then an edge from FBv

would be deleted from E′ ⊆ EBv
. In the latter case,

it contradicts the maximality of FBv
, as all maximal forests in EBv

have the
same number of edges (the number of nodes minus the number of components
of (G,EBv)). Either way, the assumption that the edge was not sent must be
wrong, implying that v learns of it at the latest in round dv + k and adds it to
Ev. By Lemma 6.5, it never deletes the edge from Ev. This shows the first part
of the claim.

To show that by the end of the round dv + k + 1, v sends the edge to its
parent, we apply the induction hypothesis for dv and k. It shows that v already
sent the k lightest edges from FBv before round dv + k + 1, and therefore will
send the next in round dv + k + 1 (or has already done so), unless there is a
lighter unsent edge e ∈ Ev. As FBv

is a maximal forest, FBv
∪ {e} contains

exactly one cycle. However, as e does not close a cycle with the edges sent
earlier, it does not close a cycle with all the edges in FBv

that are lighter than
e. Thus, the heaviest edge in the cycle is heavier than e, and deleting it results
in a lighter maximal forest than FBv , contradicting the definition of FBv . This
concludes the induction step and therefore the proof.

Theorem 6.7. For a suitable implementation, Algorithm 14 computes the MST
M in O(n) rounds.

Proof. The algorithm is correct, if at the end of the second FOR loop, it holds
that ER = M . To see this, observe that EBR

=
⋃
v∈V {{v, w} ∈ E} = E and

hence FBR
= M . We apply Lemma 6.6 to R and round n+d−2 = |M |+dR−1.

The lemma then says that M ⊆ ER. As in each iteration of the FOR loop, all
cycles are eliminated from ER, ER is a forest. A forest has at most |M | = n− 1
edges, so indeed ER = M .

Now let us check the time complexity of the algorithm. From Lecture 2,
we know that a BFS tree can be computed in O(D) rounds using messages of
size O(log n).2 Computing the depth of the constructed tree and its number of
nodes n is trivial using messages of size O(log n) and O(D) rounds. The second

2If there is no special node R, we may just pick the one with smallest identifier, start BFS
constructions at all nodes concurrently, and let constructions for smaller identifiers “overwrite”
and stop those for larger identifiers.

78 LECTURE 6. MINIMUM SPANNING TREES

FOR loop runs for n+d−1 ∈ n+O(D) rounds. Finally, broadcasting the n−1
edges of M over the BFS tree takes n + d − 1 ∈ n + O(D) rounds as well, as
in each round, the root can broadcast another edge without causing congestion;
the last edge will have arrived at all leaves in round n − 1 + d, as it is sent by
R in round n− 1. As D ≤ n− 1, all this takes O(n+D) = O(n) rounds.

Remarks:

• A clean and simple algorithm, and running time O(n) beats the trivial
O(|E|) on most graphs.

• This running time is optimal up to constants on cycles. But (non-trivial)
graphs with diameter Ω(n) are rather rare in practice. We shouldn’t stop
here!

• Also nice: everyone learns about the entire MST.

• Of course, there’s no indication that we can’t be faster in case D � n.
We’re not asking for everyone to learn the entire MST (which trivially
would imply running time Ω(n) in the worst case), but only for nodes
learning about their incident MST edges!

• To hope for better results, we need to make sure that we work concurrently
in many places!

6.3 Greedy Mk II:
Gallager-Humblet-Spira (GHS)

In Kruskal’s algorithm, we dropped all edges that are heaviest in some cycle,
because they cannot be in the MST. The remaining edges form the MST. In
other words, picking an edge that cannot be heaviest in a cycle is always a
correct choice.

Lemma 6.8. For any ∅ 6= U ⊂ V ,

eU := argmin
e∈(U×V \U)∩E

{W (e)}

is in the MST.

Proof. As G is connected, (U × V \ U) ∩ E 6= ∅. Consider any cycle C 3 eU .
Denoting eU = {v, w}, C \{eU} connects v and w. As eU ∈ U×V \U , it follows
that (C \ {eU}) ∩ (U × V \ U) 6= ∅, i.e., there is another edge e ∈ C between a
node in U and a node in V \U besides eU . By definition of eU , W (eU) < W (e).
As C 3 eU was arbitrary, we conclude that there is no cycle C in which eU is
the heaviest edge. Therefore, eU is in the MST by Lemma 6.3.

This observation leads to another canonical greedy algorithm for finding an
MST. You may know the centralized version, Prim’s algorithm. Let’s state the
distributed version right away.

Admittedly, this is a very high-level description, but it is much easier to
understand the idea of the algorithm this way. It also makes proving correctness

6.3. GREEDY MK II: GALLAGER-HUMBLET-SPIRA (GHS) 79

Algorithm 15 GHS (Gallager–Humblet–Spira)

1: T := ∅ // T will always be a forest
2: repeat
3: F := set of connectivity components of T (i.e., maximal trees)
4: Each F ∈ F determines the lightest edge leaving F and adds it to T
5: until T is a spanning subgraph (i.e., there is no outgoing edge)
6: return T

very simple, as we don’t have to show that the implementations of the individual
steps work correctly (yet). We call an iteration of the REPEAT statement a
phase.

Corollary 6.9. In each phase of the GHS algorithm, T is a forest consisting
of MST edges. In particular, the algorithm returns the MST of G.

Proof. It suffices to show that T contains only MST edges. Consider any con-
nectivity component F ∈ F . As the algorithm has not terminated yet, F cannot
contain all nodes. Thus, Lemma 6.8 shows that the lightest outgoing edge of F
exists and is in the MST.

Figure 6.2: Two iterations of the GHS algorithm. The circled areas contain the
components at the beginning of the iteration, connected by the already selected
MST edges. Each component selects the lightest outgoing edge into the MST
(blue solid arrows). Other edges within components, like the grey one after the
first iteration, are discarded, as they are heaviest in some cycle.

80 LECTURE 6. MINIMUM SPANNING TREES

Great! But now we have to figure out how to implement this idea efficiently.
It’s straightforward to see that we won’t get into big trouble due to having too
many phases.

Lemma 6.10. Algorithm 15 terminates within dlog ne phases.

Proof. Denote by ni the number of nodes in the smallest connectivity component
(maximal tree) in F at the end of phase i. We claim that ni ≥ min{2i, n}.
Trivially, this number is n0 := 1 “at the end of phase 0,” i.e., before phase 1.
Hence, it suffices to show that ni ≥ min{2ni−1, n} for each phase i. To this end,
consider any F ∈ F at the beginning of phase i. Unless F already contains all
nodes, it adds its lightest outgoing edge to T , connecting it to at least one other
component F ′ ∈ F . As |F | ≥ ni−1, |F ′| ≥ ni−1, and connectivity components
are disjoint, |F ∪ F ′| ≥ 2ni−1. The claim follows.

Ok, so what about the phases? We need to do everything concurrently, so we
cannot just route all communication over a single BFS tree without potentially
causing a lot of “congestion.” Let’s use the already selected edges instead!

Lemma 6.11. For a given phase i, denote by Di the maximum diameter of any
F ∈ F at the beginning of the phase, i.e., after the new edges have been added
to T . Then phase i can be implemented in O(Di) rounds.

Proof. All communication happens on edges of T that are selected in or before
phase i. Consider a connectivity component of T at the beginning of phase i.
By Corollary 6.9, it is a tree. We root each such tree at the node with small-
est identifier and let each node of the tree learn this identifier, which takes
O(d) time for a tree of depth d. Clearly, d ≤ Di. Then each node learns the
identifiers of the roots of all its neighbors’ trees (one round). On each tree,
now the lightest outgoing edge can be determined by every node sending their
lightest edge leaving its tree (alongside its weight) to the root; each node only
forwards the lightest edge it knows about to the root. Completing this process
and announcing the selected edges to their endpoints takes O(Di) rounds. As
the communication was handled on each tree separately without using external
edges (except for exchanging the root identifiers with neighbors and “marking”
newly selected edges), all this requires messages of size O(log n) only.

We’ve got all the pieces to complete the analysis of the GHS algorithm.

Theorem 6.12. Algorithm 15 computes the MST. It can be implemented in
O(n log n) rounds.

Proof. Correctness was shown in Corollary 6.9. As trivially Di ≤ n − 1 for
all phases i (a connectivity component cannot have larger diameter than the
number of its nodes), by Lemma 6.3 each phase can be completed in O(n)
rounds. This can be detected and made known to all nodes within O(D) ⊆ O(n)
rounds using a BFS tree. By Lemma 6.10, there are O(log n) phases.

6.4. GREEDY MK III: GARAY-KUTTEN-PELEG (GKP) 81

Remarks:

• The log n factor can be shaved off.

• The original GHS algorithm is asynchronous and has a message complex-
ity of O(|E| log n), which can be improved to O(|E| + n log n). It was
celebrated for that, as this is way better than what comes from the use
of an α-synchronizer. Basically, the constructed tree is used like a β-
synchronizer to coordinate actions within connectivity components, and
only the exchange of component identifiers is costly.

• The GHS algorithm can be applied in different ways. GHS for instance
solves leader election in general graphs: once the tree is constructed, find-
ing the minimum identifier using few messages is a piece of cake!

6.4 Greedy Mk III: Garay-Kutten-Peleg (GKP)

We now have two different greedy algorithms that run in O(n) rounds. How-
ever, they do so for quite different reasons: The distributed version of Kruskal’s
algorithm basically reduces the number of components by 1 per round (up to an
additive D), whereas the GHS algorithm cuts the number of remaining compo-
nents down by a factor of 2 in each phase. The problem with the former is that
initially there are n components, the problem with the latter is that components
of large diameter take a long time to handle.

If we could use the GHS algorithm to reduce the number of components to
something small, say

√
n, quickly without letting them get too big, maybe we

can then finish the MST computation by Kruskal’s approach? Sounds good,
except that it may happen that, in a single iteration of GHS, a huge component
appears. We then wouldn’t know that it is so large without constructing a
tree on it or collecting the new edges somewhere, but both could take too long!
The solution is to be more conservative with merges and apply a symmetry
breaking mechanism: GKP grows components GHS-like until they reach a size
of
√
n. Every node learns its component identifier (i.e., the smallest ID in the

component), and GKP then joins them using the pipelined MST construction
(where nodes communicate edges between connected components instead of all
incident edges).

Let’s start with correctness.

Lemma 6.13. Algorithm 16 adds only MST edges to T . It outputs the MST.

Proof. By Lemma 6.8, only MST edges are added to C in any iteration of the
FOR loop, so at the end of the loop T is a subforest of the MST. The remaining
MST edges thus must be between components, so contracting components and
deleting loops does not delete any MST edges. The remaining MST edges are
now just the MST of the constructed multigraph, and Kruskal’s algorithm works
fine on (loop-free) multigraphs, too.

Also, we know that the second part will be fast if few components remain.

Corollary 6.14. Suppose after the FOR loop of Algorithm 16 k components of
maximum diameter Dmax remain, then the algorithm terminates within O(D+
Dmax + k) additional rounds.

82 LECTURE 6. MINIMUM SPANNING TREES

Figure 6.3: Top: A component of (F , C) in a phase of the first part of the
GKP algorithm. “Large” components that marked no MST edge for possible
inclusion can only be roots; we have such a root here. Bottom left: The blue
edges show a matching constructed using the Cole-Vishkin algorithm. Bottom
right: The blue edges are the final set of selected edges in this phase.

Algorithm 16 GKP (Garay–Kutten–Peleg). We slightly abuse notation by
interpreting edges of C also as edges between components F . Contracting an
edge means to identify its endpoints, where the new node “inherits” the edges
from the original nodes.

1: T := ∅ // T will always be a forest
2: for i = 0, . . . , dlog

√
ne do

3: F := set of connectivity components of T (i.e., maximal trees)
4: Each F ∈ F of diameter at most 2i determines the lightest edge leaving

F and adds it to a candidate set C
5: Add a maximal matching CM ⊆ C in the graph (F , C) to T
6: If F ∈ F of diameter at most 2i has no incident edge in CM , it adds the

edge it selected into C to T
7: end for
8: denote by G′ = (V,E′,W ′) the multigraph obtained from contracting all

edges of T (deleting loops, keeping multiple edges)
9: run Algorithm 14 on G′ and add the respective edges to T

10: return T

Proof. The contracted graph has exactly k nodes and thus k−1 MST edges are
left. The analysis of Algorithm 14 also applies to multigraphs, so (a suitable
implementation) runs for O(D+k) additional rounds; all that is required is that

6.4. GREEDY MK III: GARAY-KUTTEN-PELEG (GKP) 83

Figure 6.4: Left: Components and their interconnecting edges after the first
stage of the GKP algorithm. Right: The multigraph resulting from contraction
of the components.

the nodes of each component agree on an identifier for their component. This
can be done by figuring out the smallest identifier in each component, which
takes O(Dmax) rounds.

It remains to prove three things: (i) components don’t become too large
during the FOR loop, (ii) we can efficiently implement the iterations in the
FOR loop, and (iii) few components remain after the FOR loop. Let’s start
with (i). We again call one iteration of the FOR loop a phase.

Lemma 6.15. At the end of phase i, components have diameter O(2i).

Proof. We claim that at the end of phase i, no component has diameter larger
than 6 · 2i ∈ O(2i), which we show by induction. Trivially, this holds for i = 0
(i.e., at the start of the algorithm). Hence, suppose it holds for all phases
j ≤ i ∈ N0 for some i and consider phase i+ 1.

Consider the graph (F , C) from this phase. We claim that each component
of (F , C) has diameter at most 3. To see this, observe that if an unmatched
F ∈ F adds an edge {F, F ′}, F ′ must be matched: otherwise, {F, F ′} could be
added to the matching, contradicting its maximality. Thus, all non-matching
edges added to T “attach” some F ∈ F that was isolated in the graph (F , CM)
to some F ′ that is not picking a new edge in this step. This increases the
diameter of components from at most 1 (for a matching) to at most 3.

Next, we claim that no component contains more than one F of diameter
larger than 2i (with respect to G). This can be seen by directing all selected
edges away from the F ∈ F that selected it (breaking ties arbitrarily). We
obtain a directed graph of out-degree at most 1, in which any F of diameter

84 LECTURE 6. MINIMUM SPANNING TREES

larger than 2i has out-degree 0 and is thus the root of a component that is an
oriented tree.

Now consider a new component at the end of the phase. It is composed of
at most one previous component of – by the induction hypothesis – size at most
6 · 2i, while all other previous components have size at most 2i. The longest
possible path between any two nodes in the new component thus crosses the
large previous component, up to 3 small previous components, and up to 3
edges between previous components, for a total of 6 · 2i + 3 · 2i + 3 ≤ 6 · 2i+1

hops.

Together with an old friend, we can exploit this to show (ii).

Corollary 6.16. Each iteration of the FOR loop can be implemented with run-
ning time O(2i log∗ n).

Proof. By Lemma 6.15, in phase i components are of size O(2i). We can thus
root them and determine the edges in C in O(2i) rounds. By orienting each
edge in C away from the component F ∈ F that selected it (breaking ties by
identifiers), (F , C) becomes a directed graph with out-degree 1. We simulate
the Cole-Vishkin algorithm on this graph to compute a 3-coloring in O(2i log∗ n)
rounds. To this end, component F is represented by the root of its spanning
tree and we exploit that it suffices to communicate only “in one direction,”
i.e., it suffices to determine the current color of the “parent.” Thus, for each
component, only one color each needs to be sent and received, respectively,
which can be done with message size O(log n) over the edges of the component.
The time for one iteration then is O(2i). By Theorem 1.7, we need O(log∗ n)
iterations; afterwards, we can select a matching in O(2i) time by going over the
color classes sequentially (cf. Exercise 1) and complete the phase in additional
O(2i) rounds, for a total of O(2i log∗ n) rounds.

It remains to show that all this business really yields sufficiently few com-
ponents.

Lemma 6.17. After the last phase, at most
√
n components remain.

Proof. Observe that in each phase i, each component of diameter smaller than
2i is connected to at least one other component. We claim that this implies
that after phase i, each component contains at least 2i nodes. This trivially
holds for i = 0. Now suppose the claim holds for phase i ∈ {0, . . . , d√ne − 1}.
Consider a component of fewer than 2i+1 nodes at the beginning of phase i+ 1.
It will hence add an edge to C and be matched or add this edge to T . Either
way, it gets connected to at least one other component. By the hypothesis, both
components have at least 2i nodes, so the resulting component has at least 2i+1.

As there are dlog
√
ne phases, in the end each component contains at least

2log
√
n =
√
n nodes. As components are disjoint, there can be at most n/

√
n =√

n components left.

Theorem 6.18. Algorithm 16 computes the MST and can be implemented such
that it runs in O(

√
n log∗ n+O(D)) rounds.

6.4. GREEDY MK III: GARAY-KUTTEN-PELEG (GKP) 85

Proof. Correctness is shown in Lemma 6.13. Within O(D) rounds, a BFS can
be constructed and n be determined and made known to all nodes. By Corol-
lary 6.16, phase i can be implemented in O(2i) rounds, so in total

dlog
√
ne∑

i=0

O(2i log∗ n) = O(2log
√
n log∗ n) = O(

√
n log∗ n)

rounds are required. Note that since the time bound for each phase is known to
all nodes, there is no need to coordinate when a phase starts; this can be com-
puted from the depth of the BFS tree, n, and the round in which the root of the
BFS tree initiates the main part of the computation. By Lemmas 6.15 and 6.17,
only

√
n components of diameter O(

√
n) remain. Hence, by Corollary 6.14, the

algorithm terminates within additional O(
√
n+D) rounds.

Remarks:

• The use of symmetry breaking might come as a big surprise in this al-
gorithm. And it’s the only thing keeping it from being greedy all the
way!

• Plenty of algorithms in the Congest model follow similar ideas. This is
no accident: The techniques are fairly generic, and we will see next time
that there is an inherent barrier around

√
n, even if D is small!

• The time complexity can be reduced to O(
√
n log∗ n + D) by using only⌈

log(
√
n/ log∗ n)

⌉
phases, i.e., growing components to size Θ(

√
n/ log∗ n).

• Be on your edge when seeing O-notation with multiple parameters. We
typically want it to mean that no matter how the parameter combination
is, the expression is an asymptotic bound where the constants in the O-
notation are independent of the parameter choice. However, in particular
with lower bounds, this can become difficult, as there may be dependen-
cies between parameters, or the constructions may apply only to certain
parameter ranges.

What to take Home

• Studying sufficiently generic and general problems like MIS or MST makes
sense even without an immediate application in sight. When I first encoun-
tered the MST problem, I didn’t see the Cole-Vishkin symmetry breaking
technique coming!

• If you’re looking for an algorithm and don’t know where to start, check
greedy approaches first. Either you already end up with something non-
trivial, or you see where it goes wrong and might be able to fix it!

• For global problems, it’s very typical to use global coordination via a BFS
tree, and also “pipelining,” the technique of collecting and distributing k
pieces of information in O(D + k) rounds using the tree.

86 LECTURE 6. MINIMUM SPANNING TREES

Bibliographic Notes

Tarjan [Tar83] coined the terms red and blue edges for heaviest cycle-closing
edges (which are not in the MST) and lightest edges in an edge cut3 (which are
always in the MST), respectively. Kruskal’s algorithm [Kru56] and Prim’s algo-
rithm [Pri57] are classics, which are based on eliminating red edges and selecting
blue edges, respectively. The distributed variant of Kruskal’s algorithm shown
today was introduced by Garay, Kutten, and Peleg [GKP98]; it was used in the
first MST algorithm of running time O(o(n) +D). The algorithm then was im-
proved to running time O(

√
n log∗ n+D) by introducing symmetry breaking to

better control the growth of the MST components in the first phase [KP00] by
Kutten and Peleg. The variant presented here uses a slightly simpler symmetry
breaking mechanism. Algorithm 15 is called “GHS” after Gallager, Humblet,
and Spira [GHS83]. The variant presented here is much simpler than the origi-
nal, mainly because we assumed a synchronous system and did not care about
the number of messages (only their size). As a historical note, the same princi-
ple was discovered much earlier by Otakar Boruvka and published in 1926 – in
Czech (see [NMN01] for an English translation).

Awerbuch improved the GHS algorithm to achieve (asynchronous) time com-
plexity O(n) at message complexity O(|E|+ n log n), which is both asymptoti-
cally optimal in the worst case [Awe87]. Yet, the time complexity is improved
by the GKP algorithm! We know that this is not an issue of asynchrony vs.
synchrony, since we can make an asynchronous algorithm synchronous without
losing time, using the α-synchronizer. This is not a contradiction, since the
“bad” examples have large diameter; the respective lower bound is existential.
It says that for any algorithm, there exists a graph with n nodes for which it
must take Ω(n) time to complete. These graphs all have diameter Θ(n)! A lower
bound has only the final word if it, e.g., says that for all graphs of diameter
D, any algorithm must take Ω(D) time.4 Up to details, this can be shown by a
slightly more careful reasoning than for Theorem 6.2. We’ll take a closer look
at the

√
n log∗ n part of the time bound next week!

Bibliography

[Awe87] B. Awerbuch. Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election, and related problems. In
Proceedings of the nineteenth annual ACM symposium on Theory of
computing, STOC ’87, pages 230–240, New York, NY, USA, 1987.
ACM.

[GHS83] R. G. Gallager, P. A. Humblet, and P. M. Spira. Distributed Algo-
rithm for Minimum-Weight Spanning Trees. ACM Transactions on
Programming Languages and Systems, 5(1):66–77, January 1983.

[GKP98] Juan A Garay, Shay Kutten, and David Peleg. A sublinear time dis-
tributed algorithm for minimum-weight spanning trees. SIAM Jour-
nal on Computing, 27(1):302–316, 1998.

3An edge cut is the set of edges (U × V \ U) ∩ E for some ∅ 6= U ⊂ V .
4Until we start playing with the model, that is.

BIBLIOGRAPHY 87

[KP00] Shay Kutten and David Peleg. Fast Distributed Construction of Small
k-Dominating Sets and Applications, 2000.

[Kru56] Jr. Kruskal, Joseph B. On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem. Proceedings of the American
Mathematical Society, 7(1):48–50, 1956.

[NMN01] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar Boru-
vka on Minimum Spanning Tree Problem Translation of Both the
1926 Papers, Comments, History. Discrete Mathemetics, 233(1–3):3–
36, 2001.

[Pri57] R. C. Prim. Shortest Connection Networks and some Generalizations.
The Bell Systems Technical Journal, 36(6):1389–1401, 1957.

[Tar83] Robert Endre Tarjan. Data Structures and Network Algorithms, chap-
ter 6. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1983.

88 LECTURE 6. MINIMUM SPANNING TREES

