
Contents

1 Vertex Coloring 1

1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 2-Coloring the List . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Using 3 Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Cole-Vishkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Linial’s Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Synchronizers 15

2.1 Synchronous Message Passing . . . . . . . . . . . . . . . . . . . . 15

2.2 Asynchronous Message Passing . . . . . . . . . . . . . . . . . . . 16

2.3 Simulating Synchrony . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Synchronizing Globally . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 BFS Tree Construction . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Hybrid Synchronizers . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Impossibility of Consensus 35

3.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Step 1: Bivalent Executions Exist . . . . . . . . . . . . . . . . . . 40

3.4 Step 2: Extending Bivalent Executions . . . . . . . . . . . . . . . 40

3.5 Step 3: Reaching Contradiction . . . . . . . . . . . . . . . . . . . 43

3.6 How about Message Passing? . . . . . . . . . . . . . . . . . . . . 43

4 Reaching Consensus 47

4.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 First Thoughts and a Key Ingredient . . . . . . . . . . . . . . . . 49

4.4 Shared Coins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Safe Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Maximal Independent Set 59

5.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Fast MIS Construction . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Bounding the Running Time of the Algorithm . . . . . . . . . . . 61

5.4 Exploiting Concentration . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Bit Complexity of the Algorithm . . . . . . . . . . . . . . . . . . 68

5.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

i



ii CONTENTS

6 Minimum Spanning Trees 73
6.1 MST is a Global Problem . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Being Greedy: Kruskal’s Algorithm . . . . . . . . . . . . . . . . . 75
6.3 Greedy Mk II: Gallager-Humblet-Spira (GHS) . . . . . . . . . . . 78
6.4 Greedy Mk III: Garay-Kutten-Peleg (GKP) . . . . . . . . . . . . 81

7 Hardness of MST Construction 89
7.1 Reducing 2-Player Equality to MST Construction . . . . . . . . . 89
7.2 Deterministic Equality is Hard . . . . . . . . . . . . . . . . . . . 93
7.3 Randomized Equality is Easy . . . . . . . . . . . . . . . . . . . . 94
7.4 Handling Randomization and Approximation . . . . . . . . . . . 96

8 Distance Approximation and Routing 101
8.1 APSP is Hard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2 Exact APSP in Unweighted Graphs . . . . . . . . . . . . . . . . 103
8.3 Relabeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4 Fast APSP with Relabeling: The Unweighted Case . . . . . . . . 107
8.5 Weighted APSP* . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9 Self-Stabilization and Recovery 115
9.1 Self-stabilizing Algorithms can’t Terminate . . . . . . . . . . . . 116
9.2 Dijkstra’s Token Ring . . . . . . . . . . . . . . . . . . . . . . . . 117
9.3 Synchronous = Self-stabilizing Asynchronous! . . . . . . . . . . . 118
9.4 Non-local Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.5 2-Party Systems Stabilize . . . . . . . . . . . . . . . . . . . . . . 121

10 Mutual Exclusion and Store & Collect 125
10.1 Strong RMW Primitives . . . . . . . . . . . . . . . . . . . . . . . 126
10.2 Mutual Exclusion using only RW Registers . . . . . . . . . . . . 127
10.3 Store & Collect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

11 Shared Counters 137
11.1 A Simple Shared Counter . . . . . . . . . . . . . . . . . . . . . . 137
11.2 No Cheap Wait-Free Linearizable Counters . . . . . . . . . . . . 141
11.3 Efficient Linearizable Counter from RW Registers . . . . . . . . . 144

12 The Port Numbering Model 153
12.1 What we can’t do . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
12.2 Bipartite Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 156
12.3 3-Approximating Minimum Vertex Cover . . . . . . . . . . . . . 158

A Notation and Preliminaries 163
A.1 Numbers and Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.3 Logarithms and Exponentiation . . . . . . . . . . . . . . . . . . . 165
A.4 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.5 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.6 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



Lecture 1

Vertex Coloring

1.1 The Problem

Nowadays multi-core computers get more and more processors, and the question
is how to handle all this parallelism well. So, here’s a basic problem: Consider
a doubly linked list that is shared by many processors. It supports insertions
and deletions, and there are simple operations like summing up the size of the
entries that should be done very fast. We decide to organize the data structure
as an array of dynamic length, where each array index may or may not hold an
entry. Each entry consists of the array indices of the next entry and the previous
entry in the list, some basic information about the entry (e.g. its size), and a
pointer to the lion’s share of the data, which can be anywhere in the memory.

1 2 3 4 5 6 7 8 9

Memory structure Logical structure

1 2 3 4 5 6 7 8 9

next
previous

size
data

Figure 1.1: Linked listed after initialization. Blue links are forward pointers,
red links backward pointers (these are omitted from now on).

We now can quickly determine the total size by reading the array in one
go from memory, which is quite fast. However, how can we do insertions and
deletions fast? These are local operations affecting only one list entry and the
pointers of its “neighbors,” i.e., the previous and next list element. We want to
be able to do many such operations concurrently, by different processors, while
maintaining the link structure! Being careless and letting each processor act
independently invites disaster, see Figure 1.3.

1



2 LECTURE 1. VERTEX COLORING

. . . 1 2 3 4 5 6 7 8 9 . . .

Memory structure Logical structure

1 4 2 5 3 6 8 7 9

Figure 1.2: State after many insertion and deletion operations. There may also
be “dead” cells which are currently not part of the list. These are not shown;
we assume that these are taken care of every now and then to avoid wasting too
much memory.

1 3 4

1 3 4

2

1 3 4

2

1 3 4

2

Figure 1.3: Concurrent insertion of a new entry 2 between 1 and 3, and (logical)
deletion of entry 3. The deletion of 3 requires to change the successor and
predecessor of 1 and 4, but the insertion of 2 changes the successor of 1 as well.
Not doing this in a consistent order messes up the list. Note that entry 3 might
get physically deleted as well, rendering many of our pointers invalid.

On the other hand, any set of concurrent modifications that does not involve
neighbors is fine: The result is a neat doubly linked list. Clearly, we want to be
able to manipulate arbitrary list entries. This can be rephrased as an (in)famous
graph problem.

Problem 1.1 (Vertex Coloring). Given an undirected graph G = (V,E), assign
a color cu to each vertex u ∈ V such that the following holds: e = {v, w} ∈
E ⇒ cv 6= cw.

We then can “cycle” through the colors and perform concurrent operations
on all “nodes” (a.k.a. list entries) of the same color without worrying. Once
we’re done with all colors, we color the new list, and so on. We now have a
challenging task:

• We want to use very few colors, so cycling through them is completed
quickly. Coloring with a minimal number of colors is in general very hard,
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3

1 2

3

Figure 1.4: 3-colorable graph with a valid coloring.

but fortunately we’re dealing with a very simple graph.

• The coloring itself needs to be done fast, too. Otherwise we’ll be waiting
for the new coloring to be ready all the time.

• That means we want to use all our processors. It’s easy to split up re-
sponsibility for the list entries by splitting up the array. The downside of
this is that the processors receive only fragmented parts of the list (see
Figure 1.5).

• Trying to get consecutive pieces under the control of a single processor
requires to break symmetry: List fragments get longer only if more nodes
are added than removed. If the list is fragmented into single nodes, this
roughly means that we want to find a maximal independent set, i.e., a set
containing no neighbors to which we cannot add a node without destroy-
ing this property. This turns out to be essentially the same problem as
coloring, as we will see in the exercises.

. . . 1 2 3 4 5 6 7 8 9 . . .

Processor1 Processor2 Processor3

Memory structure Logical structure

1 4 2 5 3 6 8 7 9

Figure 1.5: List split. We may get lucky in some places of the list (as for the
blue processor), but in wide parts the list will be fragmented between processes.

As the list is fragmented among the processors anyway, it’s useful to pretend
that we have as many processors as we want. That means each of the nodes can
have its “own” processor! If we can deal with this case efficiently, it will cer-
tainly work out with fewer processors! Oh, and one more thing: We have some
additional information we can glean from the setup. Each node has a unique
identifier associated with it, namely its array index. Note that this means nodes
already “look different” initially, which is crucial for coloring deterministically
without starting from the endpoints only.
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Remarks:

• In distributed computing, we often take the point of view that the system is
a graph whose nodes are processors and whose edges are both representing
relations with respect to the problem at hand and communication links.
This will come in handy here as an abstraction, but in many systems it is
literally true.

• The assumption of unique identifiers is standard, the reason being that
deterministic distributed algorithms can’t even do basic things without
them (for instance coloring a list quickly). On the other hand, using
randomization it’s trivial to generate unique identifiers with overwhelming
probability. Nonetheless, it is also studied how important such identifiers
actually are; more about that in another lecture!

• The linked list here is a toy example, but an entire branch of distributed
computing is occupied with finding efficient data structures for shared
memory systems like the one informally described above. We’ll have an-
other look at such systems further into the course!

1.2 2-Coloring the List

Clearly, we can color the list with two colors, simply by passing through the
list and alternating. Since this is sequential, i.e., only one process is actually
working, it takes Θ(n) steps in a list of n nodes. We can parallelize this strategy,
however. For i ∈ [n] := {0, . . . , n − 1}, denote by vi the array index of the ith

node in the list. As always in this course, log denotes the base-2 logarithm.
First, we add “shortcuts” to our linked list.

Algorithm 1 Parallel pointer jumping

1: for j = 0, . . . , dlog ne − 1 do
2: for each node vi in parallel do
3: if i− 2j ≥ 0 and i+ 2j < n then
4: {have node vi create shortcuts between vi−2j and vi+2j}
5: store a pointer to vi−2j at element vi+2j

6: store a pointer to vi+2j at element vi−2j

7: end if
8: end for
9: end for

Here we assume that processes share a common clock to coordinate the
execution of the outer loop, or somehow simulate this behavior. We’ll examine
this issue more closely in the next lecture; let’s assume for now that we can
handle this and call each iteration of the outer loop a round.

Let’s have a closer look at what this algorithm does.

Lemma 1.2 (Shortcuts from pointer jumping). After r rounds of Algorithm 1,
at each array index vi with i ≥ 2r the index vi−2r is stored. Likewise, at each
index vi with i < n− 2r, vi+2r is stored.
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Proof. We show the claim by induction. The base case is r = 0, i.e., the initial
state. As 20 = 1, the statement is just another way of saying that we have a
doubly linked list, so we’re in the clear. Now assume that the claim is true for
some 0 ≤ r < dlog ne. In the rth round, we have j = r − 1. For any i ≥ 2r,
(the process responsible for) node vi−2r−1 will add vi−2r to the entry at array
index vi. It can do this, because by induction hypothesis vi−2r and vi can be
looked up at the array index vi−2r−1 . Note that processes dealing with a vi with
i < 2r−1 will not get confused: they will know that i < 2r−1 because vi−2r−1

was not added to the entry corresponding to vi. Similarly, for each i < n− 2r,
vi+2r−1 will add vi+2r to the entry at index vi.

1 4 2 5 3 6 8 7 9 1 4 2 5 3 6 8 7 9

Figure 1.6: Parallel pointer jumping. Depicted are the additional pointers/links
of node 3 only.

With these shortcuts, we can color the list quickly.

Algorithm 2 2-coloring the list

1: execute Algorithm 1
2: color the list head by 0 (i.e., index v0)
3: for j = dlog ne − 1, . . . , 1 do
4: for each node vi colored 0 in parallel do
5: if i+ 2j < n then
6: color index vi+2j by 0
7: end if
8: end for
9: end for

10: color all remaining nodes by 1

Theorem 1.3 (Correctness of Algorithm 2). Algorithm 2 colors the doubly
linked list with 2 colors.

Proof. From Lemma 1.2, we know that array elements will store the necessary
information to execute the for-loops. By induction, we see that after r rounds
of the loop, all nodes vi with i mod 2dlogne−r = 0 are colored 0. The loop runs
for dlog ne − 1 rounds, i.e., until j = 1. Thus, all nodes in even distance from
the list head are colored 0, while the remaining nodes get colored 1.
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1 4 2 5 3 6 8 7 9 1 4 2 5 3 6 8 7 9

1 4 2 5 3 6 8 7 9 1 4 2 5 3 6 8 7 9

1 4 2 5 3 6 8 7 9

Figure 1.7: Execution of the 2-coloring algorithm. Each step uses a different
“level” of pointers constructed with the pointer jumping algorithm; the final
steps just uses the neighbor pointers.

Remarks:

• In the above algorithms, we referred to n. However, n is unknown due to
parallel insertions and deletions (maintaining a shared counter is another
fundamental problem!). This can be resolved by letting vi terminate when
it knows that its work is done, which is the case when not both vi−2j and
vi+2j are written to vi in round j. The processors then just need to notify
each other once all their associated nodes are terminated.

• For 2-coloring, the O(log n) rounds of this algorithm are the best we can
get: another straightforward induction shows that following pointers, it
takes dlog he rounds to “see” something that is h “hops” in the list away,
and unless individual processors read large chunks of memory, this has to
be done.

• The issue is that 2-coloring is too rigid. Once we color a single node, all
other nodes’ colors are determined. The problem is not local.

• This is also bad for another reason: if we have only small changes in the
list, we would like to avoid having to recolor it from scratch. It would
be nice to have an algorithm where the output depends only on a small
number of hops around each node. This would most likely also yield a fast
and efficient algorithm!

• We can use the pointer jumping technique to speed up algorithms that
are more local in this sense: if in round r nodes write everything they
know to the array entries of nodes in distance 2r−1, it takes only dlog he
steps until the output of an algorithm depending on nodes in distance at
most h can be determined. However, this is only practical if h is small, as
otherwise a lot of work is done!

1.3 Using 3 Colors

What good does it do to get down to two colors, but at a large overhead?
None, as we have to do it again after each change of the list. Let’s be a bit
more relaxed and permit c > 2 colors. This means that, no matter what the
neighbors’ colors are, there’s always a free one to pick! Given that we start with
a valid coloring – the array indices – we can use this to reduce the number of
colors to 3. Let’s assume in the following that v−1 = vn−1 and vn = v0 (i.e.,



1.3. USING 3 COLORS 7

head and tail of the list also have pointers to each other), since this will simplify
describing algorithms.

Algorithm 3 color reduction

1: for each node vi in parallel do
2: cvi := vi
3: end for
4: while ∃vi : cvi > 2 do
5: for each node vi with cvi > max{cvi−1

, cvi+1
, 2} in parallel do

6: cvi := min
(
[3] \ {cvi−1

, cvi+1
}
)

7: end for
8: end while

Lemma 1.4. Algorithm 3 computes a 3-coloring. It terminates in c rounds,
where c is the number of different colors in the initial coloring (here n, because
the array indices are unique).

Proof. No two neighbors can change their color in the same round, as this would
require that each of their colors is larger than the other. Thus, the coloring is
valid after each round (given that it was valid initially). A node with the current
maximum color will change its color (because no neighbor can have this color,
too). Note also that no colors other than 0, 1, or 2 are ever picked by a node.
It follows that the algorithm completes after at most c rounds and the result is
a valid 3-coloring.

Remarks:

• A time complexity of (almost) n rounds is attained if we still have a nice,
well-ordered list, i.e., vi = i for all i. In other words, if we’re unlucky, we
color the list sequentially.

• The algorithm is, however, good to reduce the number of colors to 3 if we
only have a few colors to begin with.

• If we have an arbitrary graph of maximum degree ∆ (i.e., no node has
more than ∆ neighbors), the same approach can be used to find a (∆+1)-
coloring (see Figure 1.8).

• It’s not hard to show that if the initial coloring is random, the algorithm
will finish in Θ(log n/ log log n) rounds with a very large probability. Can
you prove it?

• One can construct such an initial coloring by picking colors randomly at
each node from a sufficiently large range.

• Combining with pointer jumping, we get a running time of Θ(log log n)
for 3-coloring, exponentially faster than for 2-coloring!
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31

100

5

31

2

5

Figure 1.8: Vertex 100 receives the lowest possible color.

1.4 Cole-Vishkin

The previous algorithm reduced the number of colors in each step, starting from
a valid coloring. We can now ask: Can this be done more quickly/efficiently?
The answer turns out to be yes, as shown by the following algorithm, which is
based on a simple, but ingenious idea.

Algorithm 4 Cole-Vishkin color reduction

1: for each node vi in parallel do
2: cvi := vi
3: end for
4: while ∃vi : cvi > 5 for all nodes in parallel do
5: interpret cvi and cvi−1 as (infinite) little-endian bit-strings, i.e., starting

with the least significant bit
6: let j be the smallest index where they differ
7: concatenate j (as bitstring) and the differing bit itself, yielding color c
8: cvi := c
9: end while

Example:

Part of an execution of Algorithm 4:

vi−2 0010110000 → . . . → . . .
vi−1 1010010000 → 01010 → . . .
vi 0110010000 → 10001 → 0001

The trick is that either the first or the second part of (the bit string of) the
new color saves the day.

Lemma 1.5 (Correctness of Cole-Vishkin). Algorithm 4 computes a valid col-
oring.

Proof. Since the initial coloring is valid, we need to show that a valid coloring
enables to compute the new colors and the new coloring is valid. The first part
readily follows from the fact that two different colors must have differing bit
strings, so the index j can be computed. Now consider two neighbors vi and
vi−1. If they determine different indices j for which the current colors differ
from vi−1 and vi−2 respectively, the front part of the new colors is different.
Otherwise, the second part of their new colors consists precisely of the least
significant differing bit!



1.4. COLE-VISHKIN 9

This algorithm terminates in (almost) log∗ n time. Log-Star is the number
of times one needs to take the logarithm (to the base 2) to get to at most 1,
starting with n:

Definition 1.6 (Log-Star).
∀x ≤ 1 : log∗ x := 0 ∀x > 1 : log∗ x := 1 + log∗(log x)

Theorem 1.7. Algorithm 4 computes a valid 6-coloring in log∗ n+O(1) rounds.

Proof. Correctness is shown in Lemma 1.5. The time complexity follows from
the fact that if the original color had b bits, the new color has at most dlog be+1
bits: the number of bits to encode an index in a b-bit string plus the appended
bit. The O(1) term addresses the fact that we don’t actually apply the base-
2 logarithm in each step. (The non-exciting computations showing that this
makes only a minor difference are omitted.) The reason why we end up with
6 colors is simple: encoding an index of a 3-bit value yields 00, 01, or 10 as
leading parts; appending a bit yields 6 possibilities. It’s simple to check that
for any larger number of initial colors, fewer possibilities will remain.

Remarks:

• Log-star is an amazingly slowly growing function. Log-star of all the
atoms in the observable universe (estimated to be 1080) is 5. Hence, for
all practical purposes, it’s constant.

• One can use Algorithm 3 to reduce the number of colors to 3 in 3 rounds.

• As stated, the algorithm has a termination condition that cannot be
checked efficiently based on local information. Fortunately, we can just
get rid of this condition and run the algorithm for the right number of
rounds given by Theorem 1.7.

• This does not work if n is unknown. This issue has two different solutions:
a practical one and a theoretical one. Can you figure out both?

• For a change, the O(1) term is actually hiding only a small constant.
The time complexity of the problem has been nailed down to be precisely
1/2 · log∗ n for infinitely many values of n [RS15].

• Another detail here is that instead of n, the argument of the log∗ is, in
fact, the initial range of colors. In our case, this is the current size of
the array, which may be larger than n, typically by some constant factor.
However, even if it would be exponentially larger, this would mean we
need to do just one or two more rounds of the algorithm to handle this.

• A simple modification results in running time 1/2 · log∗ n + O(1) (see
exercises).

• Using pointer jumping, the running time can be reduced to log(log∗ n) +
O(1). Shockingly, this is not the most ridiculously slow-growing function
I’ve encountered in a statement that is not deliberately about slow-growing
functions.

• The technique is not limited to lists. It can be used to color oriented trees
and constant-degree graphs in O(log∗ n) rounds, too (see exercises).
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1.5 Linial’s Lower Bound

If we can color the list that fast, can’t we find an algorithm that does it in truly
constant time? The answer is no, and we’re going to see now why. We’ll focus
on the case where interactions are solely with neighbors, in which one requires
Ω(log∗ n) rounds. Such algorithms are called message-passing algorithms, for
reasons that will be discussed in the next lecture. With shared memory, the
variant of Cole-Vishkin with pointer jumping is asymptotically optimal [FR90].
We also restrict to deterministic algorithms.

Before we do the proof, let’s simplify the situation a bit. First, observe
that all information the output of vi can be influenced by in a T -round mes-
sage passing algorithm is the information that’s initially available at nodes
vi−T , vi−T+1, . . . , vi+T . In the worst case, every content stored is identical,1

so the only real difference are the actual array indices (and memory addresses).
Note also that the order is relevant: We have forward and backward pointers,
i.e., we can distinguish directions, and obviously it’s possible to count the num-
ber of “hops” traversed. Consequently, even if we don’t know anything about a
coloring algorithm except that it is a deterministic T -round algorithm A (with
neighbor-neighbor interactions only), we can conclude that there is a function

f : (x0, . . . , x2T )→ [c]

so that cvi = f(vi−T , vi−T+1, . . . , vi+T ) when executingA. Here, c is the number
of colors used by A and we assume without loss of generality (w.l.o.g.) that [c]
is the set of colors produced by the algorithm.2

x1 x5x3 x4x2

f(x1, x2, x3, x4, x5)

Figure 1.9: Interpreting a 2-round coloring algorithm as a coloring function f
mapping 5-tuples to colors.

If A produces a valid coloring, we also know that

f(x0, . . . , x2T ) 6= f(x1, . . . , x2T+1)

provided that xi 6= xj for i 6= j, i, j ∈ [2T + 2]: The two arguments could be the
views of adjacent nodes in the list, and they must not compute the same color.

Now comes the clever bit making our lives much easier: We restrict the
problem without actually taking away what makes it hard. This will simplify
our key argument, as it has an algorithmic component – and it would be more
challenging to come up with an algorithm for the more general setting. For
c, k ∈ N, we say that g is a k-ary c-coloring function if

∀0 ≤ x1 < x2 < . . . < xk < n : g(x1, x2, . . . , xk) ∈ [c]

1Even if that wasn’t true, the same argument applies taking this content into account.
2As opposed to, e.g., {pink, elephant, turtle}.
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and

∀0 ≤ x1 < x2 < . . . < xk+1 < n : g(x1, x2, . . . , xk) 6= g(x2, x3, . . . , xk+1).

For k = 2T +1, these are the exact same requirements as to f , however, only for
ascending addresses x1 < . . . < xk+1 < n. Note that by restricting the domain
of f to such inputs, we see that the existence of a T -round algorithm A using c
colors implies the existence of a (2T + 1)-ary c-coloring function f .

x1 x5x3 x4x2 x6

x1 x5x3 x4x2

x5x3 x4x2 x6

P:

P1:

P2:

f(x1, x2, x3, x4, x5)

f(x2, x3, x4, x5, x6)

Figure 1.10: 5-tuples that correspond to possible views of adjacent nodes must
result in different colors.

Using this connection, we can now move on to the proof of the lower bound,
which consists of showing that if c is small, then T cannot be arbitrarily small,
too.

Lemma 1.8 (1-ary functions require many colors). If f is a 1-ary c-coloring
function, then c ≥ n.

Proof. By definition, f(x1) 6= f(x2) for all 0 ≤ x1 < x2 < n, i.e.,

∀x1 6= x2 ∈ [n] : x1 6= x2 ⇔ f(x1) 6= f(x2).

In other words, f is an injection, which is only possible if c ≥ n.

The main step of the proof is to show that we can construct (k − 1)-ary
2c-coloring functions out of k-ary c-coloring functions. That is, we can “pay”
for saving time by using more colors.

Lemma 1.9 (k-ary c-coloring enables (k − 1)-ary 2c-coloring). If f is a k-ary
c-coloring function for some k > 0, then a (k − 1)-ary 2c-coloring function g
exists.

Proof. First, let h be a bijection from the subsets of [c] to [2c]. Concretely, we
may choose for S ⊆ [c] as h(S) the string of c bits in which the ith bit is 1 if
and only if i− 1 ∈ S (but any other bijection would do, too).

Next, define

g′(x1, . . . , xk−1) := {f(x1, . . . , xk) |xk−1 < xk < n},

i.e., g′ is the set of all colors that can possibly be assigned by f when all but the
last argument of f are specified. These are the colors that might cause trouble
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when g assigns a color to x1, . . . , xk−1 without considering xk. Using h, we can
interpret this set as a new color:3

g(x1, . . . , xk−1) := h ◦ g′(x1, . . . , xk−1) = h(g′(x1, . . . , xk−1)).

It’s straightforward to check that this is a well-defined function with range [2c]:
g′(x1, . . . , xk−1) ⊆ [c] and h maps such sets to a color from [2c]. In order to
verify that g is indeed a (k − 1)-ary 2c-coloring function, we thus must show
that

∀0 ≤ x1 < x2 < . . . , xk < n : g(x1, . . . , xk−1) 6= g(x2, . . . , xk).

Let 0 ≤ x1 < x2 < . . . < xk < n. Clearly, f(x1, . . . , xk) ∈ g′(x1, . . . , xk−1).
On the other hand, we have that f(x1, . . . , xk) 6= f(x2, . . . , xk+1) for any
xk < xk+1 < n, because f is a coloring function. This is equivalent to say-
ing that f(x1, . . . , xk) /∈ g′(x2, . . . , xk). We conclude that g′(x1, . . . , xk−1) 6=
g′(x2, . . . , xk). Since h is a bijection, this is equivalent to

g(x1, . . . , xk−1) = h(g′(x1, . . . , xk−1)) 6= h(g′(x2, . . . , xk)) = g(x2, . . . , xk).

With these lemmas, it’s a piece of cake to obtain the lower bound.

Theorem 1.10 (Linial’s lower bound). Coloring a list with a message passing
algorithm that uses (at most) 4 colors requires at least 1/2 · log∗ n− 1 rounds.

Proof. Assume that A is a T -round coloring algorithm using 4 colors. Thus, a
(2T+1)-ary 4-coloring function exists. We apply Lemma 1.9 for 2T times, to see

that then a 1-ary (2T 2)
4
-coloring function exists. Here, a2 denotes the tetration

or “power tower,” the a-fold iterated exponentiation by 2. From Lemma 1.8,
we know that

2T+22 =
(

2T 2
)4 ≥ n,

yielding
2T + 2 ≥ log∗ n

and finally

T ≥ log∗ n
2
− 1.

Remarks:

• More colors don’t help a lot. If we consider c colors in the above proof,
we get that it requires at least 1/2 · (log∗ n− log∗ c) rounds to color with
c colors.

• Randomization doesn’t help either. Naor extended the lower bound to
randomized algorithms [Nao91].

• I’ve been a bit sloppy, as I haven’t defined the model precisely. This can
easily lead to mistakes, so I will make amends in the next lecture. The
given proof works in the so-called message passing model, which we get
to know in more detail in the next lecture.

• If one permits non-neighbor interactions, the lower bound weakens to
dlog(1/2 · (log∗ n− log∗ c))e [FR90], just like we could speed up the Cole-
Vishkin algorithm using pointer jumping.

3Note that h doesn’t really do anything but “rename” the sets such that they are easy to
count. That’s why, rather than turtles or sets, we like our colors to be numbers!
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What to take Home

• Exploiting parallelism, distributed algorithms can be extremely fast.

• Symmetry breaking is a fundamental challenge in distributed computing,
and a coloring is a basic structure that breaks symmetry between neigh-
bors.

• The key to understanding parallelism is to understand what is possible
based on limited (in particular local) information.

• What can and can’t be done is quite sensitive to the model. When consid-
ering running time bounds, impossibility results, etc. it is thus important
to keep in mind that changing an aspect of the model may have a dramatic
impact. Try always to understand what aspects of a model cause a certain
result, and wonder whether changing them would change the game!

• On the other hand, we can frequently prove unconditional lower bounds
in distributed computing, such as Theorem 1.7. If we do figure out what
the suitable model of computation is for a given system, we may be able to
understand precisely how fast things can be done. Contrast this with lower
bounds on sorting (which restrict the feasible operations) or impossibilities
in the sequential world that rest on conjectures like P 6= NP or the unique
games conjecture!

• Math is going to be our friend in this lecture. If your reflex is to disagree,
try to imagine figuring out how fast the list can be colored by concurrent
processes without the tools we used. Moreover, coming up with a proof
requires us to reflect on our assumptions and crystallize ideas; that’s dif-
ficult, but very useful when dealing with more complex problems later
on!

Bibliographic Notes

The basic technique of the log-star algorithm is by Cole and Vishkin [CV86].
The technique can be generalized and extended, e.g., to a ring topology or to
graphs with constant degree [GP87, GPS88, KMW05]. Using it as a subroutine,
one can solve many problems in log-star time.

The lower bound of Theorem 1.7 is due to Linial [Lin92]. Linial’s paper also
contains a number of other results on coloring, e.g., that any message passing
algorithm for coloring d-regular trees of radius r that runs in time at most
2r/3 requires at least Ω(

√
d) colors. The presentation here is based on a more

streamlined version by Laurinharju and Suomela [LS14].

Figures 1.9 and 1.10 are courtesy of Jukka Suomela and under a creative
commons license.4 Figures 1.4 and 1.8 are courtesy of Roger Wattenhofer;
substantial parts of today’s lecture are based on material from his course at ETH
Zurich. Wide parts of today’s lecture are covered by books [CLR90, Pel00].

4CC BY-SA 3.0, see https://creativecommons.org/licenses/by-sa/3.0/.
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Lecture 2

Synchronizers

In the previous lecture, we have seen that results may vary quite a bit depending
on the model. Today, we study one very important distributed model in more
detail. We will see that it can be a good approach to first figure out how to
simulate a more powerful model before attempting to solve a difficult problem.

2.1 Synchronous Message Passing

As promised in the previous lecture, we’ll be more precise about the considered
model(s) today. If you expect that this means tedious definitions, that’s not
actually true. Many useful models are useful because they are simple, implying
that understanding them means to learn something about a wide variety of
systems. This is also the case for the following well-studied model of distributed
computing.

Definition 2.1 (The LOCAL model). The network is modeled as a simple1

graph G = (V,E) of n nodes. Each node has a unique identifier of O(log n)
bits. An algorithm is executed in synchronous rounds, where in each round,
each node (a.k.a. processor) takes the following steps:

1. Do some local computations.

2. Send messages to its neighbors in the graph G.

3. Receive messages (that were sent by neighbors in step 2 of the same round).

In addition, nodes may determine a (local) output and terminate at the end of
a round. Also, there is a communication-free “zero-th” round in the beginning,
which enables the algorithm to compute the output and terminate without any
communication going on. The time complexity of a synchronous message pass-
ing algorithm is the time until all nodes have terminated. Note that the time
complexity for some trivial problems can be 0. Finally, some problems will also
have some additional input information, e.g., edge weights. Nodes will then
initially know the local part of the input, e.g., the weight of incident edges.

1Meaning: undirected, unweighted, loop-free, and without parallel edges.

15
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Clearly, this model is questionable for many reasons:

• We do not put restrictions on local computations or memory, which means
that nodes could solve NP-hard problems locally! Some authors consider
this cheating and require computations polynomial in n.

• Nodes can send messages of arbitrary size. In particular, they simply can
send everything they know to all neighbors in each round. This can easily
result in unrealistically large messages of size Ω(n2), e.g., in a complete
graph.

• We assume perfectly synchronous execution, but many practical systems
simply cannot operate this way or, if forced to do so, would have extremely
long rounds (because one needs to wait for the slowest computations to
finish and all messages to arrive before moving on to the next round).

So, why is the LOCAL model useful at all? First of all, it was originally
designed for proving lower bounds, just like the one given in Theorem 1.7. This
makes the statement only more powerful: Even if all the above crazy things
were possible, it would still take at least 1/2 · log∗ n−O(1) rounds to color the
list with few colors. Such results are surprisingly useful, simply because they
tell us what we shouldn’t spend our time on trying.

Second, algorithms designed in the LOCAL model frequently turn out to
use very little computations and memory, as well as small messages. The Cole-
Vishkin coloring algorithm is a prime example for this. After all, only so much
can be done with little information! Hence, it’s not a bad approach to design a
(fast) algorithm in this model and worry about things like message size later.

Finally, even if the designed algorithms are fast (in terms of the number of
rounds), but use large messages, we can either try to get rid of the “cumbersome”
aspects of the algorithm or know that an algorithm being slow must be caused
by a limitation in bandwidth or computation.

2.2 Asynchronous Message Passing

Still, all that doesn’t address the issue of synchrony, which, to put it mildly,
turns out to be more of a problem. Consequently, there is a “sister” to the
LOCAL model, the asynchronous message passing model.2

Definition 2.2 (The asynchronous message passing model). The network is
modeled as a simple graph G = (V,E) of n nodes. Each node has a unique
identifier of O(log n) bits. An algorithm is executed based on events. An event
at node v ∈ V is either the node starting to execute the algorithm or receiving
a message from a neighbor (nodes start the algorithm at the latest on reception
of the first message). Upon an event at node v, v does the following:

1. It does some local computations.

2. It may send messages to its neighbors in the graph G.

2The LOCAL model is also called synchronous message passing model, but that’s a mouth-
ful and I’m lazy.
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Each sent message will eventually be received, but it is completely arbitrary
which of the messages in transit will arrive next. Just like before, a node may
also determine a (local) output and terminate upon an event.

Observe that an asynchronous algorithm can also operate in the synchronous
model: If all nodes start the execution at time 0 and each message is under way
for exactly 1 time unit, this is exactly the same as executing the algorithm in a
synchronous system.

It is a crucial aspect of the asynchronous model that the time for a message
to reach its destination is unbounded. However, we still would like to figure out
what algorithms are “fast” in this model. We do this by giving the algorithm
more slack.

Definition 2.3 (Asynchronous time complexity). An algorithm in the asyn-
chronous message passing model has time complexity T , if in all executions in
which all nodes start the algorithm at time 0 and each message is received at
most one time unit after it was sent, all nodes terminate by time T .

Remarks:

• An asynchronous algorithm of time complexity T has synchronous time
complexity at most T .

• One can extend this definition to allow for not all nodes “waking up” at
time 0.

• Assuming asynchrony is typically unrealistic, too. However, this time
we’re overly pessimistic, which means that algorithms can deal with “more
synchronous” models, while lower bounds cannot.

• A lower bound or impossibility result based on asynchrony thus means
that one can/should look for adding constraints that make the system
“more synchronous,” enable better algorithms, and yet are still pessimistic
enough to be realistic.

• The synchronous and asynchronous models are two extremes, so under-
standing them also helps understanding what’s in between.

2.3 Simulating Synchrony

Our goal is to be able to “pretend” that the system is synchronous when coming
up with algorithms. In other words, we would like to figure out a (generic) way
of transforming a synchronous algorithm into an asynchronous one. The new
algorithm should behave just like the old, which is captured by the following
definition.

Definition 2.4 (Simulation). Algorithm A simulates algorithm B, if, given the
same inputs, both algorithms compute the same outputs.

A synchronizer generates sequences of clock pulses at each node of the net-
work satisfying the condition given by the following definition.
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Definition 2.5 (valid clock pulse). Assume that (upon an event), node v can
“trigger clock pulse i,” for i ∈ N and nodes simulate a synchronous algorithm
A. When generating clock pulse i, node v will send all messages it would send
in round i according to A; to each of these messages it will attach the round
number i. Clock pulse i (at node v) is valid if it is generated after v generated
all pulses j < i, it has not been generated before, and it is generated after v
received all the messages of the synchronous algorithm sent to v by its neighbors
in rounds j < i.

Given a mechanism that generates valid clock pulses 1, . . . , T+1 at all nodes,
a T -round synchronous algorithm can be simulated: Each node can compute its
output based on its local history of messages and clock pulses.

Lemma 2.6. If all generated clock pulses are valid according to Definition 2.5
and all non-terminated nodes keep generating pulses, we can simulate the re-
spective synchronous algorithm.

Proof. Suppose synchronous Algorithm A terminates in T rounds at node v.
When v generates pulse T + 1, it has received all messages sent by its neighbors
during the execution of A, neatly labeled by their round numbers. It can thus
locally perform exactly the computations that A would, output the result, and
terminate.

Note that the messages a synchronous algorithm sends in round i are simply
the “output” generated by executing the algorithm partially up to round i− 1;
if i − 1 is 0, this just means to compute the first set of messages based on the
input. In particular, it’s safe to generate pulse 1 right away at each node. In
other words, all we need to do is to provide a method that generates clock pulse
i + 1 at each node provided that clock pulse i ∈ N has been generated at each
node and the respective messages of A have been sent.

The main issue with generating clock pulse i + 1 at a node v is that (in
general) v cannot know which of its neighbors send a message in round i of A.
As messages may be in transit arbitrarily long, this means that if it produces a
clock pulse without hearing from some neighbor, it risks generating an invalid
pulse. On the other hand, if there is no such message, but it plays things safe,
it may wait indefinitely and we have a deadlock.

The most simple solution to this dilemma is to make sure that there is always
a message from each neighbor in each round. Denote by mA(v, w, i) the message
v sends to w in round i when executing A; if A sends no such message or has
already terminated at v, we write mA(v, w, i) = ⊥. With this notation, this
strategy is cast into Algorithm 5.

Theorem 2.7 (Synchronizer α). Given a synchronous Algorithm A of running
time T , synchronizer α simulates it in an asynchronous system with a running
time of T . The number of additional messages send compared to an execution
of A is at most 2(T + 1)|E|.
Proof. To prove simulation, we will show that

1. All generated pulses are valid.

2. If node v terminates at the end of round Tv in A, it generates pulses
1, . . . , Tv + 1, terminates when generating pulse Tv + 1, and outputs the
correct result.
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1

(m(2, 1, 1), 1)

2

(m(2, 3, 1), 1)

34

1 2

(m(3, 2, 2), 2)

34

(m(3, 4, 2), 2)

Figure 2.1: First two “rounds” of an execution of the α-synchronizer. Black
arrows correspond to messages sent by the original algorithm, while red edges
indicate (⊥, i) messages. Actually, one can just send ⊥ messages, where the
receivers count the number of ⊥ messages received from each neighbor; for this
reason, we refrained from depicting the message contents for red arrows.

3. For each pulse i ∈ {1, . . . , Tv}, v sends (mA(v, w, i), i) to all neighbors
upon generating pulse i.

4. At pulse Tv + 1, v sends (term, Tv + 1) to all non-terminated neighbors.

5. If, for {v, w} ∈ E, w terminates with pulse Tw+1, v will wait for a message
from w in rounds 1, . . . , Tw + 1.

We prove this by induction. The base case is i = 1. Clearly, all nodes
generate valid pulse 1 and compute and transmit the messages for round 1 upon
wake-up; they wait for messages from all neighbors w, since initially termv(w) =
∞. Also, note that in the event that a node would terminate immediately
according to A (i.e., “after 0 rounds”), it also does so here, computes the same
output, and sends a (term, 1) message to each neighbor.

Now suppose all statements are true for pulses 1, . . . , i of each node and
consider pulse i + 1. As all messages for round i were computed and sent,
eventually they arrive. Neighbors not sending a message have, by the induction
hypothesis, terminated in an earlier round, so v sent termv(w) = j for some j ≤ i
and will not wait for such a message. Hence, eventually each v will generate
pulse i+ 1. As the content of all messages for pulses 1, . . . , i was correct, nodes
correctly store them and compute and send the messages (mA(v, w, i+1), i+1).
Likewise, termination and corresponding outputs are determined correctly. This
completes the induction step and thus the proof that A is simulated.

Concerning the time complexity, observe that all messages for pulse/round 1
are sent at time 0 and received by time 1 (assuming delays of at most 1). Hence
all (non-terminated) nodes generate pulse 2 by time 1 and the corresponding
messages are received by time 2, and so on. By time T , all nodes terminated
or generated pulse T + 1, the latter also implying that they terminated because
they completed T rounds of A.

Regarding the number of sent messages, note that node v sends in pulses
i ∈ {1, . . . , Tv + 1} at most one message over each incident edge. Denoting by
δv := |{w ∈ V | {v, w} ∈ E}| the degree of v, the total number of messages is at
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Algorithm 5 α-synchronizer simulating A (code for node v ∈ V )

1: if v just woke up then
2: pulsev := 1
3: for {v, w} ∈ E do
4: termv(w) :=∞
5: compute mA(v, w, 1)
6: send (mA(v, w, 1), 1) to w
7: end for
8: end if
9: if v received (mA(w, v, i), i) from w then

10: store (mA(w, v, i), i)
11: end if
12: if v received (term, i) from w then
13: termv(w) := i
14: end if
15: if v stores (mA(w, v, i), i) for each {v, w} ∈ E with termv(w) > i and

pulsev = i then
16: pulsev := i+ 1
17: check if A terminates at v at the end of round i (from stored messages,

ignoring ⊥ and term)
18: if A terminates at v at the end of round i then
19: for {v, w} ∈ E with termv(w) > i+ 1 do
20: send (term, i+ 1) to w
21: end for
22: compute output of A (from stored messages) and terminate
23: else
24: for {v, w} ∈ E with termv(w) > i+ 1 do
25: compute mA(v, w, i+ 1) (from stored messages)
26: send (mA(v, w, i+ 1), i+ 1) to w
27: end for
28: end if
29: end if

most

∑

v∈V

Tv+1∑

i=1

δv =
∑

v∈V
(Tv + 1)δv ≤ (T + 1)

∑

v∈V
δv = 2(T + 1)|E|,

where the last equality uses that each edge has exactly two endpoints.

Remarks:

• Despite its length, this proof is quite simple. The most difficult part is to
figure out all the conditions that must be satisfied to perform the induction
step and make them part of the induction hypothesis (which then makes
things tedious).

• The same problem transpired when I wrote the pseudo-code for Algo-
rithm 5. It’s idea is straightforward, but I made several mistakes. Al-
lowing for all the cases and treating them properly can be tiresome, and
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makes it challenging to show correctness of more involved asynchronous
algorithms.

• Fortunately, Theorem 2.7 shows that we have to do it only once! We
now can devise synchronous algorithms and make them into asynchronous
algorithms using the synchronizer.

• The argument extends to randomized algorithms in the following way. In-
terpret a randomized algorithm as a deterministic algorithm in which each
node has an additional input: a (sufficiently long) string of independent,
unbiased random bits. Now synchronizer α simulates a randomized syn-
chronous algorithm. The algorithm has to fulfill that if a node is given the
same randomness (i.e., the strings are the same) throughout the simulated
“asynchronous rounds,” it must show the same behavior.

• Note that this can be subtle: If in a program one calls a standard function
producing a random value, it may compute the “random” value by taking
into account the system clock’s time!

• Of course, that’s not the end of the story. This equivalence between asyn-
chronous and synchronous systems breaks down if we take into account
other factors, such as the number of messages sent by an algorithm (we’ll
look into this now) or the possibility of failures (we’ll look into this next
lecture).

2.4 Synchronizing Globally

Synchronizer α is “expensive” in terms of messages. This may be fine if the
simulated algorithm also sends a lot of messages, implying that there’s not
much of a difference. Similarly, if A communicates only over a subset of the
edges that are known in advance (e.g. a spanning tree), we can also run the
synchronizer on the induced subgraph only. However, if neither is the case and
we care about the number of messages, we might want to look for something
else.

An obvious way of reducing the number of messages per round related to
the synchronizer is to communicate control messages over fewer edges. Since we
need to make sure that all (potential) neighbors are synchronized, the respective
edge set must connect all nodes. A connected graph with the fewest number of
edges is a tree.

Definition 2.8 (Distributed representation of a rooted tree). A distributed
rooted tree is defined as follows. There is a distinguished root node v0 ∈ V .
Each v ∈ V \{v0} has a neighbor pv as parent; pv is known to v and vice versa.

Note that it’s easy to root an unrooted tree (i.e., one where nodes don’t know
pv) at a node v0 in time equal to it’s depth with r as root, by sending messages
“down” the tree. If we also need to figure out which node becomes root, we can
use, e.g., the node with largest identifier. We then start the rooting procedure at
each node, including the corresponding identifier into each message, and always
let the currently largest known identifier “win.”

How do we use a given rooted tree for synchronization? We let the root
orchestrate the execution of the algorithm. Nodes will send their messages for
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a given round, wait for acknowledgments from the recipients, and then consider
themselves “safe” for the current round.

Definition 2.9 (Safe Node). A node v is safe with respect to a certain clock
pulse if all messages of the synchronous algorithm sent by v in that pulse have
already arrived at their destinations.

If all nodes are safe, we can move on to the next round. So we let the root
know when all nodes are safe and then, in turn, distribute the information that
this is the case to all nodes – both via the tree. The details of synchronizer β
are given in Algorithm 6.

Theorem 2.10 (β-synchronizer). Denote by d the depth of the tree employed
by Algorithm 6. The algorithm simulates the synchronous T -round Algorithm A
in O(d(T + 1)) asynchronous rounds. In total O(M + (T + 1)n) messages are
sent, where M is the number of messages sent by A.

Proof sketch. We give the main idea of the proof here; working out the details
is similar to the proof of Theorem 2.7.

When the root issues a new pulse by sending a pulse message, it is forwarded
to each node in the tree, as each node sends it to its children upon reception.
Hence, if the root issues a pulse, eventually all nodes issue the pulse. Upon
a pulse, nodes send the their messages for the respective round of A, wait for
the acknowledgments, and then set their safe-variable for the pulse to true.
Note that this will eventually happen (no message is lost, acknowledgments are
always sent), and it implies that the respective node is indeed safe. A safe node
will send a safe message to its parent as soon as it received safe messages from
all of its children. Thus, by induction on decreasing distance from the root
(i.e., starting at leaves), all nodes will send safe messages to their parents; the
induction also shows that this entails that the subtree rooted at the respective
node consists of safe nodes only. Consequently, eventually the root will generate
the next pulse, and at this point all nodes are safe.

This way the algorithm will proceed until all nodes have determined that
A has locally terminated. This information is forwarded to the root in a sim-
ilar fashion to the information that nodes are safe (using the done messages),
the only difference being that not necessarily all nodes terminate in the same
simulated round of A. However, all nodes participate in the synchronizer un-
til the root initiates the distribution of term messages, which happens when it
learns that all nodes’ simulation of A has locally terminated. We conclude that
Algorithm 6 simulates A.

Now consider the time complexity. Suppose pulse i starts at time t. By time
t+ d, all nodes have received their (pulse, i) message. Thus, by time t+ d+ 2,
the messages of A for round i have been received, acknowledged, and also these
acknowledgments have arrived. Now, starting from the leaves, we see that by
time t + 2d + 2, the root will have received safe messages from all its children
and issue pulse i+ 1. Since A terminates in T rounds, all nodes will notice this
when generating pulse T + 1. Then it takes at most d time until the root learns
that all nodes have completed their part of the execution of A and another d
time to terminate, for a total of O(dT +d) = O(d(T +1)) asynchronous rounds.

Finally, let us check the message complexity. In each pulse, over each tree
edge a pulse and a safe message is sent. We also have one done and one term
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Algorithm 6 β-synchronizer simulating A (code for node v ∈ V ). For sim-
plicity, we adopt the convention that v stores all received information for later
reference and performs necessary computations.

1: if v just woke up then
2: donev := false
3: if v is root then
4: send (pulse, 1) to self (i.e., execute code for “received (pulse, 1)”)
5: end if
6: end if
7: if received (pulse, i) then
8: pulsev := i
9: safev(i) := false

10: send (pulse, i) to children
11: for {v, w} ∈ E with mA(v, w, i) 6= ⊥ do
12: send (mA(v, w, i), i) to w
13: end for
14: end if
15: if v received (mA(w, v, i), i) from w then
16: send (ACK, i) to w
17: end if
18: if v received (ACK, i) from all w with mA(v, w, i) 6= ⊥ then
19: safev(i) := true
20: end if

// do the following only once for each pulse i
21: if safev(i) = true and v received (safe, i) messages from all children then
22: if v is the root then
23: send (pulse, i+1) to self (i.e., execute code for “received (pulse, i+1)”)
24: else
25: send (safe, i) to parent
26: end if
27: if A terminates at v at the end of round i then
28: donev := true
29: end if
30: end if
31: if donev = true and received done from all children then
32: if v is root then
33: send term to all children
34: compute output and terminate
35: else
36: send done to parent
37: end if
38: end if
39: if v received term then
40: send term to children
41: compute output and terminate
42: end if
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message per tree edge. All other messages are either messages of A or acknowl-
edgments for such messages. Hence, the total number of messages is

∑

tree edges

2 +
T+1∑

i=1

∑

tree edges

2 +
∑

messages of A
2

= 2(n− 1) + 2(T + 1)(n− 1) + 2M

∈ O(M + (T + 1)n),

provided that no node ever sends a message related to pulses larger than T + 1.

To achieve this, we bundle up the synchronizer-related messages a node sends
to its parent (i.e., safe and done) in each pulse. This means that the root cannot
learn that pulse T + 1 is complete without also noticing that A has terminated.
The root then will just send the term message and terminate without issuing
another pulse.

Remarks:

• The last paragraph of this proof highlights again how careful one needs to
be with asynchrony. If safe and done messages are handled independently,
it could happen that a done message is incredibly slow and we execute a
huge number of pointless pulses!

• Strictly speaking, the theorem is therefore about a slightly different version
of Algorithm 6. Since this means the theorem is technically wrong, I hope
that this way of presenting it is at least very didactic.

• Note that nodes cannot terminate just because they’re done with simu-
lating A. They have to relay information to and from the root.

• The β-synchronizer is an example of repeated use of the flooding/echo
routine. The root “floods” the information to do something through the
tree, and the result is then collected by the “echo” emanating from the
leaves. Here, the job is to make sure that all messages of A have arrived,
so some additional waiting can be involved.

• Flooding/echo is extremely useful when sufficient time is available (i.e.,
we don’t mind waiting for d time). One can use the principle for detecting
termination of algorithms or determining sums (including the number of
nodes), averages, maxima, etc., and then making the result known to
everyone.

• One can do the flooding also without having a tree at hand, instead con-
structing it “on the fly.” In this version, the first received message deter-
mines the parent, and one speculatively sends a message to all neighbors
at this point, as they might become children. This costs Θ(|E|) messages.
If we start from a “clean slate” (no knowledge of the network topology),
this number of messages is necessary to make sure that no node is missed:
an unexplored edge may lead to a node with no other connection to the
network.
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• Surely, synchronizer β is message-optimal (up to constants)? Nope! We
could just collect and make known the entire graph (including identi-
fiers and inputs) to each node by collecting and distributing it using
echo/flooding on the tree, using O(n) messages. Afterwards, each node
can simulate the complete algorithm locally!

• “That’s cheating!!” you might exclaim. Rightfully so, because if we could
do things centrally, then we wouldn’t need to think about a distributed
algorithm in the first place. Still, in practice this is something to always
check before rushing to the fancy solutions from this course!

2.5 BFS Tree Construction
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Figure 2.2: Trivial synchronous BFS tree construction. The root sends “1” to
all neighbors. Nodes receiving a message “d” know they are in distance d from
the root, send d+ 1 to all neighbors, and terminate. Here we see the algorithm
in the complete graph; in general, it requires D synchronous rounds, where D
is the diameter of the network.

Synchronizer β requires a tree to operate, preferably one with small depth d.
In synchronous systems, flooding is a simple yet efficient method to construct
a breadth-first search (BFS) spanning tree using at most 2|E| messages and
ensuring that d ≤ D, where

D := max
v,w∈V

{dist(v, w)} (2.1)

is the network diameter and dist(v, w) is the length of a shortest path from v
to w. However, in asynchronous systems the spanning tree constructed by the
flooding algorithm may be far from BFS; in the worst case, we construct a line
in a complete graph (see Figure 2.4)!

In this section, we implement two classic BFS constructions—Dijkstra and
Bellman-Ford—as asynchronous algorithms. We start with the Dijkstra algo-
rithm. The basic idea is to always add the “closest” node to the existing part
of the BFS tree. We parallelize this idea by developing the BFS tree layer by
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layer. In Algorithm 7, by “broadcast” we denote the operation that the root uses
flooding to distribute some information throughout the (current) tree. “Echo”
means the process of all leaves sending some information to the root, which
interior nodes aggregate from all children before forwarding it.

Theorem 2.11 (Distributed Dijkstra). The time complexity of Algorithm 7 is
O(D2). Its message complexity is O(|E|+ nD).

Proof. A broadcast/echo algorithm in Tp needs at most time 2D. Finding new
neighbors at the leaves costs 2 time units. Since the depth of the BFS tree
is bounded by the diameter, we have at most D phases, giving a total time
complexity of O(D2).

The broadcast/echo routine uses each edge of a tree twice, i.e., at most
2(n − 1) such messages are sent in each phase. Since there are D phases, this
amounts to O(nD) messages. On each edge, there are at most 2 “join” messages.
Replies to a “join” request are answered by 1 “ACK” or “NACK,” which means
that we have at most 4 additional messages per edge. Therefore the message
complexity is O(|E|+ nD).

Remarks:

• The description of the algorithm is less formal than before, but highlights
the structure of the algorithm better. This helps with explaining the idea,
but don’t be fooled: This style can easily trick the reader (or writer!)
into believing some things will happen in a certain order, while in fact
asynchrony could cause something entirely different to happen!

• We haven’t specified how the root is selected. Either one has to specify
this in advance, or the problem of leader election has to be solved. This
is another fundamental problem in distributed computing.

The basic idea of the Moore-Bellman-Ford algorithm is even simpler. We
keep book on the distance to the root. If a node has found a better route to the
root, its neighbors update their distance accordingly.

Algorithm 7 Dijkstra BFS

1: The algorithm proceeds in phases. In phase i the nodes with distance i to
the root are detected. Let Ti be the tree in phase i. We start with T0 which
is just the root.

2: repeat
3: The root starts phase i by broadcasting “start i” within Ti.
4: When receiving “start i” a leaf node v of Ti (that is, a node that was

newly discovered in the last phase) sends a “join i + 1” message to all
quiet neighbors. (A neighbor w is quiet if v has not yet “talked” to w.)

5: A node v receiving the first “join i+ 1” message replies with “ACK” and
becomes a leaf of the tree Ti+1.

6: A node v receiving any further “join” message replies with “NACK.”
7: The leaves of Ti collect all the answers of their neighbors; then the leaves

start an echo algorithm back to the root.
8: When the echo process terminates at the root, the root increments the

phase.
9: until there was no new node detected
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Figure 2.3: A run of Dijkstra’s algorithm on the graph depicted on the left.
In the first phase, the neighbors of the root join the tree, resulting in T1. The
second phase uses the existing tree edges to communicate its start and finish
messages, very similar to the β-synchronizer. If there were more distant nodes
w.r.t. the root, there would be more phases following the same pattern.

Algorithm 8 Bellman-Ford BFS

1: Each node v stores an integer dv which corresponds to the distance dist(v, v0)
to the root v0. Initially dv0 = 0, and dv =∞ for v ∈ V \ {v0}.

2: The root starts the algorithm by sending “1” to all neighbors.
3: if v receives “d” with d < dv from w then
4: dv := d
5: pv := w
6: v sends “d+ 1” to all neighbors
7: end if

Theorem 2.12 (Bellman-Ford BFS). The time complexity of Algorithm 8 is
O(D), the message complexity is O(n|E|).

Proof. We prove the time complexity by induction. We claim that a node at
distance d from the root has received a message “d” by time d. The root knows
by time 0 that it is the root. A node v at distance d has a neighbor w at distance
d− 1. Node w, by the induction hypothesis, sends a message “d” to v by time
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d− 1, which is then received by v by time d.
Regarding message complexity, a node can reduce its distance at most n− 1

times; each of these times it sends a message to all of its neighbors. If all nodes
do this we have O(n|E|) messages.

Remarks:

• Here’s another “wrong” algorithm/proof: I didn’t say in the algorithm or
the theorem how termination is detected. Can you see how to fix this? (If
not, don’t worry.)

• Algorithm 7 has the better message complexity and Algorithm 8 has the
better time complexity. The currently best algorithm (optimizing both)
needs O(|E|+ n log3 n) messages and O(D log3 n) time. This “trade-off”
algorithm is beyond the scope of this lecture.

• As such an advanced algorithm is quite efficient and one usually can con-
struct the tree in advance, in many cases it is not a big deal. Still, one
needs to keep in mind that this initial overhead exists and might not be
worth it.

2.6 Hybrid Synchronizers

Synchronizer α is fast, but costs a lot of messages. Synchronizer β is slow, but
efficient in terms of messages. Can we compromise? The answer is yes and
called (surprise!) synchronizer γ.

We will now briefly discuss the key ideas (there has been enough detail for
one lecture already!). In the initialization phase, the network is partitioned into
clusters of small diameter. In each cluster, a leader node is chosen and a BFS tree
rooted at this leader node is computed. These trees are called the intracluster
trees. Two clusters C1 and C2 are called neighboring if there are nodes u ∈ C1

and v ∈ C2 for which {u, v} ∈ E. For every two neighboring clusters, an
intercluster edge is chosen, which will serve for communication between these
clusters. Figure 2.5 illustrates this partitioning into clusters.

We say that a cluster is safe if all its nodes are safe. Let’s start the de-
scription from all nodes generating a pulse (which, of course, may happen at
very different times). In at most 2 time units, all nodes will be safe. As in
synchronizer β, we now let the leader of each cluster learn that the cluster is
safe (we use acknowledgments again). Then, the leader will let the leaders of
adjacent clusters know that its cluster is safe. This is done by flooding this
information through the own cluster using the tree, then communicating it over
the intercluster edges, and using the same approach as in the β-synchronizer to
collect the information that all adjacent clusters are safe within the cluster (i.e.,
a “safe” message is sent to the parent once “safe” via all incident intercluster
edges and from all children has been received). Once a cluster leader knows
that all adjacent clusters and its own are safe, it tells all nodes in its cluster
to generate the next pulse. Hence, we essentially apply synchronizer α between
clusters.

Theorem 2.13 (Synchronizer γ). Let EC be the set of intercluster edges and
let k be the maximum cluster radius (i.e., the maximum distance of a leaf to
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Figure 2.4: “Bad” execution of the Bellman-Ford algorithm on the complete
graph of 4 nodes. Red arrows indicate messages that cause nodes’ estimated
distances to change upon reception. Dotted arrows indicate that such messages
are delayed. Note that terminating when the first distance estimate is obtained
(i.e., running a naive synchronous BFS algorithm) would yield erroneous results.
Moreover, on average each node changes its label n/2 times (here n = 4),
implying a message complexity of n · n · n/2 ∈ Θ(n3).

its cluster leader). Simulating a synchronous T -round algorithm sending M
messages using synchronizer γ then takes O((T +1)k) time and requires O(M+
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Figure 2.5: A cluster partition of a network: The dashed circles specify the
clusters, cluster leaders are black, the solid edges are the edges of the intracluster
trees, and the bold solid edges are the intercluster edges.

(T + 1)(|EC |+ n)) messages.

Proof sketch. From the above description, we see that each pulse requires a con-
stant number of flooding and echo operations on the trees (which have depth
at most k and in total at most n − 1 edges), 2 messages over each interclus-
ter edge, and the messages of the simulated algorithm plus acknowledgments.
Hence, each pulse takes O(k) time, O(|EC |+n) synchronizer messages, and two
times the number of messages sent by the algorithm in the simulated round.
Summing up, over T rounds (and taking into account handling of termination),
we get the stated bounds.

In the exercises, we will see that one can have |EC | ∈ O(n1+1/k), which is
pretty impressive.

Corollary 2.14 (Synchronizer γ). For k ∈ {1, . . . , dlog ne}, there is a network
partition so that synchronizer γ simulates a synchronous T -round algorithm
sending M messages in O((T + 1)k) time and requires O(M + (T + 1)n1+1/k)
messages.

Remarks:

• For k = 1, this is just like synchronizer α.

• For k = dlog ne, this uses as few messages as synchronizer β, but pays
only a factor of O(log n) in time, regardless of D!
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Remarks:

• It can be shown that the trade-off between cluster radius and number of
intercluster edges of Corollary 2.14 is asymptotically optimal. There are
graphs for which every clustering into clusters of radius at most k requires
n1+c/k intercluster edges for some constant c.

• The synchronizers β and γ achieve global synchronization, i.e. every node
generates every clock pulse. The disadvantage of this is that nodes that do
not participate in a computation also have to participate in the synchro-
nization. In many computations (e.g. in a BFS construction), many nodes
only participate for a few synchronous rounds. In such scenarios, it is
possible to achieve multiplicative time and message complexity overheads
of O(log3 n) (without initialization).

• It can be shown that if all nodes in the network need to generate all pulses,
the trade-off of synchronizer γ is asymptotically optimal.

• Partitions of networks into clusters of small diameter and coverings of net-
works with clusters of small diameters come in many variations and have
various applications in distributed computations. In particular, apart from
synchronizers, algorithms for routing, the construction of sparse spanning
subgraphs, distributed data structures, and even computations of local
structures such as maximal independent sets can be based on some kind
of network partition or cover.

What to take Home

• Asynchrony does not affect solvability of problems – if there are no faults.

• It comes at a cost in time and/or message complexity, though.

• Simulation is a powerful tool for designing algorithms. Designing and an-
alyzing advanced asynchronous algorithms can be very challenging. If it’s
ok to run a synchronizer (which simulates synchrony), things can become
astronomically simpler.

• Not all problems have a single best solution. Frequently, there is a trade-off
between quality measures that cannot be compared in a straightforward
way, e.g. time vs. messages.

• Then again, there might be a “sweet spot,” where the cost in either mea-
sure is very small. We had this with time vs. number of colors for list
coloring, and with the γ-synchronizer using a good network partition.

• On the way to a good solution, it may turn out that one needs to solve
another problem that did not appear to be of relevance initially.

• Totally unrelated: network partitions rock!
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Bibliographic Notes

The idea behind synchronizers is quite intuitive and as such, synchronizers α and
β were implicitly used in various asynchronous algorithms [Gal76, Cha79, CL85]
before being proposed as separate entities. The general idea of applying syn-
chronizers to run synchronous algorithms in asynchronous networks was first
introduced by Awerbuch [Awe85]. His work also formally introduced the syn-
chronizers α, β, and γ. Improved synchronizers that exploit inactive nodes or
hypercube networks were presented in [AP90, PU87].

Trees are one of the oldest graph structures, already appearing in the first
book about graph theory [Koe36]. Broadcasting (i.e., flooding some information
through the network) in distributed computing is younger, but not that much
[DM78]. Overviews about broadcasting can be found for example in Chapter 3 of
[Pel00] and Chapter 7 of [HKP+05]. Overviews of distributed tree construction
can be found in Chapter 5 of [Pel00] or Chapter 4 of [Lyn96]. The classic papers
on routing are [For56, Bel58, Dij59].

Figure 2.5 is courtesy of Roger Wattenhofer. Wide parts of this lecture
are based on the corresponding lecture of his course “Principles of Distributed
Computing.”
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Lecture 3

Impossibility of Consensus

In the previous lecture, we saw that it is possible to simulate synchronous algo-
rithms in asynchronous systems. Today, we will see that a basic fault-tolerance
task, consensus, is unsolvable in asynchronous systems. In the exercises, we
will see that consensus is straightforward in synchronous systems, separating
synchronous and asynchronous systems beyond differences in efficiency.

3.1 The Problem

A standard formulation of the (binary) consensus problem is given as follows.
Each of n nodes is given a binary input bi, i ∈ {1, . . . , n}. Nodes may crash
during the execution. A node that crashes is faulty, while nodes that do not
crash are correct. Correct nodes i ∈ [n] are to compute an output oi such that
the following properties hold.

Agreement Correct nodes i output the same value o = oi.

Validity If all nodes have the same input b, then o = b.

Termination All correct nodes decide on an output and terminate.

Being able to solve this problem can, e.g., be useful for control of a plane. For
safety reasons, there are several computers in case some of them fail. Suppose
they need to decide between two possible courses for the plane, at least one of
which is safe. If the computers each compute an opinion bi based on the data
they have, you surely want the decision to satisfy all three properties:

Validity If the data clearly prefers one route over the other, this decision should
be taken! Otherwise: plane crash.

Agreement Some decision must be taken even if the data is inconclusive (the
computers compute different values bi). The plane must take one of the
two routes! Otherwise: plane crash.

Termination This decision must be taken at some point. In fact, probably
soon, which is why the time complexity of consensus algorithms is impor-
tant, too! Otherwise: plane crash.

35
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Figure 3.1: This is not supposed to happen!

Note that this problem is a no-brainer in absence of faults. Just pick a leader
(e.g., the node with smallest identifier) and decide on its input! But what if
this node crashes? In a synchronous system someone will notice, but in an
asynchronous system there is no way to be sure that it’s not just a bad case of
excruciatingly slow message delivery. . .

We need to specify the model in which we want to consider the problem. We
will use a model that is stronger than the message passing model (we will see
later why), the asynchronous shared memory model. Here, there is some com-
mon memory accessible by all n nodes that is used to communicate. Nodes read
and write registers of this memory atomically. This means that nodes read the
entire register in one go or (over)write the content of a register without anyone
else interfering. For convenience, we assume that all registers are initialized with
a special symbol ⊥. The catch now is that a scheduler decides who’s next – and
since we’re talking asynchrony here, it is under no obligation regarding which
other nodes it schedules (and how often) before it picks a specific node that
wants to read or write. However, it is required to schedule non-crashed nodes
eventually. Any node that intends to read or write is scheduled (or crashes)
after finitely many steps. This property is called fairness. The scheduler may
also decide to crash a node, simply meaning that it will not be scheduled again.

As usual, nodes have unique identifiers, initially know their input value only,
and local computations are “free.” It’s convenient to assume that a node per-
forms all its initial local computations and those after a read/write instanta-
neously. Thus, a node is always either waiting to perform a read or write
operation, is crashed, or is terminated; local termination occurs when a node
decides at the end of a step that it’s done and outputs a value.
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Figure 3.2: Sample execution of shared memory system with 3 nodes and
2 shared registers. The depicted execution is (b1 = 0, b2 = 1, b3 =
0,write1(R1, 12), term1, read2(R2), crash3). The currently executed operation
is marked red, gray operations are already executed and black operations are
currently outstanding.
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Remarks:

• Dropping any of the requirements of agreement, validity, or termination
renders the problem trivial. Think of the respective “solutions!”

• Observe that fairness basically means that it’s not ok to crash a node
without saying so. This is relevant because a crashed node does not have
to decide or, if it already decided, have the same output as others.

• With fairness, one can define asynchronous rounds like for message pass-
ing: within one time unit, each node is guaranteed to be scheduled at least
once.

• We assume the powerful shared memory communication and benign faults
(there’s much worse than clean crashes out there, but that’s a tale for
another day!). This makes the impossibility we will show a strong result.

• On the other hand, we consider asynchronous communication and deter-
ministic algorithms, so do not despair!

3.2 Getting Started

Today’s main result was surprising and a big deal when it was shown first. It
was surprising both because it’s not easy to show and because quite a few people
believed that asynchronous consensus is possible. It will be much easier for us,
and that’s because the right definitions will point us in the right direction.1

Definition 3.1 (Executions). An execution of an algorithm is given by a se-
quence of read and write operations, crashes, and terminations, alongside the
initial inputs given to the nodes; naturally, the decision whether a node termi-
nates, reads, or writes (and if so what) in its next step is made by the algorithm.

Note that, since we require that all nodes that do not crash must terminate,
all executions that are relevant to us are of finite length. Also, as stated earlier,
we will consider fair executions only.

We now can state the main result.

Theorem 3.2 (FLP (Fischer, Lynch & Patterson)). There is no algorithm that
solves the consensus problem in all fair executions with at most one fault.

As mentioned, good definitions are pivotal. We will need two key concepts.
The first is called indistinguishability. Note that while Definition 3.1 is about
the entire network, the following definition is about how an execution looks like
at a specific node:

Definition 3.3 (Indistinguishable Executions). Two executions are indistin-
guishable at node i, iff in both executions i has the same input, performs the
same sequence of read and write operations, and all the read operations return
the same values in both executions.

1The professor of one of my math courses once said that definitions are even more important
than theorems, because the right definition tells us how to look at things and paves the way
for the big results.
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If two executions are indistinguishable at node i, it must behave the same
way in both executions.

Lemma 3.4. If two executions are indistinguishable at node i, the write oper-
ations of i in both executions are identical. If it terminated, the output values
are identical. If it hasn’t terminated yet, its next action is the same in both
executions.

Proof. By induction, the memory state of and values written by i are the same
in the respective steps of each execution. Hence i’s output value or next step,
respectively, is also the same.

The second definition looks even simpler.

Definition 3.5 (Bivalency and Univalency). For b ∈ {0, 1}, an execution of
a consensus algorithm is b-valent, if any possible continuation of the execution
results in output b. It is univalent, if it is b-valent for some b. Otherwise, it is
bivalent.

Combining these two notions, we obtain a crucial observation that will be
at the heart of our reasoning.

Corollary 3.6. If two executions are indistinguishable at all non-crashed nodes
and each shared register contains the same value at their end, they have the
same valency (i.e., both are 0-, both are 1-, or both are bivalent).

Proof. By (inductive use of) Lemma 3.4, any extension of one execution is
also a valid extension of the other, and the result will be two indistinguishable
executions: every read operation will return the same value in both executions.
Thus, outputs in such a pair of executions must be identical. Now the claim
readily follows from the definition of bi- and univalency.

Here’s the plan:

1. Show that there are bivalent executions or validity is violated.

(a) If validity holds, use it to show that there are 0- and 1-valent execu-
tions.

(b) Infer that there must be a configuration for which one node’s input
makes the difference.

(c) Conclude that crashing/not crashing the node must result in different
outputs in some execution.

2. For any node i, show that we can extend any bivalent execution to another
bivalent execution such that i takes another step; alternatively, there is
an execution violating agreement.

(a) For a bivalent execution that has no bivalent extension with another
step of i, there are 0- and 1-valent extensions involving another step
of i.

(b) Infer that there must be a configuration for which swapping the steps
of nodes i and some j 6= i makes the difference between 0- and 1-
valency.
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(c) Perform a case analysis proving that agreement is violated in some
execution (using Lemma 3.4, Corollary 3.6, and the 0-/1-valency of
the extensions).

3. Conclude that if agreement and validity hold, an infinite fair execution
exists (i.e., termination does not hold).

As you can see, many of the above statements require that some of the
properties of a consensus algorithm hold. For simplicity, we will assume that
we have an algorithm solving consensus and ultimately derive a contradiction.
Apart from this, the structure of the proof remains exactly as outlined above.

3.3 Step 1: Bivalent Executions Exist

In the following, let A be a consensus algorithm, i.e., one that satisfies agree-
ment, validity, and termination. First, we use validity to show that there must
be at least one bivalent execution.

Lemma 3.7. A has a bivalent execution without crashes.

Proof. For j ∈ [n + 1], consider the execution Ej that’s simply given by the
inputs bi = 0 for all i > j and bi = 1 for i ≤ j (i.e., nothing has happened
yet except for the inputs being specified). If any of these executions is bivalent,
we’re done, so let’s suppose for contradiction that they are all univalent.

If j = 0, bi = 0 for all i ∈ {1, . . . , n}, and validity implies that the output is
0. Likewise, the execution with j = n is 1-valent. Hence, there must be some
j ∈ [n] such that Ej is 0-valent and Ej+1 is 1-valent. Since nothing has happened
yet, both executions are indistinguishable to all nodes but j, which has different
input in both executions. Thus, crashing j yields two executions of different
valency that are indistinguishable at all non-crashed nodes, where the shared
registers haven’t been touched yet. This contradicts Corollary 3.6!

Remarks:

• We used the possibility of a fault to show that there is a bivalent execu-
tion. However, we didn’t “use up” the fault, we have a fault-free bivalent
execution!

3.4 Step 2: Extending Bivalent Executions

Next, we show that, given a bivalent execution and a node i, a “follow-up”
execution exists that is also bivalent and in which i performs a step. This last
bit is crucial, because it ensures that a bivalent execution can be “kept bivalent”
even in a fair schedule.

We start with a helper lemma ensuring that we can extend a bivalent exe-
cution to force either decision without crashing a node.

Lemma 3.8. Given a bivalent execution E of A and b ∈ {0, 1}, we can extend
E to a b-valent execution E ′ without any further crashes.
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Figure 3.3: Key argument of Lemma 3.7. Assuming that no bivalent execution
exists, validity implies that we can find a pair of “executions” (i.e., inputs) for
which only the input of a single node differs, but one execution is 1- and the
other 0-valent. Crashing this node, which is the only one knowing about the
difference, right away, yields a contradiction.

Proof. By definition of bivalency, there is some execution Eb extending E that
is b-valent. However, it might contain crashes. We extend Eb further to E ′b, in
which some node decides on b and terminates; this is feasible by termination of
A. Now we remove all crashes from E ′b, resulting in execution E ′. By Lemma 3.4
and the fact that the crashed nodes do not change the contents of registers in
either execution, the node still decides on b and terminates. Thus, E ′ must be
b-valent by agreement, and by construction it contains no further crashes.

Now we can proceed to extending (fault-free) bivalent executions in a way
keeping them bivalent (and fault-free).

Lemma 3.9. Given a bivalent execution E of A and a non-crashed node i ∈ [n],
we can construct a bivalent execution with an additional step of i. If E is fault-
free, so is the new execution.

Proof. Refer to Figure 3.4. Clearly, i cannot be terminated in E , as otherwise
the execution must be univalent by agreement. Let i take an additional step.
If the extended execution E0 is still bivalent, we’re done. Otherwise, assume
w.l.o.g. that E0 is 0-valent. Because E is bivalent, by Lemma 3.8 there is also
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E (bivalent)

E0 (0-valent)
E1 (univalent)

E2 (univalent)

E` (0-valent)
E`+1 (1-valent)

Ek (1-valent)

Ek−1 (univalent)
(1-valent)

. . .

. . .

j

i

i

i

i

i

i

i

Figure 3.4: By assumption there is no bivalent extension of E that contains an
additional step of node i. The switch from 0- to 1-valency happens between E`
and E`+1.

an extension of E that is 1-valent and contains no further crashes. Take such
an extension, denote by k the number of additional steps, and let Ek be this
extension plus an additional step of i.2 Note that Ek is 1-valent, as any extension
of a 1-valent execution is 1-valent. In summary, we have two extensions of E ,
both with a step of i at the end, and either 0 (E0) or k 6= 0 (Ek) intermediate
steps. E0 is 0-valent and Ek is 1-valent.

Next consider the executions E`, ` ∈ [k+1], which are E followed by the next
` steps that happen in Ek, and each of them with a final step of i (Figure 3.4). If
any of these are bivalent, we’re done. Otherwise, as we know that E0 is 0-valent
and Ek is 1-valent, there must be some ` ∈ [k] so that E` is 0-valent and E`+1 is
1-valent.

Suppose that j is the node that takes the final step before node i in execution
E`+1. Note that both executions are indistinguishable at all nodes but i and j,
and any difference must come from the final one or two steps. To complete the
proof, we go through all possible cases and lead each of them to a contradiction
with Corollary 3.6.

i = j: In this case, letting i take another step in E` results in E`+1. But one is
0- and the other is 1-valent. Contradiction!

j does not write: We crash j at the end of both E` and E`+1. The executions
are indistinguishable at all nodes but the crashed j, and i did the same
write (or read) in both executions, resulting in identical content of the
shared registers. However, one execution is 0- and the other 1-valent.
Contradiction!

i does not write: We let j take another step in E`, which is the same as the
one in E`+1; since i didn’t write, it is the only node that can distinguish
the two executions, and again the shared registers have identical contents
in both executions. Crashing i thus yields a contradiction.

2Again, as soon as i terminates, the execution must become univalent, so either i can still
take a step or i just terminated in the last step; in the latter case, we just use the execution
directly without adding a step of i.
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i and j write to different registers: We let j take its step in E` and obtain
an execution that is indistinguishable at all nodes. Since the two writes do
not interfere, the shared registers’ content is identical, too. One execution
is 0-, the other 1-valent. Contradiction!

i and j write to the same register: As i overwrites j’s write in E`+1, j is
the only node that can distinguish E` and E`+1, and the register contains
the value written by i at the end of both executions. Crashing j yields a
contradiction!

Since all possibilities lead to a contradiction, we must have had the situation
that we encountered a bivalent execution earlier on. Also, all the executions E`,
` ∈ [k + 1], contained at least one more step of i than E .

Remarks:

• This proof critically relies on the assumption that only a single register can
be written atomically. What happens if it’s possible to write concurrently
to several?

3.5 Step 3: Reaching Contradiction

All that remains is to wrap things up.

Proof of Theorem 3.2. Assume for contradiction that a consensus algorithm A
exists that tolerates a single fault, i.e., in all fair executions with at most one
crash agreement, validity, and termination hold. By Lemma 3.7, there is a bi-
valent execution of A without crashes. By Lemma 3.9, we can extend any such
execution to a bivalent execution without crashes that includes an additional
step of an arbitrary node i ∈ [n]. We apply the lemma inductively in a round-
robin fashion; in the kth step of the induction, we add a step of node k mod n.
The result is an infinite, fair, bivalent execution without crashes. This contra-
dicts the condition that the algorithm must terminate in all fair executions with
at most one crash!

3.6 How about Message Passing?

Fine, we can’t do it in this shared memory setting. But is consensus possible
in the asynchronous message passing model? At least for some graphs? To
answer this question, we need to specify what it means that a node crashes in
the message passing model.

Definition 3.10 (Crash Faults in the Message Passing Model). A node may
crash at any point in the execution, after which it does not respond to any further
events. It may also crash when responding to an event. In this case, it sends
an arbitrary subset of the messages it would send if it did not crash.

This definition takes into account that it’s virtually impossible to make sure
that a crashing node sends either everything or nothing – that would be very
similar to writing multiple registers atomically! Each individual message is
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sent and received “atomically,” which is justified since any message that is not
transmitted and received completely can simply be dropped.

It may not seem like it, but basically we already have the answer. We use a
simulation argument!

Lemma 3.11 (Simulation of Message Passing). If, for any simple graph G =
(V,E), an asynchronous message passing algorithm solving consensus with at
most one crash fault on G exists, then there is an asynchronous shared memory
algorithm on |V | nodes that solves consensus in all fair executions with at most
one fault.

Proof. We “translate” the message passing system to a shared memory system.
We use the same set of nodes. For each edge e = {v, w}, we add registers Rv,w,i
and Rw,v,i, i ∈ N, initialized to ⊥ (meaning not used). For each neighbor w, v
maintains two local counters sv,w and rv,w, the number of sent and received mes-
sages for this node, respectively (initially 0). We simulate the message passing
algorithm as follows. Initially, each node v performs its local computations and
decides on the messages to send. Then, for each neighbor w to which it sends
a message, it increases sv,w and writes the content of the message to Rv,w,sv,w .
Once this is complete, it executes a busy-wait. Cycling through its neighbors,
w, it keeps reading Rv,w,rv,w+1 until Rv,w,rv,w+1 6= ⊥ for some w. When this
happens, it executes the code of the asynchronous algorithm for reception of
a message with the content equal to that of Rv,w,rv,w+1 from w and increases
rv,w. Resulting messages are resolved as above and the busy-wait recommences
(unless the node terminates, of course).

It’s straightforward to see that each “sent message” is eventually “received”
(unless the receiving node terminates or crashes before this happens, which
is ok), and since the shared memory algorithm does the same computations
and “sends” the same messages, it will produce the same outputs as some corre-
sponding execution of the message passing algorithm. Thus, agreement, validity,
and termination of the shared memory version are inherited from the original
algorithm.

m1 m2 m3 ┴ 

sv,w = 3 

rw,v = 1 

v 

w 

Figure 3.5: Construction for simulation of a message passing algorithm in shared
memory. Depicted are only the registers for the edge {v, w} for the direction
from v to w. Node v will write each message to a new register using its local
counter sv,w. Node w will increase its counter rv,w whenever it reads a value
that is not ⊥, meaning it “received” the next message from v.
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This lemma extends the previous impossibility to the asynchronous message
passing model.

Corollary 3.12. There is no algorithm that solves the consensus problem in
the asynchronous message passing model with at most one crash fault.

Proof. If such an algorithm existed, by Lemma 3.11 there would also be an
algorithm solving consensus in all fair executions of the asynchronous shared
memory model with at most one crash fault. By Theorem 3.2, such an algorithm
does not exist.

Remarks:

• We’re doing something that might seem weird here. In the simulation, we
use infinitely many shared registers (as there can be an unbounded number
of messages under way in the message passing system), and these registers
have infinite size (as messages may be arbitrarily large). However, we’re
talking about an impossibility result here: Even with such an impossible-
to-build system, we still couldn’t solve the problem!

• Note also that the simulation will actually ensure FIFO (first-in-first-out)
order of message reception. Again, this makes the impossibility result only
stronger. Also if message delivery is guaranteed to happen in FIFO order,
the problem cannot be solved!

• Originally, the FLP theorem was shown for the message passing model.
Showing it for shared memory and then using a simulation argument as
done here is much simpler, yet we get the result for the more powerful
shared memory model along the way!

What to take Home

• Knowing that certain things cannot be done is really important, as it keeps
us from trying to do these things.

• Actually, it will not really keep us from trying, as it’s important to solve
these problems. However, such results show where one can change the
model (i.e., add some helpful, hopefully realizable assumptions), so that
they become solvable.

• Finding the right definitions can be the most important part of the job.

• Simulation arguments are also very powerful tools for lower bounds. FLP
is a great example for this, as it’s much easier to prove the result for
shared memory and transfer it to message passing than taking the message
passing model head on!

Bibliographic notes

Fischer, Lynch, and Patterson showed the original theorem about message pass-
ing systems, in a model slightly, but insubstantially different from the asyn-
chronous message passing model given in Lecture 2 [FLP85]. Loui and Abu-
Amara [LAA87] extended the result to the shared memory setting; strictly
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speaking, Theorem 3.2 is to be attributed to them, but Fischer, Lynch, and
Patterson developed the underlying technique. Later it was discovered that the
impossibility of consensus and generalizations can be shown using topological
tools [HS99].
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Lecture 4

Reaching Consensus

4.1 The Problem

In the previous lecture, we’ve seen that consensus can’t be solved in asynchro-
nous systems. That means asking “how can we solve consensus?” is pointless.
But it doesn’t mean we should give up! Impossibility results and lower bounds
tell us what questions we should not ask, but at the same time, we learn a lot
about the questions we should ask!

For starters, you saw in the exercises that the question “Can we solve con-
sensus in synchronous systems?” makes a lot of sense. And having a positive
answer to this already implies something very important: In the presence of
faults, synchronous and asynchronous systems are fundamentally different. Not
just in terms of message or time complexity, but in terms of what type of prob-
lems can be solved! In particular, we cannot hope for a convenient tool like
synchronizers.

This immediately raises more important questions. Given that synchrony is
a strong (read: often unrealistic) assumption, where exactly does the boundary
between consensus being solvable and unsolvable lie? This has been studied
quite extensively, but today we’re going to focus on something else. We’re
asking the question

“Can consensus be solved almost certainly despite asynchrony?”

Put differently, instead of making stronger assumptions on the system, we make
our problem easier. We permit randomization1 and relax the requirements of
the binary consensus problem:

Agreement Correct nodes i output the same value o = oi.

Validity If all correct nodes have the same input b, then o = b.

Termination With probability 1, all correct nodes decide on an output and
terminate.

Wait a second – doesn’t termination with probability 1 mean that it is certain
that the algorithm will eventually terminate? This is not true, as seen by the

1Ok, ok. Depending on your point of view, we do make the system more powerful.

47
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following simple example. We take an unbiased coin and flip it. If the result
is “heads,” we stop. Otherwise, we repeat this. In principle, it is possible that
this goes on forever. However, the probability for this to happen is, for each
r ∈ N, bounded by the probability of getting “heads” r times in a row. This
probability is 2−r, which goes to 0 for r → ∞. Hence, with probability 0, we
never stop, but it is not impossible that we never stop!

Ok, so the above definition may make some sense. However, it does open a
new can of worms. What do we even mean by probability here? An algorithm is
not just a sequence of coin flips! Changing the system model such that the next
node that makes a step or that crashes is random might be too optimistic (there
could be systematic faults), and it’s not clear what the respective probability
distributions should look like.

4.2 The Model

The simplest way to resolve the above conundrum is to interpret randomized
algorithms as deterministic ones with additional random input. Each node gets
a separate input, which is an infinite string of independent, unbiased random
bits (the node will generate the finite prefix of bits it uses during the course
of the algorithm). The nodes now execute a “deterministic” algorithm that
may, at any time, use some of these random bits to decide on its next step.
Our probability space now consists of all the possible combinations of such
strings with the probability measure induced by each individual bit being 0
with independent probability 1/2.

Formally, we can now say what “termination with probability 1” means as
follows. We fix our randomized algorithm (i.e., our “deterministic” algorithm
that is given the random input strings), draw the random strings from the distri-
bution, and then check whether there is any execution for which termination is
violated. The latter must happen with probability 0 in terms of the distribution
of random input strings. Of course, we will also have to show that agreement
and validity are always satisfied.

Moreover, we get rid of another, often unrealistic, assumption, namely that
failing nodes “crash” nicely. In fact, we’re going all the way, to so-called Byzan-
tine failures. This means that failing nodes can behave in any way: They can
crash, they can send erroneous and conflicting messages to different nodes, and
they can violate the protocol in an arbitrary way. They can even stick to the
protocol (for a while), making it hard or impossible to figure out that they are
faulty. If you think this sounds crazy, you are not completely wrong. However,
if we can handle this scenario, we don’t have to worry about the type of faults
that can actually happen!

Let’s say we have f faulty nodes. Faulty nodes can pretend to be correct,
but with different input. By the validity condition, this implies that in a fault-
free execution, we must decide on 0 (or 1), if n − f nodes have input 0 (or
1), respectively. This immediately implies that consensus cannot be solved if
f ≥ n/2! In fact, more careful reasoning shows that f ≥ n/3 also breaks our
necks: If we have two sets of f correct nodes with inputs 0 and 1, respectively,
the faulty nodes can play to each set the role of correct nodes with their input;
the correct nodes in each set then cannot figure out whether the respective other
set of nodes is faulty or the real baddies, and thus cannot distinguish from n−f
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correct nodes having input 0 respectively 1. The surprise is that, indeed, it is
possible to handle any number f of faults strictly smaller than n/3! Throughout
this lecture, we will hence assume that f < n/3.

Finally, we will not design our algorithms in the shared memory model from
the previous lecture, but in the asynchronous message passing model. However,
we assume that “everyone can talk to everyone,” i.e., the communication graph
is complete.

Remarks:

• One way to visualize the probability space we’re using is to think of the
input string of each node as encoding a uniformly random real number
from [0, 1]. The first bit says whether it’s from [0, 0.5] or [0.5, 1], etc.2 The
complete space is then the product of all the individual ones (for correct
nodes), i.e., a hypercube of dimension n − f ; the bit strings determine a
uniformly random point in this hypercube.

• A subset of the hypercube with measure 0 is e.g. given by a side of the
cube, which is equivalent to fixing a single node’s string to be all 0s or all
1s. As we already saw, this happens with probability 0!

• Since this hypercube has exactly volume 1, the probability to draw bit
strings corresponding to a given subset of the hypercube is exactly the
volume of the subset. For instance, requiring that the first bit of some
fixed node is 0 defines a “half-cube” and happens with probability 1/2.

4.3 First Thoughts and a Key Ingredient

Let’s start with some basic observations:

• No matter how the algorithm is going to look like, we cannot trust that any
information that comes from fewer than f + 1 nodes is definitely correct
(unless there’s a way to be sure that not all faulty nodes are among them).

• Since the system is asynchronous, waiting until this many messages arrived
is the only way of doing this.

• However, one must not wait to hear from everyone! Byzantine nodes may
decide to not send anything, so a node cannot be sure that more than
n− f messages arrive (if every node is supposed to send one)!

• We are going to think about our algorithms in terms of rounds again, where
in each round, each node is supposed to send one and only one message
to each other node. But as described above, each node can only expect
to receive n− f of these messages. You can view this as a “deteriorated”
version of the α-synchronizer.

• It’s important to understand that if the faulty nodes do send messages, it
may be the good guys’ messages that get discarded while waiting for the
end of the round. Only n−2f of the messages a node receives for a round
are certainly legit!

2This way we have several encodings for the same number, as, e.g., 0.10 = 0.01. Throwing
some measure theory at this shows that this is ok, though.
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• That means if actually all correct nodes agree on something (e.g., they
have the same input), a node will “observe” at least n − 2f being in
agreement.

• Since the algorithm does not know f , it will have to use an upper bound
on f whenever counting messages as above. We’ll slightly abuse notation
and still use the variable f in algorithms, but remember that in fact our
algorithms should use a parameter t (instead of f) and the corresponding
assumption in the analysis is that f ≤ t < n/3.

Ok, so let’s get started. Think about validity first. We need to make sure
that if everyone has input 0, this is also the output – deterministically. So,
all nodes announce their inputs; for simplicity, we assume that nodes also send
messages “to themselves.” If out of the n − f messages received by a node,
n− 2f say “my input is 0,” it’s possible that all nodes had input 0. Say a node
in this situation decides that it will output 0, tells the others, and terminates.
This means that if not all inputs were 0, we need to make sure that agreement
holds, i.e., everyone else decides on 0, too!

Given this insight, consider now the case that some correct node following
the above rule decides on 0 and terminates. It must have received at least
n − 3f > 0 messages saying “my input is 0” from correct nodes. That means
that at least one node indeed had input 0, so this is alright. But a single node
having input 0 is not enough to convince anyone else, as other nodes have no way
of being certain that this node is not faulty and in fact all nodes had input 1!

To resolve this, let us be a bit more lenient and make the stronger assumption
that f < n/5. Now, a correct node seeing n− 2f times “0” means that n− 3f
correct nodes indeed have input 0. And since each node waits for all but f
messages, this means each correct node receives n− 4f ≥ f + 1 times “0.” Now
we let nodes that see f + 1 times “0” change their “opinion” to 0, even if their
input was 1.

Algorithm 9 Subroutine for trying to decide on 0, code at node i ∈ [n]. Each
node i is given an input “opinion” opi ∈ {0, 1}, which initially will be the input
of i.

1: send “opi” to all nodes // also to yourself
2: wait until received “opj” messages from n − f nodes // drop all but one

message per node
3: if received ≥ n− 2f “0” messages then
4: decide(0)
5: else if received ≥ n− 4f “0” messages then
6: opi := 0
7: end if

Let’s summarize the properties of this basic procedure, under the assumption
that f < n/5.

Lemma 4.1. If a correct node decides on 0 in Algorithm 9, then all correct
nodes have decided 0 or have opinion 0 at the end of the algorithm.

Proof. The node received n − 2f times “0,” n − 3f of which are from correct
nodes. Since each node drops up to f messages, all nodes receive at least n−4f
times “0” and hence execute either the IF or the ELSEIF statement.
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Lemma 4.2. If all correct nodes have opinion 0 at the beginning of Algorithm 9,
then all correct nodes decide 0.

Proof. If all (at least n− f) correct nodes have opinion 0, each node receives at
least n− 2f times “0” and executes the IF statement.

Lemma 4.3. If all correct nodes have opinion 1 at the beginning of Algorithm 9
and f < n/5, then they all keep this opinion and none of them decide.

Proof. If all correct nodes have opinion 1, no node will receive more than f
times “0.” As n > 5f , we have n − 4f > f , implying that no correct node
executes the IF statement or the ELSEIF statement.

Remarks:

• This is nice: we can achieve termination if all nodes agree on 0 without
destroying an existing agreement on 1! And if some node decides, we can
be sure that all nodes agree afterwards and will decide on 0 when running
the subroutine again.

• Alternating with the “twin” algorithm which tries to agree on 1 makes sure
that validity is satisfied. Since neither of the twins destroys an existing
agreement, we have ensured agreement and validity.

• Unfortunately, it is possible that the algorithm doesn’t terminate. We
know from the last lecture that this cannot be avoided, since so far we
haven’t used randomness!

4.4 Shared Coins

We now have a way of deciding in a safe way. The issue is that we can guarantee
that nodes decide only if all of them already have the same opinion. Hence, we
need a mechanism to establish this common opinion if it’s not initially present.

Definition 4.4 (Shared Coin). A shared coin with defiance δ > 0 is a subroutine
that generates at each node a bit such that the probability that the bit is 0 at
all correct nodes is at least δ and the probability that it is 1 at all correct is at
least δ. The coin is strong, if it is guaranteed that all nodes output the same
bit. Otherwise it is weak.

Remarks:

• A strong shared coin essentially generates a common “random” bit which
may be influenced by the faulty nodes, but not too badly. One can in-
terpret it as a random experiment in which with independent probability
1−2δ an “adversary” determines the outcome, but with probability 2δ an
unbiased coin is flipped to determine the result.

• If the coin is weak, the adversary can even make it so that if the first
case applies, different correct nodes observe different outcomes. Of course
that’s less useful, but easier to achieve.
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• Surprisingly, strong shared coins with constant defiance exist. Unfortu-
nately, they all need some additional assumptions: states of and communi-
cation between correct nodes is secret (i.e., the faulty nodes may act based
on the inputs and communication they have seen only), cryptography can
be used to prevent messages to be understood until the sender reveals the
respective key, etc.

• If one makes such additional assumptions, one must be more careful in
defining the probability space over which one argues. We dodge this bullet
today, by assuming that the adversary is oblivious to the random choices
of the algorithm.

• If the adversary knows the random decisions of the correct nodes in ad-
vance, can you see how to deterministically prevent termination?

• You will show how to obtain a better shared coin in the exercises.

Lemma 4.5. There is a weak shared coin with defiance 2−n that requires no
communication.

Proof. All nodes flip an unbiased coin independently, i.e., output a fresh bit
from their random input strings. The probability that all these bits are 0 (re-
spectively 1) is 2−n.

Given this coin, we can solve the problem, can’t we? Let’s look at Algo-
rithm 10. Once we used Algorithm 9 and its counterpart to make sure that we
terminate with the right output if all inputs agreed, we simply flip the weak
shared coin to obtain new opinions and repeat. Eventually, all nodes have the
same opinion and will decide on the same output. Almost, except that we can
get into trouble if some node already decided and then we mess up the opinions
using the coin flips. We make sure that this doesn’t happen by checking this
with another voting step.

Lemma 4.6. The last IF statement in the WHILE loop of Algorithm 10 does not
change any opinions if all correct nodes had the same opinion. If the coin has
defiance δ and n > 5f , all correct nodes have the same opinion after execution
of the WHILE loop with probability at least δ.

Proof. If all correct nodes agree, each of them receives at least n− 2f messages
with the same value; hence previous agreement is not destroyed.

For the second statement of the lemma, assume for contradiction that two
correct nodes with different opinions ignore the shared coin.3 This entails that
each of them received n−3f messages with 0 respectively 1 from correct nodes.
However,

2(n− 3f) = n− f + (n− 5f) > n− f,
i.e., there are not sufficiently many correct nodes to make this possible. We
conclude that for at most one opinion value correct nodes may ignore the shared
coin. With probability at least δ, the value of the shared coin at all correct nodes
is this opinion value (if no opinion is fixed, having the same value at all nodes
is good enough), yielding the second statement of the lemma.

3Here we exploit that the adversary is oblivious of the nodes’ randomness, and hence the
outcome of the coin matches any predetermined opinion with probability δ!
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Algorithm 10 Consensus algorithm using weak shared coin. Note that mes-
sages must be numbered, so receivers can figure out to which “round” a message
belongs; for readability, this is omitted from the code.

1: opi := bi // set opinion to input
2: while not decided do
3: send “opi” to all nodes
4: wait until received “opj” messages from n− f nodes
5: if received ≥ n− 2f “0” messages then
6: decide(0)
7: else if received ≥ n− 4f “0” messages then
8: opi := 0
9: end if

10: send “opi” to all nodes
11: wait until received “opj” messages from n− f nodes
12: if received ≥ n− 2f “1” messages then
13: decide(1)
14: else if received ≥ n− 4f “1” messages then
15: opi := 1
16: end if
17: compute a (weak) shared coin ci
18: send “opi” to all nodes
19: wait until received “opj” messages from n− f nodes
20: if received < n− 2f “opi” messages then
21: opi := ci // ci ∈ {0, 1} uniformly random
22: end if
23: end while
24: send the messages for the next iteration of the loop, where the opinion

remains fixed to the decided value (i.e., do not wait)
25: terminate and output decided value

Theorem 4.7. Given a weak shared coin and that f < n/5, Algorithm 10 solves
consensus. All nodes terminate in expected time O(1/δ), where δ is the defiance
of the shared coin.

Proof. Let us verify validity, agreement, and termination one by one.

Validity If all correct nodes have input 0, by Lemma 4.2, in the first “round”
of the first loop iteration all nodes decide on 0. If all correct nodes have
input 1, by Lemma 4.3, no opinions change and no node decides in the
first round. Applying Lemma 4.2, all correct nodes then decide on 1 in
the second round.

Agreement By Lemma 4.1, once a correct node decides on value b, all correct
nodes adopt opinion b. By Lemmas 4.3 and 4.6, no correct node will
change its opinion any more after this happens. Hence, no correct node
can observe more than f < n− 2f messages 1− b in any future “round.”
Thus, no correct node will decide 1− b.

Termination First, note that no correct node gets “stuck” waiting for n − f
messages of a “round” provided that all correct nodes send a message for
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that round. By the previous observations, if some correct node decides,
all nodes will adopt that opinion and in the next iteration of the loop
they will decide on the respective value by Lemma 4.2. As deciding nodes
will complete the current iteration of the loop and then send the (known)
messages for the next iteration, the algorithm will thus terminate provided
that some node decides. By Lemma 4.6, with probability δ all nodes
have the same opinion at the end of the loop, irrespectively of previous
iterations. Once this happens, all nodes decide in the next loop iteration
by Lemmas 4.2 and 4.3. Thus, as the probability that an infinite number
of shared coins “fail” limk→∞(1− δ)k = 0, the algorithm terminates with
probability 1.

Finally, we bound the expected time complexity. In each iteration, every cor-
rect node constantly often sends a message to every node and waits for n − f
responses. Since messages are sent in parallel, it takes O(1) time per round
and thus O(k) time for k rounds. The probability that “the algorithm decides”
in round k (i.e., all nodes obtain the same opinion) is δ(1 − δ)k−1; once this
happens, all nodes terminate within O(1) additional rounds. All of this means
that the expected time until termination is bounded by

∞∑

k=1

O(k) · δ(1− δ)k−1 = O
(
δ

δ2

)
= O

(
1

δ

)
.

Corollary 4.8. Using randomness and given that f < n/5, consensus can be
solved in asynchronous systems with Byzantine faults with probability 1.

Proof. Plug the weak shared coin from Lemma 4.5 into Theorem 4.7.

Remarks:

• Two things are not satisfying here. One is that using the simplistic shared
coin from Lemma 4.5, the expected running time is astronomically large:
for many inputs, it’s Θ(2n). The other is that we can tolerate only f < n/5
faults, but it might be possible to handle f < n/3.

• We will now see how to get down to f < n/4 using a new subroutine, safe
broadcast. Combining the various voting ideas and a strong shared coin
in a more clever way, one can indeed get down to f < n/3.

• There was some mild cheating: I silently omitted discussing what happens
if the weak shared coin communicates and expects correct nodes to send
messages. This is easy to resolve by making sure that the shared coin can
somehow terminate using default messages from correct nodes (without
maintaining any guarantees on the output), as it becomes irrelevant as
soon as some node terminated.

4.5 Safe Broadcast

One of the issues we had in Algorithm 10 was that faulty nodes could announce
different values to different nodes. Let’s take this power away! This is essentially
the following task, named safe broadcast :
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• The source node s is globally known.

• s is given a message M .

• Each correct node i outputs at most one message M .

• If s is correct, all correct nodes eventually output M .

• If any correct node outputs a message M ′, all correct nodes eventually
output M ′.

Using this subroutine as a wrapper for each message sent, we can, in ef-
fect, force each faulty node to either send the same message to all nodes in a
given “round,” or just stay silent. Let’s see how we can use this to improve
Algorithm 10.

Algorithm 11 Consensus algorithm using weak shared coin and safe broad-
casts.

1: opi := bi // set opinion to input
2: while not decided do
3: safely broadcast “opi”
4: wait until received “opj” messages from n− f nodes
5: if received ≥ n− 2f “0” messages then
6: decide(0)
7: else if received ≥ n− 3f “0” messages then
8: opi := 0
9: end if

10: safely broadcast “opi”
11: wait until received “opj” messages from n− f nodes
12: if received ≥ n− 2f “1” messages then
13: decide(1)
14: else if received ≥ n− 3f “1” messages then
15: opi := 1
16: end if
17: compute a (weak) shared coin ci
18: safely broadcast “opi”
19: wait until received “opj” messages from n− f nodes
20: if received < n− 2f “opi” messages then
21: opi := ci
22: end if
23: end while
24: safely broadcast the messages for the next iteration of the loop, where the

opinion remains fixed to the decided value (i.e., do not wait)
25: terminate and output decided value

Corollary 4.9. Given a weak shared coin, safe broadcast, and that f < n/4,
Algorithm 11 solves consensus. All nodes terminate in expected time O(1/δ),
where δ is the defiance of the shared coin.

Proof. The reasoning is the same as before, so we need to revisit only the steps
that required that f < n/5 in the previous proofs, as well as check the effect of
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the n−3f thresholds that replaced n−4f thresholds. This concerns Lemmas 4.1,
4.3, and Lemma 4.6.

Regarding Lemma 4.1, observe that if a node receives n − 2f times “0,”
then at most 2f nodes – including faulty ones! – broadcast “1.” Hence, any
n − f received values contain n − 3f times “0,” i.e., all correct nodes adopt
opinion 0. For Lemma 4.3, we just need to note that n − 3f > f holds, so
the faulty nodes will not be able to change anyone’s opinion if all correct nodes
have opinion 1. Finally, Lemma 4.6 still holds because two nodes with different
opinions ignoring the shared coin would mean that there have been at least
2(n− f) = n+ (n− 4f) > n many distinct broadcast messages in the respective
round.

Remarks:

• Although the broadcast problem is very similar to consensus (the input is
send to nodes by the source), there is a crucial difference: it is ok that no
correct node “terminates,” i.e., no correct node outputs a message. That’s
all it takes to make it much simpler.

• In the exercises, you will solve the safe broadcast problem.

• By adding the round number and source’s identifier to the messages sent
by the safe broadcast algorithm, we can tell the instances apart. Any
“excess” messages for a given round number/source ID combination are
simply discarded. The same holds for communication that is obviously
not conform with the algorithm.

• By introducing the safe broadcast statements into the code, I also intro-
duced a bug: the algorithm may not terminate anymore! Can you see
why?

• Can you come up with a fix? This is not too difficult, but again underlines
how careful one needs to when reasoning about asynchronous algorithms.

What to take Home

• Randomization can work miracles in distributed systems. Maybe even
more so than in case of “classic” centralized algorithms!

• Impossibility results and lower bounds usually can and will be circum-
vented by changing some details – often those that we do not mind in
practice or that are the smallest burdens. Only sometimes one hits hard
walls, as with the log∗ lower bound for coloring (but this one we don’t
mind in practice either).

• The running times we get here are terrible. However, strong shared coins
with constant defiance and large resilience exist! This yields algorithms
that can solve consensus in constant expected time, and with overwhelm-
ing probability in time O(log n)!

• Dealing with Byzantine faults always involves voting using thresholds re-
quiring, e.g., n− f or n− 2f nodes claiming a certain opinion.
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• What you’ve seen here are some core ideas for handling Byzantine faults.
There are myriads of variations and generalizations of the consensus prob-
lem or other fault-tolerance primitives. The basic ideas and the approach
to reasoning about Byzantine faults you’ve seen today typically resurface
in one way or another when considering these.

• One needs to be extremely careful in terms of how randomness and the
adversary may interact. For instance, even if the adversary cannot magi-
cally predict future coin flips, node may reveal the outcomes of these coin
flips prematurely due to asynchrony. This is especially important when
designing systems that are supposed to be resilient against deliberate at-
tacks.

Bibliographic Notes

The consensus algorithm presented in this lecture is a variant of Bracha’s algo-
rithm [Bra87]. However, Bracha mistakenly claimed that the algorithm tolerates
f < n/3 faults. The issue is that in Bracha’s algorithm nodes terminate only
when receiving at least 2f+1 messages supporting the decided value in a certain
step, but for n = 3f + 1 this is exactly n − f ; given that Byzantine nodes can
always claim a different value and only n− f messages are evaluated (otherwise
the algorithm might deadlock), termination can never be guaranteed.

For a solution that tolerates f < n/3 faults using a strong shared coin,
see Mostéfaoui et al. [MMR14]. A cryptographically safe, optimally resilient,
constant expected time strong shared coin is given by Cachin et al. [CKS05].
Together this yields a constant expected time optimally resilient solution to
consensus. Both algorithms are also very efficient in terms of messages. The
caveat is that a trusted dealer is needed in a setup phase for the shared coin.
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[MMR14] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal.
Signature-free Asynchronous Byzantine Consensus with t < n/3 and
O(n2) Messages. In Proc. 34th Symposium on Principles of Distrib-
uted Computing (PODC), pages 2–9, 2014.



58 LECTURE 4. REACHING CONSENSUS



Lecture 5

Maximal Independent Set

5.1 The Problem

Definition 5.1 (Independent Set). Given an undirected Graph G = (V,E),
an independent set is a subset of nodes U ⊆ V , such that no two nodes in U
are adjacent. An independent set is maximal if no node can be added without
violating independence, and maximum if it maximizes |U |.

2

1

2

Figure 5.1: Example graph with 1) a maximal independent set and 2) a maxi-
mum independent set.

From a centralized perspective, an MIS is an utterly boring structure: Just
pass over all nodes and greedily select them, i.e., pick every node without a
previously selected neighbor. Voilà, you’ve got an MIS! However, in the dis-
tributed setting, things get more interesting. As you saw in the first exercise,
finding an MIS on a list is essentially the same as finding a 3-coloring, and if we
don’t care about message size, being able to find an MIS on general graphs in
T rounds can be used to determine a (∆ + 1)-coloring in T rounds. This means
that despite it being easy to verify that a set is an MIS locally (i.e., some node
will notice if there’s a problem just by looking at its immediate neighborhood),
it takes Ω(log∗ n) rounds to compute an MIS!

Today, we’re going to study this problem in the synchronous message passing
model (without faults), for an arbitrary simple graph G = (V,E). Recall that

59
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we can use synchronizers to transform any algorithm in this model into an
asynchronous algorithm, so the result will make a very versatile addition to our
toolbox! Like last week, we’re going to allow for randomness. This can be done
in the same way, by assuming that each node has an infinite (read: sufficiently
large) supply of unbiased random bits.

Remarks:

• Note that an MIS can be very small compared to a maximum independent
set. The most extreme discrepancy occurs in a star graph, where the two
possible MIS are of size 1 and n− 1 (cf. Figure 5.1)!

• One can apply a coloring algorithm first and then, iterating over colors,
concurrently add all uncovered nodes of the current color to the indepen-
dent set. Once this is complete, all nodes are covered, i.e., we have an
MIS. However, this can be quite slow, as the number of colors can be
large.

5.2 Fast MIS Construction

Algorithm 12 MIS construction algorithm. Of course we cannot implement
an algorithm that operates with real values. We’ll fix this later.

// each iteration of the while-loop is called a phase

while true do
choose a uniformly random value r(v) ∈ [0, 1] and send it to all neighbors
if r(v) < r(w) for each r(w) received from some neighbor w then

notify neighbors that v joins the independent set
return(1) and terminate

end if
if a neighbor joined the independent set then

return(0) and terminate
end if

end while

Lemma 5.2. Algorithm 12 computes an MIS. It terminates with probability 1.

Proof. We claim that at the beginning of each phase, the set of nodes that
joined the set and terminated is an independent set, and the set of all nodes
that terminated is the union of their (inclusive) neighborhoods; we show this by
induction. Trivially, this holds initially. In each phase, it cannot happen that
two adjacent non-terminated nodes enter the set. By the induction hypothesis,
no active (i.e., not terminated) node has a neighbor in the independent set.
Together this implies that at the end of the phase, the set of nodes that output
1 is still an independent set. As the active neighbors of joining nodes output
0 and terminate, the induction step succeeds and the claim holds true. We
conclude that the algorithm computes an independent set.

To see that the independent set is maximal, observe that a node can only
terminate if it enters the set or has a neighbor in the set. Thus, once all nodes
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have terminated, no further nodes could be added to the set without violating
independence.

Finally, note that the probability that two random real numbers from [0, 1]
are identical is 0. By the union bound, this yields that with probability 1,
in a given phase all random numbers are different. This entails that the non-
terminated node with the smallest number joins the set. This implies that
within finitely many phases in which the numbers differ, all nodes terminate.
Using the union bound once more, it follows that the algorithm terminates with
probability 1.

Remarks:

• Simple stuff, but demonstrating how to reason about such algorithms.

• The union bound states that the probability of one (or more) of several
(more precisely: countably many) events happening is at most the sum of
their individual probabilities. It is tight if the events are disjoint.

• The union bound can’t even be called a theorem. It’s obvious for discrete
random variables, and for continuous random variables it’s just paraphras-
ing the fact that the total volume of the union of countably many sets is
bounded by the sum of their individual volumes, a property that any
measure (in particular a probability measure) must satisfy.

• We’ll frequently use the union bound implicitly in the future.

• That’s enough with the continuous stuff for today, now we’re returning to
“proper” probabilities.

• Note that the algorithm can be viewed as selecting in each phase an inde-
pendent set in the subgraph induced by the still active nodes. This means
that all we need to understand is a single phase of the algorithm on an
arbitrary graph!

5.3 Bounding the Running Time of the Algo-
rithm

Before we can do this, we need a (very basic) probabilistic tool: linearity of
expectation.

Theorem 5.3 (Linearity of Expectation). Let Xi, i = 1, . . . , k denote random
variables, then

E

[∑

i

Xi

]
=
∑

i

E [Xi] .

Proof. It is sufficient to prove E [X + Y ] = E [X]+E [Y ] for two random variables
X and Y , because then the statement follows by induction. We’ll do the proof
for a discrete random variable; for a continuous one, simply replace the sums
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by integrals. We compute

E [X + Y ] =
∑

(X,Y )=(x,y)

P [(X,Y ) = (x, y)] · (x+ y)

=
∑

X=x

∑

Y=y

P [(X,Y ) = (x, y)] · x

+
∑

Y=y

∑

X=x

P [(X,Y ) = (x, y)] · y

=
∑

X=x

∑

Y=y

P [X = x] · P [Y = y | X = x] · x

+
∑

Y=y

∑

X=x

P [Y = y] · P [X = x | Y = y] · y

=
∑

X=x

P [X = x] · x+
∑

Y=y

P [Y = y] · y

= E [X] + E [Y ] ,

where in the second last step we used that

∑

X=x

P [X = x | Y = y] =
∑

Y=y

P [Y = y | X = x] = 1,

as X and Y are random variables (i.e., something happens with probability 1,
even when conditioning on another variable’s outcome).

Denote by Nv := {w ∈ V | {v, w}} ∈ E the neighborhood of v ∈ V and by
δv := |Nv| its degree. Now it’s alluring to reason as follows. Since δv + 1 nodes
are removed “because of v” if v joins the set, by linearity of expectation we have
that

∑

v∈V
P [v joins the set] · (δv + 1) =

∑

v∈V

δv + 1

δv + 1
= |V | wrong!!

nodes are removed in expectation. This is utter nonsense, as it would auto-
matically mean that all nodes are eliminated in a single step (otherwise the
expectation must be smaller than |V |), which clearly is false!

The mistake here is that we counted eliminated nodes multiple times: it’s
possible that several neighbors of a node join the set. In fact, there are graphs
in which only a small fraction of the nodes gets eliminated in a phase, see
Figure 5.2.

In summary, we cannot hope for many nodes being eliminated in each phase.
We might be able to reason more carefully, over multiple phases, but how? It
turns out that the easiest route actually goes through figuring out the expected
number of edges that are deleted (i.e., one of their endpoints is deleted) from
the graph in a given phase. Still, we need to be careful about not counting
deleted edges repeatedly!

Lemma 5.4. In a single phase, we remove at least half of the edges in expecta-
tion.
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Figure 5.2: A graph where it’s highly unlikely that more than a small fraction
of the nodes gets deleted in the first phase. The graph is fully bipartite, but
with few nodes on the right side. If R� n nodes are on the right, the expected
number of such nodes that gets selected is R/(n−R+ 1)� 1. This means the
probability that at least one node on the right is selected is at most R/(n−R+
1)� 1, too. From the left side, in expectation (n−R)/R nodes are selected. If
1� R� n, this means that it’s very likely that only nodes on the left side are
selected and the selected nodes are much fewer than n−R; as R� n, the fact
that all nodes on the right side are deleted does not affect the tally substantially.

Proof. To simplify the notation, at the start of our phase, denote the subgraph
induced by the non-terminated nodes by G = (V,E), i.e., ignore all terminated
nodes and their incident edges. In addition, think of each undirected edge
{v, w} as being replaced by the two directed edges (v, w) and (w, v); we make
sure that we count each such directed edge at most once when bounding the
expected number of removed edges.

Suppose that a node v joins the MIS in this phase, i.e., r(v) < r(w) for
all neighbors w ∈ Nv. Consider a fixed w ∈ Nv. If we also have r(v) < r(x)
for all x ∈ Nw \ {v}, we call this event (v → w). The probability of event
(v → w) is at least 1/(δv + δw), since (i) δv + δw is the maximum number of
nodes adjacent to v or w (or both) and (ii) ordering by r(·) induces a uniformly
random permutation on V . As v joins the MIS, all (directed) edges (w, x) with
x ∈ Nw will be removed; there are δw such edges.

We now count the removed (directed) edges. Whether we remove the edges
adjacent to w because of event (v → w) is a random variable X(v→w). If event
(v → w) occurs, X(v→w) has the value δw, if not it has the value 0. For each
undirected edge {v, w}, we have two such variables, X(v→w) and X(w→v). Due
to Theorem 5.3, the expected value of the sum X of all these random variables
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is at least

E [X] =
∑

{v,w}∈E
E[X(v→w)] + E[X(w→v)]

=
∑

{v,w}∈E
P [(v → w)] · δw + P [(w → v)] · δv

≥
∑

{v,w}∈E

δw
δv + δw

+
δv

δw + δv

=
∑

{v,w}∈E
1 = |E|.

In other words, in expectation |E| directed edges are removed in a single
phase! Note that we did not count any edge removals twice: we attribute
the directed edge (v, w) being removed to an event (u → v), which inhibits a
concurrent event (u′ → v), because then r(u) < r(u′) for all u′ ∈ Nv. We may
have counted an undirected edge at most twice (once in each direction). So, in
expectation at least half of the undirected edges are removed.

This tells us that in expectation we make good progress. But how do we
derive some explicit bound on the time until all edges are eliminated (and
thus all nodes are, too) from this? We need another very basic tool, Markov’s
inequality.

Theorem 5.5 (Markov’s Inequality). Let X be a non-negative random variable
(in fact, P [X ≥ 0] = 1 suffices). Then, for any K > 1,

P [X ≥ KE[X]] ≤ 1

K
.

Proof. We’ll prove the statement for a discrete random variable with values
from N0; it’s straightforward to generalize to arbitrary discrete variables and
continuous variables. If P [X = 0] = 1, the statement is trivial; hence, assume
w.l.o.g. that P [X = 0] < 1, implying that E[X] > 0. We bound

E[X] =
∞∑

i=0

P [X = i] · i

≥
∞∑

i=dKE[X]e
P [X = i] · i

≥ KE[X]
∞∑

i=dKE[X]e
P [X = i]

= KE[X]P [X ≥ KE[X]].

Dividing by KE[X] > 0 yields the statement of the theorem.

Using Markov’s bound, we can now infer that the bound on the expected
number of removed edges in a given phase also implies that a constant fraction
of edges must be removed with constant probability.
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Corollary 5.6. In a single phase, we remove at least a third of the edges with
probability at least 1/4.

Proof. Fix a phase. For simplicity, denote the remaining graph by G = (V,E).
Denote by X the random variable counting the number of removed edges and
by X̄ the random variable counting the number of surviving edges, i.e., |E| =
X + X̄. By Lemma 5.4,

E[X̄] = |E| − E[X] ≤ |E|
2
.

By Markov’s inequality (Theorem 5.5, for K = 4/3),

P

[
X ≤ |E|

3

]
= P

[
X̄ ≥ 2|E|

3

]
≤ P

[
X̄ ≥ 4E[X̄]

3

]
≤ 3

4
.

Hence,

P

[
X >

|E|
3

]
= 1− P

[
X ≤ |E|

3

]
≥ 1

4
.

In other words, we translated the bound on the expected number of elim-
inated edges into a bound on the probability that a constant fraction of the
remaining edges gets eliminated. This now can happen only O(log n) times
before we run out of edges!

Theorem 5.7. Algorithm 12 computes an MIS in O(log n) rounds in expecta-
tion.

Proof. Irrespectively of how the remaining graph looks like, Corollary 5.6 tells
us that with probability at least 1/4, at least a fraction of 1/3 of the remaining
edges is removed in each phase. Let’s call a phase in which this happens good.
After

log3/2 |E| <
log n2

log(3/2)
< 4 log n

good phases, we can be sure that there is at most a single remaining edge; in the
following phase the algorithm will terminate. As each phase requires 2 rounds,
it thus suffices to show that the expected number of phases until 4 log n good
phases occurred is in O(log n).

Computing this expectation precisely is tedious. However, consider, say,
40 log n phases. The expected number of good phases in 40 log n phases is, by
Corollary 5.6, at least 10 log n. Hence, the expected number of phases that are
not good is at most 30 log n, and by Markov’s inequality the probability that
more than 36 log n phases are bad is at most 30/36 = 5/6. In fact, this holds for
any set of 40 logn phases. Consequently, the expected number of phases until
at least 4 log n good phases occurred is bounded by

40 log n
∞∑

i=0

(
5

6

)i
· 1

6
· (i+ 1) =

20 log n

3

( ∞∑

i=0

i

(
5

6

)i
+
∞∑

i=0

(
5

6

)i)

=
20 log n

3

(
5

6
· 62 + 6

)

= 240 log n.

We conclude that the expected running time of the algorithm is bounded by
240 log n ∈ O(log n) rounds.
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Remarks:

• This analysis is somewhat heavy-handed with respect to constants. I’d
guess that the probability to eliminate at least half of the edges is at least
1/2, and that the algorithm terminates in expected time smaller than
4 log n. Proving this, however, might be quite difficult!

• The analysis is also tight up to constants. If one samples uniformly at
random from the family of graphs of uniform degree ∆ for, say, ∆ = n1/100,
there will be extremely few short cycles. In such a graph, it’s easy to show
that the degree of surviving nodes falls almost exactly by a constant factor
in each phase (until degrees become fairly small).

• No algorithm that has expected running time o(log n) on all graphs is
known to date. Plenty of research has been done and better bounds for
many restricted graphs classes (like, e.g., trees) are known, but nothing
that always works.

• The strongest known lower bound on the number of rounds to compute an
MIS is Ω(

√
log n/ log logn) or Ω(log ∆/ log log ∆) (depending on whether

one parameterizes by the number of nodes or the maximum degree). It
holds also for randomized algorithms; closing this gap is one of the major
open problems in distributed computing.

• Embarrassingly, the best known upper bound on the time to compute an
MIS deterministically is 2O(

√
logn), i.e., there’s an exponential gap to the

lower bound! Even worse, the respective algorithm may end up collecting
the topology of the entire graph locally, i.e., using huge messages!

5.4 Exploiting Concentration

We have bounded the expected running time of the algorithm, but often that
is not too useful. If we need to know when we can start the next task and
this is not controlled by termination of the algorithm (i.e., we need to be ready
for something), we need to know that all nodes are essentially certain to be
finished! Also, there are quite a few situations in which we don’t have such a
trivial-to-check local termination condition. Yet, we would like to have an easy
way of deciding when to stop!

Definition 5.8 (With high probability (w.h.p.)). We say that an event occurs
with high probability (w.h.p.), if it does so with probability at least 1− 1/nc for
any (fixed) choice of c ≥ 1. Here c may affect the constants in the O-notation
because it is considered a “tunable constant” and usually kept small.

This weird definition asks for some explanation. The reason why the prob-
ability bound depends on n is that it makes applying the union bound ex-
tremely convenient. Think for instance that you showed that each node ter-
minates w.h.p. within O(log n) rounds (the constant c being absorbed by the
O-notation). Then you pick c′ := c + 1, apply the union bound over all nodes
and conclude that everyone terminates with probability at least 1− 1/nc

′ · n =
1− 1/nc, i.e., w.h.p.!
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The cool thing here is that this works for any polynomial number of events,
as c is “tunable.” For instance, if something holds for each edge w.h.p., it holds
for all edges w.h.p. Even better, we can condition on events that happen w.h.p.
and basically pretend that they occur deterministically. The probability that
they do not happen is so small that any dependencies that might exist have
negligible effects!

After this sales pitch, the obvious question is where we can get such strong
probability bounds from. Chernoff’s bound comes to the rescue! It holds for
sums of independent random variables.

Definition 5.9 (Independence of random variables). A set of random variables
X1, . . . , Xk is independent, if for all i and (x1, . . . , xk) it holds that

P [Xi = xi]

= P [Xi = xi | (X1, . . . , Xi−1, Xi+1, . . . , Xk) = (x1, . . . , xi−1, xi+1, . . . , xk)].

In words, the probability that Xi = xi is independent of what happens to the
other variables.

Theorem 5.10 (Chernoff’s Bound). Let X =
∑k
i=1Xi be the sum of k inde-

pendent Bernoulli (i.e., 0-1) variables. Then, for 0 < δ ≤ 1,

P
[
X ≥ (1 + δ)E[X]

]
≤ e−δ

2E[X]/3

P
[
X ≤ (1− δ)E[X]

]
≤ e−δ

2E[X]/2.

Let’s see Chernoff’s bound in action.

Corollary 5.11. Algorithm 12 terminates w.h.p. in O(log n) rounds.

Proof. By Lemma 5.4, with probability at least 1/4, a third of the remaining
edges is removed from the graph in a given phase. This bound holds indepen-
dently of anything that happened before! We reason as in the proof of Theo-
rem 5.7, but bound the number of phases until 4 log n phases are good using
Chernoff’s bound.

For c ≥ 1, the probability that we need more than k := 32dc log ne phases
for 4 log n of them to be good is bounded by the probability that the sum
X :=

∑k
i=1Xi of independent Bernoulli variables Xi with P [Xi = 1] = 1/4

is smaller than 4 log n. We have that E[X] = 8dc log ne. Hence, by Chernoff’s
bound for δ = 1/2,

P [X < 4 log n] ≤ P
[
X <

E[X]

2

]
≤ e−E[X]/8 ≤ e−c logn < n−c.

Thus, the probability that the algorithm does not terminate within 2(k + 1) ∈
O(log n) rounds is at least 1− 1/nc. Since c ≥ 1 was arbitrary, this proves the
claim.
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Remarks:

• Chernoff’s bound is exponentially stronger than Markov’s bound. How-
ever, it requires independence!

• Surprisingly, in fact Chernoff’s bound is just a very clever application of
Markov’s bound (see exercises)!

• Careful: Pairwise independence of random variables X1, . . . , Xk does not
imply that they are independent! A counterexample are two independent
Bernoulli variables X1 and X2 with P [X1 = 1] = P [X2 = 1] = 1/2 (i.e.,
unbiased coin flips), and X3 := X1 XOR X2. If one fixes either X1 or
X2, X3 is determined by the respective other (independent) coin flip, and
hence remains independent. If one fixes both X1 and X2, X3 is already
determined!

5.5 Bit Complexity of the Algorithm

We still need to fix the issue of the algorithm using random real numbers. We
don’t want to communicate an infinite number of bits! To resolve this, recall the
relation between uniformly random real numbers from [0, 1] and infinite strings
of unbiased random bits: The latter is a binary encoding of the former. Next,
note that in order to decide whether rv > rw or rv < rw for neighbors v, w ∈ V
(rv = rw has probability 0 and thus does not concern us here), it is sufficient to
communicate only the leading bits of both strings, until the first differing bit is
found! What is the expected number of sent bits? Easy:

∞∑

i=1

(
1

2

)i
· i = 2.

Inconveniently, the number of bits that need to be exchanged between each pair
of nodes among three nodes that form a triangle are not independent. This is a
slightly more elaborate example showing that pairwise independence does not
imply “collective” independence.

Our way out is using that the probability to exchange many bits is so small
that the dependence does not matter, as it also must become very small. The
probability that a pair of nodes needs to exchange more than 1 + (c + 2) log n
bits in a given phase is

2−(c+2) logn = n−(c+2).

By the union bound, the probability that any pair of nodes needs to exchange
more than this many bits is thus no larger than n−c (there are fewer than n2

edges). Applying the union bound over all rounds, we can conclude it suffices
for each node to broadcast O(log n) bits per round. But we can do better!

Corollary 5.12. If n is known, Algorithm 12 can be modified so that it sends
1-bit messages and terminates within O(log n) rounds w.h.p.

Proof. Before running Algorithm 12, each pair of neighbors v, w determines
for each of the O(log n) phases the algorithm will require whether rv < rw or
vice versa. This is done by v sending the leading bits of rv (and receiving the
ones from w) until the first difference is noted. Then the nodes move on to
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exchanging the leading bits for the next phase, and so on. The total number of
bits that needs to be exchanged is in expectation O(log n) (2 times the number
of phases). By Chernoff’s bound, for any fixed K ≥ 2 the probability that the
sum X of K log n independent unbiased coin flips is smaller than K log n/2 is
in n−Ω(K). Note that the probability that the exchange for a given phase ends
is indeed 1/2 and independent of earlier such events. Choosing K suitably, we
conclude that w.h.p. v and w exchange at most O(log n) bits in total.

Applying the union bound, we conclude that w.h.p. no pair of nodes ex-
changes more than O(log n) bits. Knowing n, we can determine the respective
number, run the exchange algorithm for the respective number of rounds, and
then run Algorithm 12 without having to communicate the values rv, v ∈ V , at
all.

Remarks:

• Using this trick means that nodes need to communicate different bits to
different neighbors.

• It’s possible to get rid of needing to know n.1

• It’s not hard to see that at least some nodes will have to send Ω(log n)
bits across an edge: in a graph consisting of n/2 pairs of nodes connected
by an edge, the expected number of edges for which log(n/2) random bits
are required to break symmetry is 1.

5.6 Applications

We know from the first exercise that we can use an MIS algorithm to compute
a (∆ + 1)-coloring.

Corollary 5.13. On any graph G, a (∆ + 1)-coloring can be computed in
O(log n) rounds w.h.p.

MIS are not only interesting for graph coloring. As we will see in the exer-
cises, they can also be very helpful in finding small dominating sets2 in some
graph families. Moreover, an MIS algorithm can be used to compute a maximal
matching.

Definition 5.14 (Matching). Given a graph G = (V,E), a matching is a subset
of edges M ⊆ E, such that no two edges in M are adjacent (i.e., where no node
is incident to 2 edges in the matching). A matching is maximal if no edge
can be added without violating the above constraint. A matching of maximum
cardinality is called maximum. A matching is called perfect if each node is
adjacent to an edge in the matching.

1This is done by alternating between bit exchange rounds and rounds of Algorithm 12.
However, then some nodes may not yet have succeeded in comparing the random values for
the “current” phase of Algorithm 12. This can be understood as the exchange of the random
numbers happening asynchronously (nodes do not know when they will be ready to compare
their value to all neighbors), and thus can be resolved by running the α-synchronizer version of
Algorithm 12. Now one needs to avoid that the communication of the synchronizer dominates
the complexity. Solution: Exploiting synchrony, we can count “synchronizer rounds” by locally
counting how many rounds neighbors completed and just communicating “I advance to the
next round” (plus the respective message content) and otherwise remaining silent.

2A dominating set D ⊆ V satisfies that each v ∈ V \D has a neighbor in D.
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Corollary 5.15. On any graph G, a maximal matching can be computed in
O(log n) rounds w.h.p.

Proof. For a simple graph G = (V,E), the line graph is (E,L), where {e, e′} ∈ L
if and only if e ∩ e′ 6= ∅. In words, edges become nodes, and a pair of “new”
nodes is connected by an edge exactly if the corresponding edges in the original
graph share an endpoint. We simulate an MIS algorithm on the line graph. It’s
straightforward to show that this can be done at an overhead of factor 2 in time
complexity.

Another use of MIS is in constructing small vertex covers.

Definition 5.16 (Vertex cover). A vertex cover C ⊆ V is a set of nodes covering
all edges, i.e., for all e ∈ E, e∩C 6= ∅. It is minimal, if no node can be removed
without violating coverage. It is minimum, if it is of minimum size.

Corollary 5.17. On any graph G, a vertex cover that is at most a factor 2
larger than a minimum vertex cover can be computed in O(log n) rounds w.h.p.

Proof. Compute a maximal matching using Corollary 5.15 and output the end-
points of all its edges. Clearly, this is a vertex cover, as an uncovered edge could
be added to the matching. Moreover, any vertex cover must contain for each
matching edge at least one of its endpoints. Hence the cover is at most a factor
of 2 larger than the optimum.

Finally, we can also use a maximal matching to approximate a maximum
matching.

Corollary 5.18. On any graph G, a matching that is at most a factor 2 smaller
than a maximum matching can be computed in O(log n) rounds w.h.p.

Proof. Compute and output a maximal matching using Corollary 5.15. Now
consider a maximum matching. A minimum vertex cover must be as least as
large as this matching (as no node can cover two matching edges). As the
endpoints of the edges of a maximal matching form a vertex cover, they must
be at least as many as those of a minimum vertex cover and thus the size of a
maximum matching. The number of edges in the maximal matching is half this
number.

Remarks:

• Given the important role of all these graph structures in “traditional”
algorithms, it comes hardly as a surprise that being able to construct an
MIS fast in distributed systems comes in very handy on many occasions!

What to take Home

• Finding an MIS is a trivial task for centralized algorithms. It’s a pure
symmetry breaking problem.

• An MIS is typically not useful by itself, but MIS algorithms are very
helpful in the construction of many other basic graph structures.
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• Your basic toolbox for analyzing randomized algorithms:

– linearity of expectation

– Markov’s bound

– probabilistic independence (and its convenient properties)

– probabilistic domination (see below)

– Chernoff’s bound

– union bound

• Probabilistic domination simply means that you replace a random variable
by some other variable “dominating” it. We did this with the probability
that a constant fraction of the edges is removed: whether this happens
might depend on the graph, so we could not apply Chernoff to collections
of such variables. However, we knew that no matter what, the respective
probability is constantly bounded independently of the graph, so we used
independent Bernoulli variables to indicate whether a phase was good or
not, possibly treating some good phases as “bad,” to be on the safe side.

• One particularly useful toolchain is probabilistic domination → Chernoff
→ union bound. It’s not uncommon to use the other tools just to feed
this chain, like we did today, too!

• That’s almost everything you need to analyze the majority of randomized
distributed algorithms out there. The difficulty typically lies in how to
apply these tools properly, not in finding new ones!3

Bibliographic Notes

In the 80s, several groups of researchers came up with more or less the same
ideas: Luby [Lub86], Alon, Babai, and Itai [ABI86], and Israeli and Itai [II86].
Essentially, all of these works imply fast randomized distributed algorithms for
computing an MIS. The new MIS variant (with a simpler analysis) presented
here is by Métivier, Robson, Saheb-Djahromi, and Zemmari [MRSDZ11]. With
some adaptations, also the algorithms [Lub86, MRSDZ11] only need to transmit
a total of O(log n) bits per node, which is asymptotically optimal, even on
unoriented trees [KSOS06].

The state-of-the-art running time on general graphs, due to Ghaffari, is
O(log ∆ + 2O(

√
log logn)). However, when the maximum degree ∆ ∈ nΩ(1), this

is not asymptotically faster than the presented algorithm. Also, while this nearly
matches the lower bound of Ω(min{log ∆/ log log ∆,

√
log n/ log log n}) [KMW10]

with respect to ∆, it does not yield further insight for the range ∆ � 2
√

logn.
Deterministic MIS algorithms are embarrassingly far from the lower bounds:
the best known upper bound is 2O(

√
logn) [PS96].

3Admittedly, this might be a bad case of “if all you have is a hammer, everything looks
like a nail.” In a course on probabilistic algorithms I took I drove the TA mad by solving
most of the exercises utilizing Chernoff’s bound (or trying to), even though the questions were
handcrafted to strongly suggest otherwise.
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In growth-bounded graphs,4 an MIS is a constant-factor approximation to
a minimum dominating set. In this graph family, an MIS (and thus small
dominating set) can be computed in O(log∗ n) rounds [SW08]; the respective
algorithm leverages the Cole-Vishkin technique. On graphs that can be decom-
posed into a constant number of forests, a constant-factor approximation to a
minimum dominating set can be computed with the help of an MIS algorithm,
too [LPW13] (see exercises).

Wide parts of the script for this lecture are based on material kindly provided
by Roger Wattenhofer. Thanks!
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Lecture 6

Minimum Spanning Trees

In this lecture, we study another classic graph problem from the distributed
point of view: minimum spanning tree construction.

Definition 6.1 (Minimum Spanning Tree (MST)). Given a simple weighted
connected graph G = (V,E,W ), W : E → {1, . . . , nO(1)}, a minimum spanning
tree T ⊆ E minimizes

∑
e∈tW (e) among all spanning trees of G. Here spanning

means that all nodes are connected by the respective edge set.

Our goal today is to develop efficient MST algorithms in the Congest
model, on an arbitrary simple weighted connected graph G. The Congest
model is identical to the synchronous message passing model, but with the ad-
ditional restriction that O(log n) bits are sent in each round along each edge.

Remarks:

• In the Congest model (for a connected graph), essentially every problem
can be solved in O(|E|) rounds by collecting and distributing to all nodes
the entire topology, and then having each node solve the problem at hand
locally.

• Initially nodes know the weights of their incident edges. In the end, nodes
need to know which of their incident edges are in the MST.

• If you’re wondering about the weird constraint on the range of the weight
function: This is so we can encode an edge weight in a message. Fractional
edge weights are fine; we simply multiply all weights by the smallest num-
ber that is an integer multiple of the denominators of all fractions (where
w.l.o.g. we assume that all fractions are reduced).

• One can handle weights with range 1, . . . , 2n
O(1)

by rounding up to the
next integer power of 1 + ε for ε > n−O(1). Then an edge weight can be
encoded with

⌈
log log1+ε 2n

O(1)
⌉

= log

(
nO(1)

log(1 + ε)

)
⊆ O

(
log n+ log

1

ε

)
= O(log n)

bits as well. However, then we will get only (1+ε)-approximate solutions.

73
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6.1 MST is a Global Problem

Recall that in the message passing model without restrictions on message size,
an r-round algorithm is some mapping from r-neighborhoods1 labeled by in-
puts, identifiers, and, for randomized algorithms, the random strings to out-
puts. Thus, r puts a bound on the locality of a problem: If topology or inputs
are locally changed, the outputs of the algorithm change only up to distance r
(both in the new and old graph). In contrast, if no r-round algorithm exists for
r ∈ o(D), a problem is global.

Theorem 6.2. MST is a global problem, i.e., any distributed algorithm com-
puting an MST must run for Ω(D) rounds. This holds even when permitting
outputs that are merely spanning subgraphs (i.e., not necessarily trees) and, for
any 1 ≤ α ∈ nO(1), α-approximate.

Proof. Consider the cycle consisting of n nodes, and denote by e1 and e2 two
edges on opposite sides of the cycle (i.e., in maximal distance from each other).
For 1 ≤ α ∈ nO(1), define

W1(e) :=





2α2n if e = e1

αn if e = e2

1 else
W2(e) :=

{
αn if e = e2

1 else.

On the cycle with weights W1, the MST consists of all edges but e1. In fact,
any solution containing e1 has approximation ratio at least

W1(e1)

W2(e2) + n− 2
>

2α2n

(α+ 1)n
≥ α.

Thus, any α-approximate solution must output all edges but e1. Likewise, on
the cycle with weights W2, the MST consists of all edges but e2, and any solution
containing e1 has approximation ratio at least

αn

n− 1
> α.

Thus, any α-approximate solution must output all edges but e2. As by con-
struction the nodes of e1 and those of e2 are in distance Ω(D) = Ω(n), finding
any spanning subgraph that is by at most factor α heavier than an MST is a
global problem.

Remarks:

• The restriction that α ∈ nO(1) is only a formality in this theorem. We
decided that only polynomial edge weights are permitted in the problem
description, so we will be able to talk about the weights. But if they are
so large that we can’t talk about them, this doesn’t make our job easier!

• W.l.o.g., we assume in the following that all edge weights are distinct, i.e.,
W (e) 6= W (e′) for e 6= e′. This is achieved by attaching the identifiers of
the endpoints of e to its weight and use them to break symmetry in case
of identical weights. This also means that we can talk of the MST of G
from now on, as it must be unique.

1Here, edges connecting two nodes that are both exactly in distance r are not included.
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Figure 6.1: Snapshot of Kruskal’s algorithm. Solid black edges have been added
to T , the solid gray edges have been discarded. The dashed black edge is being
processed and will be added to T since it does not close a cycle; the dashed gray
edges will be processed in later iterations.

6.2 Being Greedy: Kruskal’s Algorithm

Considering greedy strategies is always a good starting point. In the case of an
MST, this means to always add the cheapest useful edge first! As closing cycles
is pointless, this yields Kruskal’s algorithm, compare Figure 6.1:

Algorithm 13 Kruskal’s algorithm (centralized version)

1: sort E in ascending order of weights; denote the result by (e1, . . . , e|E|)
2: T := ∅
3: for i = 1, . . . , |E| do
4: if T ∪ {ei} is a forest then
5: T := T ∪ {ei}
6: end if
7: end for
8: return T

Lemma 6.3. If an edge is heaviest in a cycle, it is not in the MST. If all
such edges are deleted, the MST remains. In particular, Kruskal’s algorithm
computes the MST.

Proof. Denote the MST by M and suppose for contradiction that e ∈ M is
heaviest in a cycle C. As C \ {e} connects the endpoints of e, there must be an
edge e′ ∈ C so that (M \ {e})∪ {e′} is a spanning tree (i.e., e′ connects the two
components of M \ {e}). However, as W (e′) < W (e), (M \ {e})∪ {e′} is lighter
than M , contradicting that M is the MST.

Thus, when deleting all edges that are heaviest in some cycle, no MST edge
is deleted. As this makes sure that there is no cycle contained in the obtained
edge set, the result is a forest. As this forest contains the MST, but a tree is a
maximal forest, the forest must in fact be the MST.

Let’s make this into a distributed algorithm! Of course we don’t simply
collect all edges and execute the algorithm locally. Still, we need to somehow
collect the information to compare. We do this, but drop all edges which are
certainly “unnecessary” on the fly.
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Algorithm 14 Kruskal’s algorithm (distributed version)

1: compute an (unweighted) BFS, its depth d, and n; denote the root by R
2: for each v ∈ V in parallel do
3: Ev := {{v, w} ∈ E}
4: Sv := ∅ // sent edges
5: end for
6: for i = 1, . . . , n+ d− 2 do
7: for each v ∈ V \ {R} in parallel do
8: e := argmine′∈Ev\Sv

{W (e′)} // lightest unsent edge
9: send (e,W (e)) to v’s parent in the BFS tree

10: Sv := Sv ∪ {e}
11: end for
12: for each v ∈ V in parallel do
13: for each received (e,W (e)) do
14: Ev := Ev ∪ {e} // also remember W (e) for later use
15: end for
16: for each cycle C in Ev do
17: e := argmaxe′∈C{W (e′)} // heaviest edge in cycle
18: Ev := Ev \ {e}
19: end for
20: end for
21: end for
22: R broadcasts ER over the BFS tree
23: return ER

Intuitively, MST edges will never be deleted, and MST edges can only be
“delayed,” i.e., stopped from moving towards the root, by other MST edges.
However, this is not precisely true: There may be other lighter edges that go
first, as the respective senders do not know that they are not MST edges. The
correct statement is that for the kth-lightest MST edge, at most k − 1 lighter
edges can keep it from propagating towards the root. Formalizing this intuition
is a bit tricky.

Definition 6.4. Denote by Bv the subtree of the BFS tree rooted at node v ∈ V ,
by dv its depth, by EBv

:=
⋃
w∈Bv

{{w, u} ∈ Ew} the set of edges known to some
node in Bv, and by FBv ⊆ EBv the lightest maximal forest that is a subset of
EBv .

Lemma 6.5. For any node v and any E′ ⊆ EBv
, the result of Algorithm 13

applied to E′ contains FBv
∩ E′.

Proof. By the same argument as for Lemma 6.3, Kruskal’s algorithm deletes
exactly all edges from a given edge set that are heaviest in some cycle. FBv

is the set of edges that survive this procedure when it is applied to EBv , so
FBv ∩ E′ survives for any E′ ⊆ EBv .

Lemma 6.6. For any k ∈ {0, 1, . . . , |FBv
|}, after dv+k−1 rounds of the second

FOR loop of the algorithm, the lightest k edges of FBv
are in EBv

, and have
been sent to the parent by the end of round dv + k.
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Proof. We prove the claim by double induction over the depth dv of the subtrees
and k. The claim holds trivially true for dv = 0 and all k, as for leaves v we
have EBv

= FBv
. Now consider v ∈ V and assume that the claim holds for all

w ∈ V with dw < dv and all k. It is trivial for dv and k = 0, so assume it also
holds for dv and some k ∈ {0, . . . , |FBv | − 1} and consider index k + 1.

Because
EBv = {{v, w} ∈ Ev} ∪

⋃

w child of v

EBw ,

we have that the (k + 1)th lightest edge in FBv
is already known to v or it is

in EBw for some child w of v. By the induction hypothesis for index k + 1 and
dw < dv, each child w of v has sent the k + 1 lightest edges in FBw to v by the
end of round dw + k + 1 ≤ dv + k. The (k + 1)th lightest edge of FBv

must
be contained in these sent edges: Otherwise, we can take the sent edges (which
are a forest) and edges k + 1, . . . , |FBv

| out of FBv
to either obtain a cycle in

which an edge from FBv is heaviest or a forest with more edges than FBv , in
both cases contained in EBv . In the former case, this contradicts Lemma 6.5,
as then an edge from FBv

would be deleted from E′ ⊆ EBv
. In the latter case,

it contradicts the maximality of FBv
, as all maximal forests in EBv

have the
same number of edges (the number of nodes minus the number of components
of (G,EBv )). Either way, the assumption that the edge was not sent must be
wrong, implying that v learns of it at the latest in round dv + k and adds it to
Ev. By Lemma 6.5, it never deletes the edge from Ev. This shows the first part
of the claim.

To show that by the end of the round dv + k + 1, v sends the edge to its
parent, we apply the induction hypothesis for dv and k. It shows that v already
sent the k lightest edges from FBv before round dv + k + 1, and therefore will
send the next in round dv + k + 1 (or has already done so), unless there is a
lighter unsent edge e ∈ Ev. As FBv

is a maximal forest, FBv
∪ {e} contains

exactly one cycle. However, as e does not close a cycle with the edges sent
earlier, it does not close a cycle with all the edges in FBv

that are lighter than
e. Thus, the heaviest edge in the cycle is heavier than e, and deleting it results
in a lighter maximal forest than FBv , contradicting the definition of FBv . This
concludes the induction step and therefore the proof.

Theorem 6.7. For a suitable implementation, Algorithm 14 computes the MST
M in O(n) rounds.

Proof. The algorithm is correct, if at the end of the second FOR loop, it holds
that ER = M . To see this, observe that EBR

=
⋃
v∈V {{v, w} ∈ E} = E and

hence FBR
= M . We apply Lemma 6.6 to R and round n+d−2 = |M |+dR−1.

The lemma then says that M ⊆ ER. As in each iteration of the FOR loop, all
cycles are eliminated from ER, ER is a forest. A forest has at most |M | = n− 1
edges, so indeed ER = M .

Now let us check the time complexity of the algorithm. From Lecture 2,
we know that a BFS tree can be computed in O(D) rounds using messages of
size O(log n).2 Computing the depth of the constructed tree and its number of
nodes n is trivial using messages of size O(log n) and O(D) rounds. The second

2If there is no special node R, we may just pick the one with smallest identifier, start BFS
constructions at all nodes concurrently, and let constructions for smaller identifiers “overwrite”
and stop those for larger identifiers.
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FOR loop runs for n+d−1 ∈ n+O(D) rounds. Finally, broadcasting the n−1
edges of M over the BFS tree takes n + d − 1 ∈ n + O(D) rounds as well, as
in each round, the root can broadcast another edge without causing congestion;
the last edge will have arrived at all leaves in round n − 1 + d, as it is sent by
R in round n− 1. As D ≤ n− 1, all this takes O(n+D) = O(n) rounds.

Remarks:

• A clean and simple algorithm, and running time O(n) beats the trivial
O(|E|) on most graphs.

• This running time is optimal up to constants on cycles. But (non-trivial)
graphs with diameter Ω(n) are rather rare in practice. We shouldn’t stop
here!

• Also nice: everyone learns about the entire MST.

• Of course, there’s no indication that we can’t be faster in case D � n.
We’re not asking for everyone to learn the entire MST (which trivially
would imply running time Ω(n) in the worst case), but only for nodes
learning about their incident MST edges!

• To hope for better results, we need to make sure that we work concurrently
in many places!

6.3 Greedy Mk II:
Gallager-Humblet-Spira (GHS)

In Kruskal’s algorithm, we dropped all edges that are heaviest in some cycle,
because they cannot be in the MST. The remaining edges form the MST. In
other words, picking an edge that cannot be heaviest in a cycle is always a
correct choice.

Lemma 6.8. For any ∅ 6= U ⊂ V ,

eU := argmin
e∈(U×V \U)∩E

{W (e)}

is in the MST.

Proof. As G is connected, (U × V \ U) ∩ E 6= ∅. Consider any cycle C 3 eU .
Denoting eU = {v, w}, C \{eU} connects v and w. As eU ∈ U×V \U , it follows
that (C \ {eU}) ∩ (U × V \ U) 6= ∅, i.e., there is another edge e ∈ C between a
node in U and a node in V \U besides eU . By definition of eU , W (eU ) < W (e).
As C 3 eU was arbitrary, we conclude that there is no cycle C in which eU is
the heaviest edge. Therefore, eU is in the MST by Lemma 6.3.

This observation leads to another canonical greedy algorithm for finding an
MST. You may know the centralized version, Prim’s algorithm. Let’s state the
distributed version right away.

Admittedly, this is a very high-level description, but it is much easier to
understand the idea of the algorithm this way. It also makes proving correctness
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Algorithm 15 GHS (Gallager–Humblet–Spira)

1: T := ∅ // T will always be a forest
2: repeat
3: F := set of connectivity components of T (i.e., maximal trees)
4: Each F ∈ F determines the lightest edge leaving F and adds it to T
5: until T is a spanning subgraph (i.e., there is no outgoing edge)
6: return T

very simple, as we don’t have to show that the implementations of the individual
steps work correctly (yet). We call an iteration of the REPEAT statement a
phase.

Corollary 6.9. In each phase of the GHS algorithm, T is a forest consisting
of MST edges. In particular, the algorithm returns the MST of G.

Proof. It suffices to show that T contains only MST edges. Consider any con-
nectivity component F ∈ F . As the algorithm has not terminated yet, F cannot
contain all nodes. Thus, Lemma 6.8 shows that the lightest outgoing edge of F
exists and is in the MST.

Figure 6.2: Two iterations of the GHS algorithm. The circled areas contain the
components at the beginning of the iteration, connected by the already selected
MST edges. Each component selects the lightest outgoing edge into the MST
(blue solid arrows). Other edges within components, like the grey one after the
first iteration, are discarded, as they are heaviest in some cycle.
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Great! But now we have to figure out how to implement this idea efficiently.
It’s straightforward to see that we won’t get into big trouble due to having too
many phases.

Lemma 6.10. Algorithm 15 terminates within dlog ne phases.

Proof. Denote by ni the number of nodes in the smallest connectivity component
(maximal tree) in F at the end of phase i. We claim that ni ≥ min{2i, n}.
Trivially, this number is n0 := 1 “at the end of phase 0,” i.e., before phase 1.
Hence, it suffices to show that ni ≥ min{2ni−1, n} for each phase i. To this end,
consider any F ∈ F at the beginning of phase i. Unless F already contains all
nodes, it adds its lightest outgoing edge to T , connecting it to at least one other
component F ′ ∈ F . As |F | ≥ ni−1, |F ′| ≥ ni−1, and connectivity components
are disjoint, |F ∪ F ′| ≥ 2ni−1. The claim follows.

Ok, so what about the phases? We need to do everything concurrently, so we
cannot just route all communication over a single BFS tree without potentially
causing a lot of “congestion.” Let’s use the already selected edges instead!

Lemma 6.11. For a given phase i, denote by Di the maximum diameter of any
F ∈ F at the beginning of the phase, i.e., after the new edges have been added
to T . Then phase i can be implemented in O(Di) rounds.

Proof. All communication happens on edges of T that are selected in or before
phase i. Consider a connectivity component of T at the beginning of phase i.
By Corollary 6.9, it is a tree. We root each such tree at the node with small-
est identifier and let each node of the tree learn this identifier, which takes
O(d) time for a tree of depth d. Clearly, d ≤ Di. Then each node learns the
identifiers of the roots of all its neighbors’ trees (one round). On each tree,
now the lightest outgoing edge can be determined by every node sending their
lightest edge leaving its tree (alongside its weight) to the root; each node only
forwards the lightest edge it knows about to the root. Completing this process
and announcing the selected edges to their endpoints takes O(Di) rounds. As
the communication was handled on each tree separately without using external
edges (except for exchanging the root identifiers with neighbors and “marking”
newly selected edges), all this requires messages of size O(log n) only.

We’ve got all the pieces to complete the analysis of the GHS algorithm.

Theorem 6.12. Algorithm 15 computes the MST. It can be implemented in
O(n log n) rounds.

Proof. Correctness was shown in Corollary 6.9. As trivially Di ≤ n − 1 for
all phases i (a connectivity component cannot have larger diameter than the
number of its nodes), by Lemma 6.3 each phase can be completed in O(n)
rounds. This can be detected and made known to all nodes within O(D) ⊆ O(n)
rounds using a BFS tree. By Lemma 6.10, there are O(log n) phases.
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Remarks:

• The log n factor can be shaved off.

• The original GHS algorithm is asynchronous and has a message complex-
ity of O(|E| log n), which can be improved to O(|E| + n log n). It was
celebrated for that, as this is way better than what comes from the use
of an α-synchronizer. Basically, the constructed tree is used like a β-
synchronizer to coordinate actions within connectivity components, and
only the exchange of component identifiers is costly.

• The GHS algorithm can be applied in different ways. GHS for instance
solves leader election in general graphs: once the tree is constructed, find-
ing the minimum identifier using few messages is a piece of cake!

6.4 Greedy Mk III: Garay-Kutten-Peleg (GKP)

We now have two different greedy algorithms that run in O(n) rounds. How-
ever, they do so for quite different reasons: The distributed version of Kruskal’s
algorithm basically reduces the number of components by 1 per round (up to an
additive D), whereas the GHS algorithm cuts the number of remaining compo-
nents down by a factor of 2 in each phase. The problem with the former is that
initially there are n components, the problem with the latter is that components
of large diameter take a long time to handle.

If we could use the GHS algorithm to reduce the number of components to
something small, say

√
n, quickly without letting them get too big, maybe we

can then finish the MST computation by Kruskal’s approach? Sounds good,
except that it may happen that, in a single iteration of GHS, a huge component
appears. We then wouldn’t know that it is so large without constructing a
tree on it or collecting the new edges somewhere, but both could take too long!
The solution is to be more conservative with merges and apply a symmetry
breaking mechanism: GKP grows components GHS-like until they reach a size
of
√
n. Every node learns its component identifier (i.e., the smallest ID in the

component), and GKP then joins them using the pipelined MST construction
(where nodes communicate edges between connected components instead of all
incident edges).

Let’s start with correctness.

Lemma 6.13. Algorithm 16 adds only MST edges to T . It outputs the MST.

Proof. By Lemma 6.8, only MST edges are added to C in any iteration of the
FOR loop, so at the end of the loop T is a subforest of the MST. The remaining
MST edges thus must be between components, so contracting components and
deleting loops does not delete any MST edges. The remaining MST edges are
now just the MST of the constructed multigraph, and Kruskal’s algorithm works
fine on (loop-free) multigraphs, too.

Also, we know that the second part will be fast if few components remain.

Corollary 6.14. Suppose after the FOR loop of Algorithm 16 k components of
maximum diameter Dmax remain, then the algorithm terminates within O(D+
Dmax + k) additional rounds.
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Figure 6.3: Top: A component of (F , C) in a phase of the first part of the
GKP algorithm. “Large” components that marked no MST edge for possible
inclusion can only be roots; we have such a root here. Bottom left: The blue
edges show a matching constructed using the Cole-Vishkin algorithm. Bottom
right: The blue edges are the final set of selected edges in this phase.

Algorithm 16 GKP (Garay–Kutten–Peleg). We slightly abuse notation by
interpreting edges of C also as edges between components F . Contracting an
edge means to identify its endpoints, where the new node “inherits” the edges
from the original nodes.

1: T := ∅ // T will always be a forest
2: for i = 0, . . . , dlog

√
ne do

3: F := set of connectivity components of T (i.e., maximal trees)
4: Each F ∈ F of diameter at most 2i determines the lightest edge leaving

F and adds it to a candidate set C
5: Add a maximal matching CM ⊆ C in the graph (F , C) to T
6: If F ∈ F of diameter at most 2i has no incident edge in CM , it adds the

edge it selected into C to T
7: end for
8: denote by G′ = (V,E′,W ′) the multigraph obtained from contracting all

edges of T (deleting loops, keeping multiple edges)
9: run Algorithm 14 on G′ and add the respective edges to T

10: return T

Proof. The contracted graph has exactly k nodes and thus k−1 MST edges are
left. The analysis of Algorithm 14 also applies to multigraphs, so (a suitable
implementation) runs for O(D+k) additional rounds; all that is required is that
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Figure 6.4: Left: Components and their interconnecting edges after the first
stage of the GKP algorithm. Right: The multigraph resulting from contraction
of the components.

the nodes of each component agree on an identifier for their component. This
can be done by figuring out the smallest identifier in each component, which
takes O(Dmax) rounds.

It remains to prove three things: (i) components don’t become too large
during the FOR loop, (ii) we can efficiently implement the iterations in the
FOR loop, and (iii) few components remain after the FOR loop. Let’s start
with (i). We again call one iteration of the FOR loop a phase.

Lemma 6.15. At the end of phase i, components have diameter O(2i).

Proof. We claim that at the end of phase i, no component has diameter larger
than 6 · 2i ∈ O(2i), which we show by induction. Trivially, this holds for i = 0
(i.e., at the start of the algorithm). Hence, suppose it holds for all phases
j ≤ i ∈ N0 for some i and consider phase i+ 1.

Consider the graph (F , C) from this phase. We claim that each component
of (F , C) has diameter at most 3. To see this, observe that if an unmatched
F ∈ F adds an edge {F, F ′}, F ′ must be matched: otherwise, {F, F ′} could be
added to the matching, contradicting its maximality. Thus, all non-matching
edges added to T “attach” some F ∈ F that was isolated in the graph (F , CM )
to some F ′ that is not picking a new edge in this step. This increases the
diameter of components from at most 1 (for a matching) to at most 3.

Next, we claim that no component contains more than one F of diameter
larger than 2i (with respect to G). This can be seen by directing all selected
edges away from the F ∈ F that selected it (breaking ties arbitrarily). We
obtain a directed graph of out-degree at most 1, in which any F of diameter



84 LECTURE 6. MINIMUM SPANNING TREES

larger than 2i has out-degree 0 and is thus the root of a component that is an
oriented tree.

Now consider a new component at the end of the phase. It is composed of
at most one previous component of – by the induction hypothesis – size at most
6 · 2i, while all other previous components have size at most 2i. The longest
possible path between any two nodes in the new component thus crosses the
large previous component, up to 3 small previous components, and up to 3
edges between previous components, for a total of 6 · 2i + 3 · 2i + 3 ≤ 6 · 2i+1

hops.

Together with an old friend, we can exploit this to show (ii).

Corollary 6.16. Each iteration of the FOR loop can be implemented with run-
ning time O(2i log∗ n).

Proof. By Lemma 6.15, in phase i components are of size O(2i). We can thus
root them and determine the edges in C in O(2i) rounds. By orienting each
edge in C away from the component F ∈ F that selected it (breaking ties by
identifiers), (F , C) becomes a directed graph with out-degree 1. We simulate
the Cole-Vishkin algorithm on this graph to compute a 3-coloring in O(2i log∗ n)
rounds. To this end, component F is represented by the root of its spanning
tree and we exploit that it suffices to communicate only “in one direction,”
i.e., it suffices to determine the current color of the “parent.” Thus, for each
component, only one color each needs to be sent and received, respectively,
which can be done with message size O(log n) over the edges of the component.
The time for one iteration then is O(2i). By Theorem 1.7, we need O(log∗ n)
iterations; afterwards, we can select a matching in O(2i) time by going over the
color classes sequentially (cf. Exercise 1) and complete the phase in additional
O(2i) rounds, for a total of O(2i log∗ n) rounds.

It remains to show that all this business really yields sufficiently few com-
ponents.

Lemma 6.17. After the last phase, at most
√
n components remain.

Proof. Observe that in each phase i, each component of diameter smaller than
2i is connected to at least one other component. We claim that this implies
that after phase i, each component contains at least 2i nodes. This trivially
holds for i = 0. Now suppose the claim holds for phase i ∈ {0, . . . , d√ne − 1}.
Consider a component of fewer than 2i+1 nodes at the beginning of phase i+ 1.
It will hence add an edge to C and be matched or add this edge to T . Either
way, it gets connected to at least one other component. By the hypothesis, both
components have at least 2i nodes, so the resulting component has at least 2i+1.

As there are dlog
√
ne phases, in the end each component contains at least

2log
√
n =
√
n nodes. As components are disjoint, there can be at most n/

√
n =√

n components left.

Theorem 6.18. Algorithm 16 computes the MST and can be implemented such
that it runs in O(

√
n log∗ n+O(D)) rounds.
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Proof. Correctness is shown in Lemma 6.13. Within O(D) rounds, a BFS can
be constructed and n be determined and made known to all nodes. By Corol-
lary 6.16, phase i can be implemented in O(2i) rounds, so in total

dlog
√
ne∑

i=0

O(2i log∗ n) = O(2log
√
n log∗ n) = O(

√
n log∗ n)

rounds are required. Note that since the time bound for each phase is known to
all nodes, there is no need to coordinate when a phase starts; this can be com-
puted from the depth of the BFS tree, n, and the round in which the root of the
BFS tree initiates the main part of the computation. By Lemmas 6.15 and 6.17,
only

√
n components of diameter O(

√
n) remain. Hence, by Corollary 6.14, the

algorithm terminates within additional O(
√
n+D) rounds.

Remarks:

• The use of symmetry breaking might come as a big surprise in this al-
gorithm. And it’s the only thing keeping it from being greedy all the
way!

• Plenty of algorithms in the Congest model follow similar ideas. This is
no accident: The techniques are fairly generic, and we will see next time
that there is an inherent barrier around

√
n, even if D is small!

• The time complexity can be reduced to O(
√
n log∗ n + D) by using only⌈

log(
√
n/ log∗ n)

⌉
phases, i.e., growing components to size Θ(

√
n/ log∗ n).

• Be on your edge when seeing O-notation with multiple parameters. We
typically want it to mean that no matter how the parameter combination
is, the expression is an asymptotic bound where the constants in the O-
notation are independent of the parameter choice. However, in particular
with lower bounds, this can become difficult, as there may be dependen-
cies between parameters, or the constructions may apply only to certain
parameter ranges.

What to take Home

• Studying sufficiently generic and general problems like MIS or MST makes
sense even without an immediate application in sight. When I first encoun-
tered the MST problem, I didn’t see the Cole-Vishkin symmetry breaking
technique coming!

• If you’re looking for an algorithm and don’t know where to start, check
greedy approaches first. Either you already end up with something non-
trivial, or you see where it goes wrong and might be able to fix it!

• For global problems, it’s very typical to use global coordination via a BFS
tree, and also “pipelining,” the technique of collecting and distributing k
pieces of information in O(D + k) rounds using the tree.
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Bibliographic Notes

Tarjan [Tar83] coined the terms red and blue edges for heaviest cycle-closing
edges (which are not in the MST) and lightest edges in an edge cut3 (which are
always in the MST), respectively. Kruskal’s algorithm [Kru56] and Prim’s algo-
rithm [Pri57] are classics, which are based on eliminating red edges and selecting
blue edges, respectively. The distributed variant of Kruskal’s algorithm shown
today was introduced by Garay, Kutten, and Peleg [GKP98]; it was used in the
first MST algorithm of running time O(o(n) +D). The algorithm then was im-
proved to running time O(

√
n log∗ n+D) by introducing symmetry breaking to

better control the growth of the MST components in the first phase [KP00] by
Kutten and Peleg. The variant presented here uses a slightly simpler symmetry
breaking mechanism. Algorithm 15 is called “GHS” after Gallager, Humblet,
and Spira [GHS83]. The variant presented here is much simpler than the origi-
nal, mainly because we assumed a synchronous system and did not care about
the number of messages (only their size). As a historical note, the same princi-
ple was discovered much earlier by Otakar Boruvka and published in 1926 – in
Czech (see [NMN01] for an English translation).

Awerbuch improved the GHS algorithm to achieve (asynchronous) time com-
plexity O(n) at message complexity O(|E|+ n log n), which is both asymptoti-
cally optimal in the worst case [Awe87]. Yet, the time complexity is improved
by the GKP algorithm! We know that this is not an issue of asynchrony vs.
synchrony, since we can make an asynchronous algorithm synchronous without
losing time, using the α-synchronizer. This is not a contradiction, since the
“bad” examples have large diameter; the respective lower bound is existential.
It says that for any algorithm, there exists a graph with n nodes for which it
must take Ω(n) time to complete. These graphs all have diameter Θ(n)! A lower
bound has only the final word if it, e.g., says that for all graphs of diameter
D, any algorithm must take Ω(D) time.4 Up to details, this can be shown by a
slightly more careful reasoning than for Theorem 6.2. We’ll take a closer look
at the

√
n log∗ n part of the time bound next week!
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Lecture 7

Hardness of MST
Construction

In the previous lecture, we saw that an MST can be computed in O(
√
n log∗ n+

D) rounds using messages of size O(log n). Trivially, Ω(D) rounds are required,

but what about this O(
√
n log∗ n) part? The Ω(D) comes from a locality-based

argument, just like, e.g., the Ω(log∗ n) lower bound on list coloring we’ve seen.
But this type of reasoning is not going to work here: All problems can be solved
in O(D) rounds by learning the entire topology and inputs!

Hence, if we want to show any such lower bound, we need to reason about
the amount of information that can be exchanged in a given amount of time. So
we need a problem that is “large” in terms of communication complexity, then
somehow make it hard to talk about it efficiently, and still ensure a small graph
diameter (since we want a bound that is not based on having a large diameter).

7.1 Reducing 2-Player Equality to MST Con-
struction

These are quite a few constraints, but actually not too hard to come by. Take
a look at the graph in Figure 7.1. There are two nodes A and B, connected
by 2k ∈ Θ(

√
n) disjoint paths pi, i ∈ {1, . . . , 2k} of length k, and a balanced

binary tree with k + 1 leaves, where the ith leaf is connected to the ith node of
each path. Finally, there’s an edge from A to the leftmost leaf of the tree and
from B to the rightmost leaf of the tree. This graph has a diameter of O(log n),
as this is the depth of the binary tree. Also, it’s clear that all communication
between A and B that does not use tree edges will take k rounds, and using
the tree edges as “shortcuts” will not yield a very large bandwidth due to the
O(log n) message size.

So far, we haven’t picked any edge weights. We’ll use these to encode a
difficult problem – in terms of 2-player communication complexity – in a way
that keeps the information on the inputs well-separated. We’re going to use the
equality problem.

Definition 7.1 (Deterministic 2-Player Equality). The deterministic 2-player
equality problem is defined as follows. Alice and Bob are each given N -bit
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Figure 7.1: Graph used in the lower bound construction. Grey edges have
weight 0, red edges weight 1. Only the weight of edges incident to nodes A and
B depends on the input strings x and y of Alice and Bob, respectively. The
binary tree ensures a diameter of O(log n).

strings x and y, respectively. They exchange bits in order to determine whether
x = y or not. In the end, they need to output 1 if and only if x = y. The
communication complexity of the protocol is the worst-case number of bits that
are exchanged (as function of N).

Let’s fix the weights. We’ll only need two different values, 0 and 1. Given
x, y ∈ {0, 1}k, we use the following edge weights:

• All edges between path nodes and the binary tree have weight 1.

• For i ∈ {1, . . . , k}, the edge from A to the ith path pi has weight xi and
the edge from A to pk+i has weight xi, where xi := 1− xi.

• For i ∈ {1, . . . , k}, the edge from B to pi has weight yi and the edge from
B to pk+i has weight yi.

• All other edges have weight 0.

This encodes the question whether x = y in terms of the weight of an MST.

Lemma 7.2. The weight of an MST of the graph given in Figure 7.1 is k if
and only if x = y.

Proof. By construction, the binary tree, A, and B are always connected by
edges of weight 0. Likewise, for each i ∈ {1, . . . , 2k}, the nodes of path pi
are connected by edges of weight 0. Hence, we need to determine the minimal
weight of 2k edges that interconnect the paths pi and the component containing
the binary tree, A, and B.
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Suppose first that x = y. Then, for each bit xi = yi, either xi = yi = 1 or
xi = yi = 1. Thus, either the cost of all edges from pi to the remaining graph
is 1, while for pi+k there are 0-weight edges leaving it, or vice versa. Thus, the
cost of a minimum spanning tree is exactly k.

On the other hand, if x 6= y, there is at least one index i for which xi 6= yi.
Thus, both pi and pi+k have an outgoing edge of weight 0, and the weight of an
MST is at most k − 1.

This looks promising in the sense that we have translated the equality prob-
lem to something an MST algorithm has to be able to solve. However, we
cannot simply argue that if we let A and B play the roles of Alice and Bob in
a network, the (to-be-shown) hardness of equality implies that the problem is
difficult in the network, as the nodes of the network might do all kinds of fancy
things. Similar to when we established that consensus is hard in message pass-
ing systems from the same result for shared memory, we need a clean simulation
argument.

Theorem 7.3. Suppose there is a deterministic distributed algorithm that solves
the MST problem on the graph in Figure 7.1 for arbitrary x and y in T ∈
o(
√
n/ log2 n) rounds using messages of size O(log n). Then there is a solution

to deterministic 2-player equality of communication complexity o(N).

Proof. We only consider the case where the algorithm requires at most k/2
rounds, otherwise it would finish in Ω(

√
n) time. Alice and Bob simulate the

MST algorithm on the graph in Figure 7.1 for N = k. Alice knows the entire
graph but the weights of the edges incident to B and Bob knows everything but
the weights of the edges incident to A. In round r ∈ {1, . . . , T}, Alice simulates
the algorithm at the nodes A, the k+1−r nodes on each path closest to it, and
a subset of the nodes of the binary tree; the same holds for Bob with respect
to B.

Because Alice and Bob know only what’s going on for a subset of the nodes,
they need to talk about what happens at the boundary of the region under
their control. However, since in each round the subpaths they simulate become
shorter, the path edges are already accounted for: For the new boundary edges
that are in paths, their communication can be computed locally, as the messages
that have been sent over them in previous rounds are known – they were in the
simulated region!

Hence, we only have to deal with edges incident to nodes of the binary tree.
Consider Alice; Bob behaves symmetrically. In round r, Alice simulates the
smallest subtree containing all leaves that connect to path nodes she simulates
as well. Observe that this rids Alice and Bob of talking about edges between the
tree and the rest of the graph as well. The only issue is now that the “simulation
front” does not move as fast within the tree as it does in the remaining graph.
This implies that Alice needs some information only Bob knows: the messages
sent to tree nodes by neighbors she did not simulate in the previous round. Since
the tree is binary, it has depth dlog(k+ 1)e ∈ O(log n) and for each node on the
“simulation front,” there is at most one message that needs to be communicated.
Therefore, Alice and Bob can simulate the MST algorithm communicating only
O(log2 n) bits per round,1 provided that T ≤ k/2.

1In Figure 7.2 this only happens for one tree edge per round, because the tree has depth 3;
asymptotically, however, Θ(logn) messages are sent on average.
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Figure 7.2: The regions of the graph Alice simulates in rounds 2 (solid purple)
and 3 (dotted purple), respectively. Bob needs to tell Alice what message is
sent over the yellow edge by the node outside the region of round 2.

Figure 7.3: The regions of the graph Bob simulates in rounds 2 (solid blue) and
3 (dotted blue), respectively. Alice needs to send Bob up to O(log n) bits the
algorithm sends over the yellow edge.
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For T < k/2, the subgraphs Alice and Bob have knowledge of cover the
graph. Therefore, for a suitable partition of the edge set E = EA∪̇EB , Alice
can count and communicate the weight of all MST edges in EA, and Bob can
do so for EB . This requires at most 2 log k ∈ O(log n) communicated bits.
By Lemma 7.2, Alice and Bob now can output whether x = y by outputting
whether the MST has weight k or not. The total communication cost of the
protocol is O(T log2 n+ log2 k) ⊆ o(N).

Remarks:

• In the previous lecture, we required non-zero edge weights. This doesn’t
change anything, as picking, e.g., 1 and 2 will change the weight of an
MST by exactly n− 1.

• The simulation approach used for Theorem 7.3 is very flexible. Not only
can it be used for different weights of the edges incident to A and B, but
also for different topologies of a similar flavor. In fact, it is the underlying
technique for almost all the non-locality-based lower bounds we know in
the distributed setting without faults!

7.2 Deterministic Equality is Hard

We know now that any fast deterministic MST algorithm using small messages
implies a protocol solving deterministic equality at small communication cost.
Hence, showing that the communication complexity of this problem is large will
yield that MST cannot be solved quickly in all graphs of n nodes, even if D is
small.

Theorem 7.4. The communication complexity of deterministic equality is N+1
(respectively N , if we are satisfied with one player learning the result).

Proof. Clearly, N (N + 1) bits suffice: Just let Alice send x to Bob and decide
(and tell the result to Alice). Now assume for contradiction that there is a pro-
tocol communicating N − 1 bits in which one player decides correctly. As there
are 2N > 2N−1 possible values of x, there must be two inputs (x, x) and (x′, x′)
(i.e., both with x = y) with x′ 6= x so that the sequence of N −1 exchanged bits
(including who sent them)2 must be identical. By definition, in both cases the
output is 1. Now consider the input (x, x′). By induction on the communicated
bits and using indistinguishability, we see that Alice cannot distinguish the ex-
ecution from the one for inputs (x, x), while Bob cannot distinguish it from the
one for inputs (x′, x′). This is a contradiction, as then one of them decides on
output 1, but x 6= x′ implies that the output should be 0. To see that one more
bit needs to be communicated if both players need to know the output, observe
that for an N -bit protocol, one player would have to decide knowing only N −1
bits, yielding the same contradiction.

Corollary 7.5. There is no deterministic distributed MST algorithm that uses
messages of size O(log n) and terminates in o(

√
n/ log2 n + D) rounds on all

graphs of n nodes and diameter D (unless D is smaller than in the graph from
Figure 7.1).

2This follows by induction: Both Alice and Bob must know who sends next, so this must
be a function of the transmitted bits.
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Proof. Theorem 6.2 shows that running time o(D) is impossible, which shows
the claim if D ≥ √n/ log2 n. Theorem 7.3 shows that an o(

√
n/ log2 n)-round

algorithm implied a solution to deterministic equality using o(N) bits. By The-
orem 7.4, this is not possible, covering the case that D ≤ √n/ log2 n.

7.3 Randomized Equality is Easy

One might expect that the same approach extends to randomized MST algo-
rithms. Unfortunately, the equality problem defies this intuition: It can be
solved extremely efficiently using randomization.

Definition 7.6 (Randomized 2-Player Equality). In the randomized 2-player
equality problem, Alice and Bob are each given N -bit strings x and y, respec-
tively. Moreover, each of them has access to a (sufficiently long) string of un-
biased random bits. They exchange bits in order to determine whether x = y
or not. In the end, they need to determine whether x = y correctly with error
probability at most ε (for any x and y!).

The communication complexity of the protocol is the worst-case number of
bits that are exchanged (as function of N). We talk of public randomness if
Alice and Bob receive the same random bit string, otherwise the protocol uses
private randomness (and the strings are independent).

Public randomness is a strong assumption which makes designing an algo-
rithm very simple.

Lemma 7.7. For any k ∈ N, randomized equality can be solved with ε = 2−k

using k + 1 bits of communication assuming public randomness.

Proof. Let a · b :=
∑N
i=1 aibi denote the scalar product over {0, 1}N . Consider

the probability that for a uniformly random vector v of N bits, it holds that
v ·x = v ·y mod 2. If x = y, this is always true: P [v ·x = v ·y mod 2 | x = y] = 1.
Otherwise, we have

v · x− v · y mod 2 = v · (x− y) mod 2 =
∑

i∈{1,...,N}
xi 6=yi

vi mod 2,

and as v is a string of independent random bits, P [v · x = v · y mod 2 | x 6= y]
is the probability that the number of heads for |{i ∈ {1, . . . , N} | xi 6= yi}| > 0
unbiased coin flips is even. This is exactly 1/2 for a single coin flip and P [v ·x =
v · y mod 2 | x 6= y] = 1/2 can be shown by induction.

In summary, testing whether v · x = v · y mod 2 reveals with probability 1/2
that x 6= y and will never yield a false negative if x = y. With kN public random
bits, Alice and Bob have k independent random vectors. The probability that
the test fails k times is 2−k. It remains to show that only k + 1 bits need to
be exchanged. To this end, Alice sends, for each of the k random vectors v,
v · x mod 2 (i.e., 1 bit) to Bob. Bob then compares to y · v for each v and sends
the result to Alice (1 bit).

This is great, but what’s up with this excessive use of public random bits? Of
course, we can generate public random bits by communicating private random
bits, but then the communication complexity of the protocol would become
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worse than the trivial solution! It turns out that there’s a much more clever
way of doing this.

Theorem 7.8. Given a protocol for equality that uses public randomness and
has error probability ε, we can construct a protocol for randomized equality with
error probability 2ε that uses O(logN + log 1/ε) public random bits.

Proof. For simplicity, assume that 6N/ε is integer (otherwise round up). Select
6N/ε random strings uniformly and independently at random and fix this choice.

Now consider an input (x, y) to the equality problem. For most of the fixed
random strings, the original protocol will succeed, for some it may fail. Let us
check the probability that it fails for more than a 2ε-fraction of these strings.
The number of such “bad” strings is bounded from above by the sum X of 6N/ε
independent Bernoulli variables that are 1 with probability ε. Thus, E[X] = 6N .
By Chernoff’s bound,

P [X ≥ 12N ] = P [X ≥ 2E[X]] ≤ e−E[X]/3 = e−2N < 2−2N .

By the union bound, the probability that there is any pair (x, y) for which there
are more than 12N “bad” strings among the 6N/ε selected ones is at most

∑

(x,y)

P [X ≥ 12N ] <
∑

x

∑

y

2−2N = 1.

Thus, with non-zero probability, our choice of 6N/ε random strings is “good”
for all inputs (x, y). In particular, there exists a choice for which this holds! Fix
such a choice of 6N/ε (now non-random) strings, i.e., for no (x, y) there are more
than 12N strings for which the original algorithm with these strings as “public
random bits” outputs the wrong result. Picking one such string uniformly at
random and executing the protocol will thus fail with probability at most

12N

6N/ε
= 2ε.

We make the list of these strings part of the new algorithm’s code. Alice and
Bob now simply pick one entry from the list uniformly at random (using public
randomness) and execute the original algorithm with this string as random
input. This errs with probability at most 2ε and requires

⌈
log

(
6N

ε

)⌉
∈ O(logN + log 1/ε)

public random bits.

Corollary 7.9. Randomized equality can be solved with error probability N−Θ(1)

with private randomness and O(logN) bits of communication.

Proof. We apply Theorem 7.8 to the algorithm obtained from Lemma 7.7 for
a choice k ∈ Θ(logN). We obtain an algorithm using O(logN) bits of public
randomness and achieving error probability N−Θ(1). To make the randomness
private, we let Alice choose the Θ(logN) random bits and communicate them;
this does not affect the asymptotic bit complexity.
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Remarks:

• Apart from showing off with Chernoff’s bound, we got to see the probabilis-
tic method in action here. We used a probabilistic argument to show that
something happens with non-zero probability. Regardless of how small
the probability is, it means that there exists some deterministic choice
achieving the property that held with non-zero probability.

• Communication complexity people suffer from the same illness as distrib-
uted computing folks: They don’t care about local computations.

• Here, this is quite bad. When constructing the algorithm, we cannot be
sure that it actually has the desired guarantee on the error probability
without explicitly checking for all inputs, which requires exponential com-
putations.

• Even if we do this in advance, this causes the additional trouble that we
need to assume a bound on N . If Alice and Bob get larger inputs, they
are screwed!

• On top of this, Alice and Bob require polynomial memory. The sim-
ple algorithm using shared randomness can handle everything using only
O(logN) bits besides the one for the inputs and random bit string.

• In the exercises, you will see a deterministic polynomial time construction.

7.4 Handling Randomization and Approxima-
tion

So, equality is not good enough to handle randomization. It also does not cope
very well with approximation algorithms, at least not in the construction we’ve
seen. We need a communication complexity problem that is hard even for ran-
domized algorithms – and ideally, it should yield an all-or-nothing construction
for which the MST has non-zero weight only if the answer to the communication
complexity problem is “yes.”

Definition 7.10 (2-Player Set Disjointness). The deterministic and randomized
versions of the set disjointness problem are defined as for equality, with the
difference that the goal is to decide whether x and y encode disjoint sets, i.e.,
whether ∃i ∈ {1, . . . , N} so that xi = yi = 1.

This problem is hard also for randomized algorithms.

Theorem 7.11 ([KS92, Raz92]). The communication complexity of set dis-
jointness is Ω(n), even for randomized algorithms with error probability 1/3.

How can we encode this in our graph? It’s even easier than before:

• Use the same topology, but with only k paths.

• Pick all edge weights as before, except for the edges from Alice and Bob
to the endpoints of paths.

• For i ∈ {1, . . . , k}, the edge from Alice to path pi has weight xi.
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Figure 7.4: How to use the same topology as in Figure 7.1 to encode a set
disjointness instance. Now there is a one-to-one correspondence between input
bits and paths pi.

• For i ∈ {1, . . . , k}, the edge from Bob to path pi has weight yi.

Lemma 7.12. The weight of an MST of the modified graph is 0 if and only if
x and y encode disjoint sets.

Proof. As before, the question is how expensive it is to connect the paths to the
rest of the graph. If x and y encode disjoint sets, then for all i ∈ {1, . . . , k} we
have that xi = 0 or yi = 0, implying that there is an edge leaving the path of
weight 0. If the sets are not disjoint, there is a path pi with xi = yi = 1, which
therefore cannot be connected to the remaining graph by a 0-weight edge.

Corollary 7.13. There is no distributed MST approximation algorithm that
uses messages of size O(log n) and terminates in o(

√
n/ log2 n+D) rounds on

all graphs of n nodes and diameter D (unless D is smaller than in the graph
from Figure 7.1).

Proof. Theorem 6.2 shows that running time o(D) is impossible, which shows
the claim if D ≥ √n/ log2 n. Analogously to Theorem 7.3, based on Lemma 7.12
we can show that an o(

√
n/ log2 n)-round algorithm implied a solution to set

disjointness using o(N) bits; this also holds for approximation algorithms, as
the weight of the MST is 0 if x and y represent disjoint sets. By Theorem 7.11,
this is not possible. This covers the case that D ≤ √n/ log2 n.

• Unfortunately, showing that set disjointness is hard is much more involved
than the straightforward argument for deterministic equality.

• In some sense, this bound means that we hit the wall. The hardness comes
from set disjointness, not any fancy aspect of the model.
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• On the other hand, one can refine the granularity further by taking into
account other parameters. We will see an example for this in a future
lecture.

What to take Home

• The machinery demonstrated today produces essentially the same lower
bound for plenty of other important graph problems. There will be some
examples in the exercises. In some cases, the techniques shows even
bounds that are (almost) Ω(n)!

• As a result, communication complexity lower bounds are the tool for show-
ing distributed lower bounds arising from congestion. This is very natural,
as distributed graph problems are essentially peculiar n-player communi-
cation complexity problems, with the addition of a notion of time!

• In many cases, deriving lower bounds of this type is quite easy once one
is familiar with the technique. Typically, set disjointness is the source of
hardness, Theorem 7.3 works for any graph where the bandwidth available
for algorithms between the “input-encoding” parts is small if the running
time is small, and all one needs to do is find a suitable graph and encode
the instance. Even better: the graph shown works for lots of problems as
off-the-shelf topology, only the weights need to be adjusted!

• The probabilistic method, which was only supporting actor today, is also
very useful. There are more “constructive” variants, like the celebrated
(constructive versions of the) Lovász Local Lemma.

• Another bunch of examples for the utility of simulation results. Both
derivation of lower bounds and algorithms become easier this way, as ob-
stacles are separated and handled in individual steps.

Bibliographic Notes

The first lower bound on MST construction, by Peleg and Rubinovich [PR00],
applied only to deterministic exact algorithms. This boils down to the fact
that they exploited the hardness of equality, not set disjointness. Elkin [Elk06]
extended the result to randomized approximation algorithms. However, in his
construction the lower bound deteriorated depending on the approximation ratio
of the algorithm; this was resolved by Das Sarma et al. [SHK+12], who list a
large number of related problems for which the technique also yields “the” lower
bound of roughly Ω(

√
n).

For the basics of communication complexity, see, e.g., [KN97]. The first
strong lower bound on the randomized communication complexity of set dis-
jointness is due to Babai, Frankl, and Simon [BFS86], showing that Ω(

√
N) bits

are required. They sampled x and y independently from the N -bit strings with
roughly

√
N non-zeros. They show that one has to look for more complex distri-

butions; essentially, the birthday paradoxon is the monkey wrench in the works.
The Ω(N) hardness was shown by Kalyanasundaram and Schintger [KS92]; a
simplified proof was given by Razborov [Raz92].
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One can dial it up to eleven and show quantum distributed computing com-
plexity lower bounds [EKNP14] or derive bounds on multi-party set disjointness
in the message passing model [BEO+13], which in turn permits to show hardness
by reduction from such problems.
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Lecture 8

Distance Approximation
and Routing

Knowing how to construct a minimum spanning tree is very useful to many
problems, but it is not always enough. Cheaply connecting all nodes is one
thing, but what about finding a short path between an arbitrary pair of nodes?
Clearly, an MST is not up to the task, as even for a single edge, the route in
the MST might be factor n− 1 more costly: Just think of a cycle!

Trivially, finding the distance between two nodes is a global problem, just
like MST. However, the connection runs deeper. As we saw in the exercises
for the previous lecture, even just approximating the weight of a shortest s-t
path requires Ω(

√
n/ log2 n+D) rounds in the worst case (with messages of size

O(log n)).

Doing this every time a routing request is made would take too long and
cause a lot of work. We’re too lazy for that! So instead, we preprocess the
graph and construct a distributed data structure that helps us serving such
requests.

Definition 8.1 (All-Pairs-Shortest-Paths (APSP)). In the distributed all-pairs-
shortest-paths (APSP) problem, we are given a weighted, simple, connected
graph G = (V,E,W ). The task is for each node v ∈ V to compute a routing ta-
ble, so that given an identifier w ∈ V , v can determine dist(v, w), the (weighted)
distance from v to w, i.e., the minimum weight of a path from v to w, and the
next node on a shortest path from v to w. For α > 1, an α-approximation merely
guarantees the that the stated distance d satisfies dist(v, w) ≤ d ≤ α dist(v, w)
and that the routing path has weight at most α dist(v, w).

We will solve this problem in the synchronous message passing model without
faults. In other words, we accept some preprocessing out of necessity, but refuse
to fall back to a centralized algorithm!

8.1 APSP is Hard

As mentioned above, we know that we should not even try to find an algorithm
faster than (roughly) Ω(

√
n).

101
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Corollary 8.2. An α-approximate solution to APSP with O(log n)-bit messages
requires Ω(

√
n/ log2 n+D) rounds, regardless of α.

However, things are much worse. Even in an unweighted (i.e., W (e) = 1 for
all e ∈ E) tree of depth 2, solving APSP requires Ω(n/ log n) rounds!

Theorem 8.3. Any deterministic α-approximation to APSP with O(log n)-bit
messages requires Ω(n/ log n) rounds, even in trees of depth 2.

Proof. Consider a tree whose root has two children, which together in total
have k children with identifiers 1, . . . , k. We consider all such graphs. Note
that the root can only tell them apart by the bits that its two children send,
which are O(R log n) for an R-round algorithm. The number of different routing
tables the root may produce is thus 2O(R logn). Note also that for each of the
considered graphs, we need a different routing table: Any two partitions of k
nodes must differ in at least one node, for which the routing table then must
output a different routing decision. How many such partitions are there? Well,
2k – just decide for each node 1, . . . , k to which child of the root it’s attached.
Hence,

k ∈ O(R log n),

or R ∈ Ω(k/ log n) = Ω(n/ log n), as the considered graph family has n = k + 3
nodes.

Will randomization save us? Not today. If the number of bits received by
the root is too small, it will in fact err with a large probability.

Corollary 8.4. Any randomized α-approximation to APSP with O(log n)-bit
messages requires Ω(n/ log n) rounds, even in trees of depth 2.

Proof. Suppose there’s a randomized algorithm that terminates in o(n/ log n)
rounds. Fix the random bit strings of all nodes, and execute the resulting
deterministic algorithm, on a uniformly random topology as in the proof of
Theorem 8.3. Now, as there are 2o(n) different bit strings the root can possibly
receive in R ∈ o(n/ log n) rounds, the probability that the algorithm computed
a correct table is at most 2o(n)/2n = 2(o(1)−1)n, i.e., astronomically small. As we
used the same random distribution of topologies irrespectively of the assigned
random bits, we can now argue that choosing the random bit strings of the nodes
uniformly and independently at random after we picked the topology yields the
same result.

Remarks:

• The above corollary is an application of Yao’s principle. If one provides a
distribution of inputs, no randomized algorithms can perform better than
the best deterministic algorithm for this distribution.

• For exact algorithms with weights, the bound becomes Ω(n): Just add
a weight from 1, . . . , n to each edge to a leaf, resulting in nk distinct
combinations, even with a single child!

• This also shows that if we only care about distances (and not how to
route), we’re still screwed. Even for approximate distances we can make
sure that there are at least two different “classes” of distances for each
node that need to be distinguished.
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• Essentially, the bound still holds even if we permit dynamic routing (with-
out knowing distances), where nodes on the routing path may attach some
routing information to the message. This way, one can “check” whether
the destination is attached to a child and return to the root if the decision
was wrong. One then uses Θ(ρ) children of the root to show that a ρ-
approximation (even on average) is not possible in o(n/(ρ2 log n)) rounds.

• In n rounds, everyone can learn the entire tree, so at least for this family of
graphs the bound is tight. Let’s see what we can do for arbitrary graphs!

8.2 Exact APSP in Unweighted Graphs

If a problem appears to be difficult, one shouldn’t always try to take on the most
general form first. We start by considering unweighted graphs.1 In a nutshell,
solving APSP here is equivalent to constructing for each node a BFS tree rooted
at it.

The setting is synchronous, so we know how to do this for a single node in
O(D) rounds. The challenge is that the different constructions might interfere.
We have seen that we cannot avoid this completely, as it will take Ω(n) rounds
even if D ∈ O(1), but we can still hope for a running time that is much faster
than the trivial solution of running n instances of the Bellman-Ford algorithm
sequentially, i.e., Θ(Dn) rounds.

It turns out that there is a straightforward solution to this problem.2 We
employ Bellman-Ford for all sources concurrently, where always the seemingly
most useful piece of information is communicated. “Seemingly most useful”
here means to always announce the closest node that hasn’t been announced
before, breaking ties by identifiers. “Source” refers to a node s ∈ S ⊆ V ; as we
will see, the algorithm works very well for the more general setting where only
distances to a subset S ⊆ V of nodes are to be determined.

Definition 8.5 (Total order of distance/node pairs). Let (dv, v), (dw, w) ∈ N0×
V be two distance/node pairs. Then

(dv, v) < (dw, w) ⇔ (dv < dw) ∨ (dv = dw ∧ v < w).

Here the comparison “v < w” means to numerically compare the identifiers of
v and w.

In the following, we consider all sets of distance/node pairs to be ordered
ascendingly according to the above definition (and consequently refer to them
as lists).

Let’s fix some helpful notation.

Definition 8.6. For each node v ∈ V and each round r ∈ N, denote by Lrv the
content of v’s Lv variable at the end of round r; by L0

v we denote the value at
initialization. Furthermore, define Lv := {(dist(v, s), s) | s ∈ S}.3 For h ∈ N0,
denote by Lv(h) the sublist of Lv containing only elements (dist(v, s), s) with

1That’s not how we did it, but there’s no reason you shouldn’t learn from our mistakes!
2Actually several, but we’re going for the one that will be most useful later on.
3This is slight abuse of notation; we will show that the algorithm returns exactly this Lv ,

though.
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Algorithm 17 Pipelined Bellman-Ford, code at node v. Initially, v knows
whether it is in S, as well as parameters H,K ∈ N. Remembering the sender
for each entry in Lv reveals the next routing hop on a shortest path to the
respective source w.

1: if v ∈ S then
2: Lv := {(0, v)}
3: else
4: Lv := {}
5: end if
6: for i = 1, . . . ,H +K − 1 do
7: (ds, s) := smallest element of Lv not sent before (⊥ if there is none)
8: if (ds, s) 6= ⊥ then
9: send (ds + 1, s) to all neighbors

10: end if
11: for each (ds, s) received from a neighbor do
12: if @(d′s, s) ∈ Lv : d′s ≤ ds then
13: Lv := Lv ∪ {(ds, s)}
14: end if
15: if ∃(d′s, s) ∈ Lv : d′s > ds then
16: Lv := Lv \ {(d′s, s)}
17: end if
18: end for
19: end for
20: return Lv

dist(v, s) ≤ h. For k ∈ N denote by Lv(h, k) the sublist of the (up to) k first
elements of Lv(h).

We will show that Algorithm 17 guarantees that after r rounds, for h+ k ≤
r+ 1, the first |Lv(h, k)| entries of Lrv are already correct. Inserting h = D and
k = n, we will then see that the algorithm indeed returns the lists Lv.

With the right induction hypothesis, the proof is actually going to be quite
simple. Let’s assemble the pieces first.

Lemma 8.7. If (dw, w) ∈ Lrv for any r ∈ N0, then w ∈ S and dw ≥ dist(v, w).

Proof. We never add entries for nodes that are not in S. Moreover, initially for
each s ∈ S only s has an entry (0, s) ∈ L0

s. As we increase the d-values by one
for each hop, it follows that ds ≥ dist(v, s) for any entry (ds, s) ∈ Lrv.

Corollary 8.8. If for any s ∈ S and v ∈ V , it holds that v receives (dist(v, s), s)
from a neighbor in round r ∈ N (or already stores it on initialization), then
(dist(v, s), s) ∈ Lr′v for all r′ ≥ r. Moreover, if Lv(h, k) ⊆ Lrv for any r ∈ N0, it
is in fact the head of the list Lrv.

Lemma 8.9. For all h, k ∈ N and all v ∈ V ,

Lv(h, k) ⊆{(dist(w, s) + 1, s) | (dist(w, s), s) ∈ Lw(h− 1, k) ∧ {v, w} ∈ E}
∪ {(0, v)}.
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Proof. Since (dist(v, v), v) = (0, v), the case of v ∈ S is covered. Hence, suppose
(dist(v, s), s) ∈ Lv(h, k) for some s 6= v. Consider a neighbor w of v on a shortest
path from v to s. We have that dist(w, s) = dist(v, s) − 1 ≤ h − 1. Hence, it
suffices to show that (dist(w, s), s) ∈ Lw(h − 1, k). Assuming otherwise, there
are k elements (dist(w, s′), s′) ∈ Lw(h − 1, k) satisfying that (dist(w, s′), s′) ≤
(dist(w, s), s). Hence, (dist(v, s′), s′) ≤ (dist(w, s′) + 1, s′) ≤ (h, s′), and if
dist(v, s′) = dist(v, s), then also dist(w, s′) = dist(w, s) and thus s′ < s. It
follows that (dist(v, s′), s′) < (dist(v, s), s). But this means there are at least
k elements in Lv(h, k) that are smaller than (dist(v, s), s), contradicting the
definition of Lv(h, k)!

Now we can prove the statement sketched above.

Lemma 8.10. For every node v ∈ V , r ∈ {0, . . . ,H+K−1}, and h+k ≤ r+1,

(i) Lv(h, k) ⊆ Lrv, and

(ii) v has sent Lv(h, k) by the end of round r + 1.

Proof. We show the statement by induction on r. It trivially holds for k = 0,
as well as for h = 0 and all k, as Lv(0, k) = {(0, v)} if v ∈ S and Lv(0, k) = ∅
otherwise, and clearly this will be sent by the end of round 1. In particular, the
claim holds for r = 0.

Now suppose both statements hold for r ∈ N0 and consider r + 1. As the
case h = 0 is already covered, we may assume that h > 0. By the induction
hypothesis (Statement (ii) for r), for h+ k ≤ r+ 1, node v has already received
the lists Lw(h− 1, k + 1) and Lw(h, k) from all neighbors w. By Lemma 8.9, v
thus has received all elements of Lv(h, k+1) and Lv(h+1, k). By Corollary 8.8,
this implies Statement (i) for h+ k ≤ r + 2 = (r + 1) + 1.

It remains to show Statement (ii) for h+k = r+2. Since we just have shown
(i) for h + k = r + 2, we know that Lv(h, k) ⊆ Lr+1

v for all h + k = r + 2. By
Corollary 8.8, these are actually the first elements of Lr+1

v , so v will sent the
next unsent entry in round r+ 2 (if there is one). By the induction hypothesis,
v sent Lv(h, k − 1) during the first r + 1 rounds (where Lv(h, 0) := ∅), hence
only Lv(h, k) \Lv(h, k− 1) may still be missing. As |Lv(h, k) \Lv(h, k− 1)| ≤ 1
by definition, this proves (ii) for h + k = r + 2. This completes the induction
step and thus the proof.

Corollary 8.11. APSP on unweighted graphs can be solved with message size
O(log n) in n+O(D) rounds.

Proof. We construct a BFS tree, count the number of nodes and determine the
depth d of the BFS tree; this takes O(D) rounds, and we have that d ≤ D ≤ 2d.
The root then initiates Algorithm 17 with S = V , H = 2d, and K = n, so
that all nodes jointly start executing it in some round R0 ∈ O(D). As for
S = V , Lv = Lv(D,n) = Lv(2d, n) (and remembering senders yields routing
information), Lemma 8.10 shows that this solves APSP.
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Remarks:

• Somewhat depressing, but we have seen that this is essentially optimal.

• We’ve actually shown something stronger. For any S ⊆ V and any h, k ∈
N, we can determine Lv(h, k) at all nodes v ∈ V in h+ k − 1 rounds.

• There’s a straightforward example showing that this is the best that’s
possible for any h and k. Even more depressing!

• What do we do when we’re getting depressed due to lower bounds? We
change the rules of the game!

8.3 Relabeling

Basically, the lower bound might mean that we haven’t asked the right question.
The problem is that we insisted on using the original identifiers. If there are
bottleneck edges – like in the above construction the edges between the root and
its children – this dooms us (modulo nitpicking over details) to transmit them
all over these edges. The problem is easily resolved if we permit relabeling.

Definition 8.12 (APSP with Relabeling). The APSP problem with relabeling
is identical to the APSP problem from Definition 8.1, except that each node now
also outputs a label. The task is now to construct a routing table and a label
λ(v) at each node v so that, given λ(w) of some node w, v can determine the
distance and next routing hop to w. Approximate solutions are defined as before.

How does this help us? Let’s consider a peculiar special case first: in a tree,
we want to be able to route from the root to each node.

Lemma 8.13. Suppose we are given a tree (V,E) of depth d. Using messages
of size O(log n), in O(d) rounds we can determine routing tables and assign
labels 1, . . . , |V | such that given the label λ(v) of node v ∈ V , we can route from
the root to v.

Proof. We enumerate the tree nodes in a pre-order depth-first-search manner.4

In a distributed fashion, this is done as follows.

1. Determine for each v ∈ V the number of nodes in its subtree. This is done
in a bottom-up fashion in O(d) rounds: each node announces the number
of nodes in its subtree to its parent, starting from the leaves.

2. The root labels itself 1 and assigns to each child a range of labels match-
ing the size of its subtree. Each child then takes the first label from its
assigned range and splits the remaining labels between its children in the
same way. This top-down procedure takes O(d) rounds, too. Note that
since the assigned ranges are consecutive, they can be communicated us-
ing O(log n) bits by announcing the smallest and largest element of the
respective interval.

The tables at each node store the label ranges assigned to the children. Hence,
given a label λ(w) of a node w, each node on the unique path from the root to
w can determine the next routing hop.

4First list the root, then recursively list the subtrees rooted at its children, one by one.
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Remarks:

• This construction is inefficient in terms of memory, i.e., the size of tables.
In a tree, one can be much more efficient and have tables of size logO(1) n,
without increasing label size significantly.

• We can also make distances available. Each node learns its distance to
the root (O(d) rounds; simply do a “flooding” that sums up the weights
of traversed edges) and adds it to the label. The resulting labels have size
O(log n).

• While handling trees does not seem very impressive, the labels help cir-
cumvent the bottleneck problem we might experience with the original
identifiers. Let’s now handle general (unweighted) graphs!

8.4 Fast APSP with Relabeling:
The Unweighted Case

From a previous exercise, we know that approximating the diameter of an un-
weighted graph better than factor 3/2 takes Ω(n/ log n) rounds. Hence, we’ll
have to live with getting only an approximation if we want to obtain a faster
algorithm. The key idea in Algorithm 18 is to use a small set of “landmarks”
to navigate to distant nodes, while handling close-by nodes directly:

The landmarks S ⊆ V are sampled. Each node v ∈ V is assigned to the
landmark sv ∈ S that is closest to v. Now each node learns the following things:
(i) its landmark sv, (ii) the next hop on a shortest path to all nodes closer than
some threshold, and (iii) the next hop on a shortest path to any landmark s ∈ S,
no matter how far away it is. Landmarks use the routing trick from Section 8.3
to reach all nodes assigned to them. The label of v consists of three parts:
(i) the ID of sv, (ii) a bit indicating whether v ∈ S, and (iii) the label for the
routing tree of sv as in Section 8.3. Also see Figure 8.1. The key idea is that v
either knows a shortest path to w because dist(v, w) is small enough, or that w
is so far away that it becomes acceptable to take the detour via sw (extracted
from λ(w)) and then to w (sw knows how to get there).

Algorithm 18 5-approximate APSP with relabeling in unweighted graphs. By
c we denote a sufficiently large constant.

1: determine n and D̃ ∈ [D, 2D] and make both known to all nodes
2: sample each node into S ⊆ V with independent probability c

√
log n/n

3: determine |S| and make it known to all nodes
4: add to each node’s identifier a bit indicating whether it is in S
5: for source set S, compute Lv(D̃, |S|) for all v ∈ V
6: for each v ∈ V , sv := argmins∈S{dist(v, s)}
7: for each s ∈ S, compute labels λs(v) for routing from/distances to the root
s of the (partial) BFS tree with nodes {v ∈ V | sv = s} rooted at s

8: relabel each v ∈ V by λ(v) := (sv, λsv (v))
9: for source set V , compute Lv(

√
n log n,

√
n log n)

10: return labels λ(v) and all computed tables
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Figure 8.1: An example of the “clustering” constructed for the hierarchical
routing scheme. The dotted ovals indicate the regions belonging to the sampled
node framed in the same color. The oriented edges are part of the shortest-path
tree rooted at that node. Each node is labeled by the identifier of its root and
the number assigned to it according to the DFS enumeration of the trees (only
these are written next to the nodes). The grey nodes are those for which node v
(labeled (sv, 4)) knows how to route directly to.

The algorithm is for label and table construction. Before we discuss that
it can be implemented quickly, let’s first explain how we can route and esti-
mate distances with approximation factor at most 5. For routing and distance
estimation, given a label λ(w) at a node v, v does the following:

• If ∃(dist(v, w), w) ∈ Lv(
√
n log n,

√
n log n) for sources V , then v knows

dist(v, w) and knows the next hop on a shortest path to w.

• Otherwise, we first route from v to sw (sw is part of λ(w)) using the
tables for Lv(D̃, |S|) = Lv(D, |S|) and then from sw to w using the tree
label λsw(w). The distance is estimated as dist(v, sw)+dist(sw, w), where
dist(sw, w) is available from λsw(w).

Let’s first show that this is indeed a factor-5 approximation if for each v, sv
is close enough.

Lemma 8.14. Suppose (dist(v, sv), sv) ∈ Lv(
√
n log n,

√
n log n) with source set

V for all v ∈ V , then the above routing and distance approximation scheme has
approximation factor at most 5.
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Proof. If (dist(v, w), w) ∈ Lv(
√
n log n,

√
n log n), then the solution is optimal.

If not, the assumption that (dist(v, sv), sv) ∈ Lv(
√
n log n,

√
n log n) implies that

(dist(v, sv), sv) ≤ (dist(v, w), w). In particular, dist(v, sv) ≤ dist(v, w). As by
definition dist(w, sw) ≤ dist(w, sv), the triangle equality yields that

dist(v, sw) + dist(sw, w) ≤ dist(v, w) + dist(w, sw) + dist(sw, w)

= dist(v, w) + 2 dist(w, sv)

≤ dist(v, w) + 2(dist(w, v) + dist(v, sv))

≤ 5 dist(v, w).

Using Chernoff’s bound, it’s straightforward to see that the prerequisite of
this lemma is satisfied w.h.p.

Lemma 8.15. W.h.p., (dist(v, sv), sv) ∈ Lv(
√
n log n,

√
n log n) for all v ∈ V .

Proof. We sampled nodes into S with independent probability c
√

log n/n. The
expected number of nodes from S among a set of at least

√
n log n nodes – in

particular the nodes indicated by Lv(
√
n log n,

√
n log n) for a given v ∈ V – is

thus at least c log n. By Chernoff’s bound, the probability that the number of
such nodes is fewer than c log n/2 is 2−Ω(c logn) = n−Ω(c). As the constant c is
assumed to be sufficiently large, we conclude that for each v ∈ V , it holds that
(dist(v, sv), sv) ∈ Lv(

√
n log n,

√
n log n) w.h.p. By the union bound, the joint

event that this holds for all v ∈ V occurs w.h.p., too.

It remains to understand the time complexity of the construction. An im-
mediate consequence of the above lemma is that the partial BFS trees rooted
at the nodes in S are not too deep.

Corollary 8.16. W.h.p., the partial BFS trees rooted at the nodes s ∈ S con-
taining the nodes {v ∈ V | sv = s} all have depth O(

√
n log n).

Now we just need to check the complexities of the individual steps.

Corollary 8.17. Algorithm 18 can be implemented such that it terminates in
O(
√
n log n+D) rounds w.h.p.

Proof. Lines 2, 4, 6, 8, and 10 are local computations only. Lines 1 and
3 can be done in O(D) rounds by constructing and using a BFS tree. By
Lemma 8.10, calling Algorithm 17 with source set S, H = D̃ ∈ Θ(D), and
K = |S| will handle Line 5. By Chernoff’s bound, |S| ∈ Θ(

√
n log n) w.h.p.,

i.e., this takes O(
√
n log n + D) rounds w.h.p. By Lemma 8.13 and Corol-

lary 8.16, Line 7 can be completed in O(
√
n log n+D) rounds. By Lemma 8.10,

calling Algorithm 17 with source set V and K = H =
√
n log n will yield

lists containing Lv(
√
n log n,

√
n log n); by Lemma 8.7, we can obtain the lists

Lv(
√
n log n,

√
n log n) by discarding all entries (dw, w) with dw >

√
n log n and

truncating the list to (at most)
√
n log n elements. Summing this all up, we get

the claimed running time bound.

Theorem 8.18. In unweighted graphs, we can find a 5-approximate solution to
APSP using messages of size O(log n) in O(

√
n log n+D) rounds w.h.p.

Proof. By Lemmas 8.14 and 8.15, the approximation guarantee holds w.h.p. By
Corollary 8.17, the time bound is satisfied w.h.p.
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W(e)

#hops

W(e)

#hops

Figure 8.2: Approximating paths using coarse (left) and fine (right) weight
classes. Coarse weight classes induce a larger error and require fewer hops, fine
weight classes yield a better approximation at the expense of using more hops.

Remarks:

• One can reduce the approximation factor to 3 if one permits access to
routing tables of both source and destination when determining where to
route/approximating the distance, as then one can route via sv or sw,
whatever is shorter.

• This is typically done in centralized constructions, where the main point
is to make the tables small. In this context it makes sense to be able to
access both tables, but in the distributed setting this would defeat the
purpose.

• The argument in Lemma 8.14 can be used repeatedly for a sampling hier-
archy of k levels (i.e., each node makes it to the next level with probability
roughly n−1/k), resulting in an O(k)-approximation. This yields a run-
ning time of O(k(n1/k

√
log n+D)). And one can make the tables to have

size about n1/k, too!

8.5 Weighted APSP*

In order to handle the weighted case, we reduce it to a small number of un-
weighted instances. Denote by Wmax := maxe∈E{W (e)} the maximum edge
weight. Fix any constant 0 < ε ≤ 1. Set imax := dlog1+εWmaxe and define for
for x ∈ R and i ∈ {0, . . . , imax} that ddxeei := (1 + ε)idW (e)/(1 + ε)ie, i.e., dd·eei
rounds up to multiples of bi := (1 + ε)i.

Now, given G = (V,E,W ), we define Gi := (V,E,Wi) by Wi(e) := ddW (e)eei.
Denoting by disti(v, w) the distance of v and w in Gi, obviously we have that
disti(v, w) ≥ dist(v, w). The interesting bit is that there’s a “sweet spot” for
which disti(v, w) ≤ (1 + ε) dist(v, w), yet disti(v, w) is roughly hop(v, w)bi,
where hop(v, w) denotes the hop count of a shortest path from v to w in G,
compare Figure 8.2.

Lemma 8.19. For i(v, w) := max{0, blog1+ε(εdist(v, w)/ hop(v, w))c}, it holds
that disti(v,w)(v, w) ≤ (1 + ε) dist(v, w) ∈ O(bi(v,w) hop(v, w)).
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Proof. If i(v, w) = 0, we have that disti(v,w) = dist(v, w). Otherwise,

disti(v,w)(v, w) ≤ dist(v, w) + bi(v,w) hop(v, w)

= dist(v, w) + (1 + ε)i(v,w) hop(v, w)

≤ (1 + ε) dist(v, w)

∈ O(dist(v, w)).

Regarding the second inequality, observe that

dist(v, w) =
hop(v, w)

ε
· ε dist(v, w)

hop(v, w)

≤ hop(v, w)

ε
· (1 + ε)bi(v,w)

∈ O(bi(v,w) hop(v, w)).

Theorem 8.20. For any constant ε > 0, we can (1 + ε)-approximate APSP in
O(n log n) rounds with messages of size O(log n).

Proof. By Lemma 8.19, for all v, w ∈ V we have that

disti(v,w)(v, w) ≤ (1 + ε) dist(v, w) ∈ O(bi(v,w) hop(v, w)).

Replace for each Gi each edge of weight kbi by a virtual path of k edges of
weight 1. The result is an unweighted graph G̃i. Denote by Li,v(h, k) the

list for G̃i; the lemma states that if we determine Li(v,w),v(O(hop(v, w)), n) =
Li(v,w),v(O(n), n), then there is an entry (d,w) ∈ Li(v,w),v(O(n), n) such that
bi(v,w)d ≤ (1 + ε) dist(v, w). Note also that we have dist(v, w) ≤ bid for any i
and (d,w) ∈ Li,v(O(n), n) (as we rounded weights up), as well as i(v, w) ≤ imax,
because εdist(v, w)/ hop(v, w) ≤ Wmax. Consequently, for all v, w ∈ V it holds
that

dist(v, w) ≤ min
i∈{1,...,imax}

{bid | (d,w) ∈ Li,v(O(n), n)} ≤ (1 + ε) dist(v, w).

As the Gi are unweighted graphs and rounding edge weights can be done locally,
we can compute for each i the lists Li,v(O(n), n) concurrently in O(n) rounds
by Corollary 8.11; the virtual nodes “on” edges are simply simulated by one of
the nodes incident to the corresponding edge in G. As ε is a constant,

imax = dlog1+εW e ∈ O(logW ) ⊆ O(log n).

Remarks:

• One can use this rounding approach also to construct faster approximate
solutions.

What to take Home

• Sometimes a simplified version of the problem is worth studying, as the
ideas turn out to be useful for more general cases, too.



112 LECTURE 8. DISTANCE APPROXIMATION AND ROUTING

• On the other hand, special cases may admit better solutions, and some-
times this is all we care about. For instance, in unweighted graphs one
can solve APSP with small messages up to factor O(log n) in D logO(1) n
rounds. On weighted graphs, any algorithm that fast may hit the fan!

• If you want small messages: pipelining, pipelining, pipelining! Throw in
some pipelining for good measure.

Bibliographic Notes

The almost linear lower bound for the APSP problem (without renaming) was
shown independently and concurrently in two papers [Nan14, PSL13]. The ex-
act unweighted APSP algorithm given here is from [LP13]. An elegant previous
solution solving APSP in the same time was given concurrently and indepen-
dently in two papers [HW12, PRT12]. However, this algorithm requires Ω(n)
time for computing the lists Lv(h, k) for any h > 0, k > 1, and |S|. The paper
by Holzer and Wattenhofer [HW12] contains a second algorithm that achieves
running time O(h + |S|) for that task. This is ok for a large variety of ap-
plications, but if we have S = V , the algorithm is slow. For the fast APSP
approximation with relabeling, we need the algorithm presented here.

The tree relabeling scheme in this lecture is nothing more than a composition
of folklore results. In contrast, the compact (i.e., little-memory and small-labels)
tree labeling scheme by Thorup and Zwick [TZ01] is more clever and at the heart
of many compact routing schemes!

The rounding technique for transforming the ((1+ε)-approximate) weighted
problem into a collection of unweighted problems was used by Nanongkai [Nan14]
in the distributed context. However, it found earlier application for the central-
ized APSP problem [Zwi02], for which the fastest known algorithms are based
on fast matrix multiplication.
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Lecture 9

Self-Stabilization and
Recovery

Previously, we have seen ways of handling permanent faults: nodes crashed and
never booted up again, or they turned Byzantine, which was an untreatable
condition. However, not every job needs the same tool. For instance, Byzantine
tolerance needs that f < n/3 nodes are faulty, and that might not be true over
extended periods of time. Instead, nodes or communication links (i.e., edges)
may undergo transient failures. They recover eventually, but that doesn’t mean
the state of their volatile memory hasn’t been corrupted!

Can we design a distributed system that survives transient (short-lived)
failures, even if all nodes are temporarily failing? In other words, can we build
a distributed system that repairs itself?

Definition 9.1 (Self-Stabilization). Denote by S the state space of a distributed
system, i.e., the product space over all individual nodes’ state spaces. An execu-
tion of an algorithm is a (bounded or unbounded) sequence of state transitions
that is valid in that it follows the rules given by the algorithm and the execution
model. Define a set C of correct executions, i.e., executions that satisfy some
desirable properties. The system/algorithm is called self-stabilizing (w.r.t. C) iff
every possible execution, no matter what the initial state, has a correct suffix.

Usually, the information that the algorithm stabilizes is of limited use, as
the time for it to do so might be unbounded. This means that typically we are
interested in algorithms that have a small stabilization time. The definition of
self-stabilization given above is very general, so there wasn’t any notion of time.
It needs to be derived from the execution model, which we didn’t specify! So
let’s define what we mean for synchronous and asynchronous message passing
systems.

Definition 9.2 (Stabilization time). Fix a set of parameters, e.g., the number
of nodes n and the diameter of the network D. The stabilization time of a
synchronous self-stabilizing system is the maximum number of rounds R so that
removing the first R rounds from the execution results in a correct execution,
taken over all executions on n-node graphs of diameter D. If this maximum
doesn’t exist, the algorithm has unbounded stabilization time. For an asynchro-
nous system, we do the same with respect to asynchronous rounds, i.e., after
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normalizing the maximum message delay to 1, we check the maximum number
of time units we need to cut off of the front of an execution to make the suffix
correct.

Remarks:

• S needs not be complicated. For instance, for the MIS algorithm from the
lecture, it was merely a few bits: Is the node in the MIS? Is it terminated?
Are we in a round for trying to join the MIS or just propagating the
information which nodes did? Etc. Self-stabilization then means that
even if who’s in the MIS and who’s not is completely messed up, the
algorithm will re-construct an MIS.

• This definition is quite abstract, but can be applied to essentially any
state-based description of a system. Of course, C should be a set of exe-
cutions in which the system is considered to behave “correctly.”

• The requirement here is very strong. Ending up in C from any state is
equivalent to saying that anything can happen to the volatile memory
(a.k.a. states) during a period of transient failures.

• The program code of the nodes and their hardware capabilities must not be
changed. Also, the communication infrastructure must operate correctly
after transient faults ceased. Otherwise there’s no way of guaranteeing
that the nodes behave as intended by the algorithm, and we can’t hope
to guarantee recovery!

• This seems obvious, but it means that one has to be careful. What if a
simple bit flip tells the node to stop running the algorithm?

• Some things can’t be self-stabilizing. For instance, the (single-shot) con-
sensus algorithms we discussed generates some output based on the inputs.
There is no way that we can ensure that everything works out if we make
everyone believe the inputs were actually different! Let’s try to capture
this issue better.

9.1 Self-stabilizing Algorithms can’t Terminate

Lemma 9.3. A self-stabilizing algorithm can never terminate, unless for each
node there is a single output that is always correct.

Proof. Suppose there are two possible conflicting outputs for a node v. More
precisely, there are system/input combinations for which the algorithm must
output different values. Any terminating algorithm we can let run until it
terminates. Then we switch the system/input combination, but set the state of
some node w to the state of v from above (a transient fault may cause this).
We have found an execution in which w doesn’t change its state any more (as it
has terminated), but has incorrect output. Hence, the execution has no correct
suffix, i.e., the algorithm can’t be self-stabilizing!
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Remarks:

• For instance, the only self-stabilizing coloring algorithm that terminates
assigns a unique color to each node identifier – e.g., the identifier itself.
Boring!

• That’s also why consensus doesn’t make a lot of sense here, at least not
in the usual way the problem is posed.

• However, having inputs does make sense. One can give the inputs in
registers that cannot be touched and require the algorithm to stabilize to
correct outputs for these inputs. If the input registers are affected by a
fault, it’s also okay that the outputs change accordingly.

9.2 Dijkstra’s Token Ring

One of the first self-stabilizing algorithms was Dijkstra’s token ring network. A
token ring is an early form of a local area network where nodes are arranged in a
directed ring, communicating by a token. The system is correct if there is exactly
one token in the ring, which keeps being passed around. Let’s have a look at a
simple solution. Given an oriented ring, we simply call the clockwise neighbor
child c, and the counterclockwise neighbor parent p. Also, there is a leader node
v0. Every node v is in a state S(v) ∈ {0, 1, . . . , n − 1}, perpetually informing
its child about its state. The token is implicitly passed on by nodes switching
state. Upon noticing a change of the parent state S(p), node v executes the
following code:

Algorithm 19 Self-stabilizing token ring. A node with S(v) 6= S(p) holds a
token – except for v0, which has the token if S(v) = S(p). In each round, each
node announces its state to its child, which then updates its own state as below.

1: if v = v0 then
2: if S(v) = S(p) then
3: S(v) := S(v) + 1 (mod n)
4: end if
5: else
6: S(v) := S(p)
7: end if

Theorem 9.4. In a synchronous system, Algorithm 19 is self-stabilizing with
stabilization time at most 3n.

Proof. Suppose the leader is in a state s that nobody else has in some round.
By the rules of the algorithm, the state propagates around the ring, and exactly
n rounds later the leader switches to state (s+ 1) mod n; at this time, all other
nodes are in state s. From that point on, the algorithm circulates a single token
around the ring.

Now assume that for n rounds, the leader does not attain a state that nobody
else had initially. Within n rounds, the original state of the leader propagates
around the ring, reaching the leader again. Any state that is not eliminated
during that time must be attained by the leader, which increases its state by
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1 mod n each time it switches its state. Note that the leader cannot perform
this operation n times without reaching a state that no node in the system
initially had. Therefore, after n rounds the leader is in a state s such that state
s+1 mod n is not present in the system. At most n rounds later, the leader will
increase its state again, implying stabilization within a total of 3n rounds.

Remarks:

• This is asymptotically optimal, as two tokens could be on opposite sides
of the ring. It takes at least n/2 rounds to distinguish this from a 1-token
system.

• The algorithm also works in asynchronous systems. Can you see how to
generalize the above proof?

• We defined the stabilization time as a specific value. Usually determining
it precisely is very hard (or just tedious), so we tend to give upper bounds
on the stabilization time. Language then deteriorates a bit and we tend to
talk of an algorithm “having stabilization time S” when actually meaning
that it has stabilization time at most S.

• It can be a lot of fun designing self-stabilizing algorithms, and it’s not
always as difficult as one might expect. However, it’s essential to do baby
steps. Initially, one shows seemingly very weak statements, but the result-
ing increased degree of organization in the system makes it much easier
to follow up with stronger properties. The above proof exemplifies this;
reversing the order helped, as it made clear why we wanted to show the
intermediate claim that eventually the leader attains a state that wasn’t
present before.

9.3 Synchronous = Self-stabilizing
Asynchronous!

Finding and proving correct self-stabilizing algorithms can be difficult. Let’s
automate the process!

We want to transform an arbitrary synchronous R-round message-passing
algorithm A into a self-stabilizing asynchronous one. This way we can reason
about things in a simplified setting (synchronous message-passing), immediately
obtain a result in the asynchronous model, and self-stabilization comes for free.
The hard part is to make sure that all nodes think they are in the same round
of A; instead of solving this problem, though, each node v simulates R copies
v1, . . . , vR of itself, where vi is in round i. Each round, v simply communicates
all messages all vi send as a bundle, and uses the received message bundles in
the next round.

Theorem 9.5. Given a deterministic synchronous message-passing algorithm
A that runs for R rounds, we can construct an asynchronous self-stabilizing
algorithm T (A) that stabilizes in R time. If the message size of A is at most

Mi in round i, the message size of T (A) is
∑R
i=1Mi.
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Proof. For each round i of A, each node v ∈ V simulates a copy vi of itself
in round i. Each copy sends messages to some neighbors wi, {v, w} ∈ V , and
receives the messages of them. Then it computes its state for round i+ 1, i.e.,
the state of vi+1. The state of v1 is determined solely by the input of v, and
from the state of vR the output of v can be determined. For this simulation,
v needs to keep communicating the messages of all copies v1, . . . , vR, yielding
message size

∑R
i=1Mi.

We know from Lemma 9.3 that a self-stabilizing algorithm cannot terminate.
Hence, v will just keep sending the message vectors to all neighbors and updating
the state of each of its copies vi whenever receiving a message vector from a
neighbor. Now why is the algorithm self-stabilizing? Well, we know that once
transient faults cease, each node will correctly compute the messages of the first
round and send them in the message vectors. Once a node received such vectors
from all neighbors, it locally simulates round 2 correctly and sends message
vectors with correct messages for rounds 1 and 2. This takes at most one time
unit in terms of asynchronous time complexity. By induction, after R time units
the correct results on termination are determined by all nodes.

Remarks:

• Using this transformation, also known as local checking, designing self-
stabilizing algorithms just turned from art to craft.

• Note that if R is a function of, e.g., n, (an upper bound on) n must be
known and hardwired into the algorithm.

• The asynchronous model needs to be slightly augmented here to make
sense. Transmitting “continuously” in the message passing model would
mean to send an infinite number of messages. Instead, one assumes that
nodes can perform a “busy-wait,” for which they keep executing a loop.
The next loop execution is one of the possible actions the scheduler can
trigger (apart from receiving a message).

• Note that a node may send a huge number of messages during the sta-
bilization phase. However, in principle it’s ok to mitigate this problem
by nodes waiting and collecting messages for some time before processing
them.

• In the asynchronous shared memory model this problem doesn’t exist,
simply because the busy-wait is already a necessary part of the model.

• This transformation does not work for randomized algorithms. Execution
and output would change all the time.

• In practice, one simply uses “pseudo-randomness.” We fix sufficiently long
random bit strings in advance, giving them to the nodes as part of the
program memory.

• Of course the result is – technically – a deterministic algorithm, and all
respective restrictions apply. One can always find a bad input/schedule
combination, unless guarantees are, in fact, deterministic. However, as
soon as the adversary is “oblivious,” i.e., needs to make its decisions inde-
pendently of the pseudo-random strings, we’re good again. This usually
is fine, unless there is an actual adversary who exploits this weakness!
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• The impact on the message size is small for very fast algorithms.

• If there is a local fault or the topology or inputs change locally, this will
only cause corrections in an R-hop neighborhood of the faults for an R-
round algorithm.

• Ergo, this transformation rocks when applied to very fast algorithms!

9.4 Non-local Recovery

Recall that there are global problems, like MST computation. Using the above
transformation would yield prohibitively large messages, even when starting
from an algorithm using small messages! One way to handle this would be to
keep executing a respective algorithm repeatedly, controlling it via a BFS tree.
However, this would imply large stabilization times.

Can we have something simpler? If everything can be messed up, the answer
is no. The lower bounds tell us that we can’t be faster in the worst case. But if
there are only few changes, we can exploit the convenient structure of the MST
problem again.

Lemma 9.6. If at most k edges in a (connected) weighted graph change their
weight, appear, or are deleted (such that the graph is still connected), the new
MST differs in at most k edges from the previous one.

Proof. Consider a single edge e and suppose it increases its weight or gets
deleted. If it’s not in the MST M , nothing changes. Otherwise, it might not
be in the MST any more. Denote by e′ the lightest edge that does not close a
cycle with M \ {e}. Then (M \ {e}) ∪ {e′} is the new MST: Running Kruskal
on the new graph will select all edges from E ∩M that are lighter than e′, then
e′, and then (as the connectivity components at this point are identical to the
run on the original graph) the remaining edges of M \ {e}.

Now suppose an edge e appears or decreases its weight. If it already was in
the MST M or is not in the new MST, nothing changes. Otherwise, there is
a unique edge e′ ∈ M heaviest in a cycle in M ∪ {e}. The same reasoning as
above shows that the new MST is (M \ {e′}) ∪ {e}.

This shows the claim for k = 1. By induction on k, it follows for any k.

This yields a very easy way of fixing a “broken” MST depending on the
number of changes.

Theorem 9.7. Assume that we have a fixed BFS tree that does not change.
There is an MST algorithm that can recover from k changes in edge weights,
deletions, or insertions in O(k + D) rounds, assuming that it had terminated
before.

Proof sketch. Run the distributed version of Kruskal on the BFS tree until ter-
mination. Now suppose k changes are made. The nodes noticing these will
start sending corrections to their parents concerning their local forests (i.e., re-
port insertions, deletions, and weight changes). As Lemma 9.6 generalizes to
the min-weight maximal forests maintained locally by the BFS tree nodes in
the distributed version of Kruskal’s algorithm, none of these forests change by
more than k edge “swaps.” Hence, each node needs to send at most k messages
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to report updates to its parent. They may send some intermediate incorrect
values, but the pipelining argument generalizes to this setting, too. Hence the
root will learn about the new MST within O(k +D) rounds.

Remarks:

• This demonstrates how important insights into the structure of problems
are. This idea is very straightforward once the distributed version of
Kruskal’s algorithm is known, which relies on the matroid structure of the
problem. This is another way of exploiting this structure!

• As pointed out, the lower bounds imply that a self-stabilizing algorithm
cannot be that fast. The issue is that the entire computation needs to be
repeated, as any pre-computed information cannot be trusted!

• Handling changes in the BFS tree is more involved. While adding or
deleting a single edge can also only change a single BFS tree edge (just
apply Lemma 9.6 with all edges having weight 1), adapting the distributed
data structure given by the states of the nodes becomes a nuisance.

9.5 2-Party Systems Stabilize

We finish the chapter with another non-trivial example beyond self-stabilization,
showing the beauty and potential of the area: In a small town, every evening
each citizen calls all his (or her) friends, asking them whether they will vote
for the Democratic or the Republican party at the next election.1 In our town
citizens listen to their friends, and everybody re-chooses his or her affiliation
according to the majority of friends.2 Is this process going to “stabilize” (in one
way or another)?

• Is eventually everybody voting for the same party? No.

• Will each citizen eventually stay with the same party? No.

• Will citizens that stayed with the same party for some time, stay with
that party forever? No.

• And if their friends also constantly root for the same party? No.

• Will this beast stabilize at all?!? Yes!

Theorem 9.8 (Dems & Reps). Eventually every citizen is rooting for the same
party every other day.3

Proof. To prove that the opinions eventually become fixed or cycle every other
day, think of each friendship between citizens as a pair of (directed) edges, one
in each direction. Let us say an edge is currently bad if the party of the advising
friend differs from the next-day’s party of the advised friend. In other words,

1We are in the US, and as we know from The Simpsons, you “throw your vote away” if
you vote for somebody else. As a consequence our example has two parties only.

2Assume for the sake of simplicity that everybody has an odd number of friends.
3Hence the term “swing voter.”
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the edge is bad if the advised friend did not follow the advisor’s opinion (which
means that the advisor was in the minority). An edge that is not bad, is good.

Consider the out-edges of citizen c on day t, during which (say) c roots for
the Democrats. Assume that during day t, g out-edges of c are good, and b
out-edges are bad. Note that g + b is the degree of c. Since g out-edges were
good, g friends of c root for the Democrats on day t+ 1. Likewise, b friends of c
root for the Republicans on day t+1. In other words, on the evening of day t+1
citizen c will receive g recommendations for Democrats, and b for Republicans.
We distinguish two cases:

• g > b: In this case, citizen c will still (or again) root for the Democrats on
day t+ 2. Note that in this case, on day t+ 1, exactly g in-edges of c are
good, and exactly b in-edges are bad. In other words, the number of bad
out-edges on day t is exactly the number of bad in-edges on day t+ 1.

• g < b: In this case, citizen c will root for the Republicans on day t + 2.
Note that in this case, on day t+ 1, exactly b in-edges of c are good, and
exactly g in-edges are bad. In other words, the number of bad out-edges
on day t was exactly the number of good in-edges on day t+ 1 (and vice
versa). Since citizen c is rooting for the Republicans, the number of bad
out-edges on day t was strictly larger than the number of bad in-edges on
day t+ 1.

We account for every edge as out-edge on day t, and as in-edge on day t + 1.
Since in both of the above cases the number of bad edges does not increase, the
total number of bad edges B cannot increase. In fact, if any node switches its
party from day t to t+ 2, we know that the total number of bad edges strictly
decreases. But B cannot decrease forever. Once B hits its minimum, the system
stabilizes in the sense that every citizen will either stick with his or her party
forever or flip-flop every day – the system “stabilizes.”

Remarks:

• The model can be generalized considerably by, for example, adding weights
to vertices (meaning some citizens’ opinions are more important than oth-
ers), adding weights to edges (meaning the influence between some citizens
is stronger than between others), allowing loops (citizens who consider
their own current opinions as well), allowing tie-breaking mechanisms,
and even allowing different thresholds for party changes.

• Some of you may be reminded of Conway’s Game of Life: We are given an
infinite two-dimensional grid of cells, each of which is in one of two possible
states, dead or alive. Every cell interacts with its eight neighbors. In each
round, the following transitions occur: Any live cell with fewer than two
live neighbors dies, as if caused by loneliness. Any live cell with more
than three live neighbors dies, as if by overcrowding. Any live cell with
two or three live neighbors lives on to the next generation. Any dead cell
with exactly three live neighbors is “born” and becomes a live cell. The
initial pattern constitutes the “seed” of the system. The first generation
is created by applying the above rules simultaneously to every cell in the
seed, births and deaths happen simultaneously, and the discrete moment
at which this happens is sometimes called a tick. (In other words, each
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generation is a pure function of the one before.) The rules continue to
be applied repeatedly to create further generations. John Conway figured
that these rules were enough to generate interesting situations, including
“breeders” which create “guns” which in turn create “gliders.” As such
Life in some sense answers an old question by John von Neumann, whether
there can be a simple machine that can build copies of itself. In fact Life
is Turing complete, that is, as powerful as any computer.

Figure 9.1: A “glider gun”. . .

Figure 9.2: . . . in action.

Bibliographic Notes

Self-stabilization was first introduced in a paper by Edsger W. Dijkstra in 1974
[Dij74], in the context of a token ring network. It was shown that the ring
stabilizes in time Θ(n). For his work Dijkstra received the 2002 ACM PODC
Influential Paper Award. Shortly after receiving the award he passed away.
With Dijkstra being such an eminent person in distributed computing (e.g.
concurrency, semaphores, mutual exclusion, deadlock, finding shortest paths in
graphs, fault-tolerance, self-stabilization), the award was renamed Edsger W.
Dijkstra Prize in Distributed Computing. In 1991 Awerbuch et al. showed that
any algorithm can be modified into a self-stabilizing algorithm that stabilizes in
the same time that is needed to compute the solution from scratch [APSV91];
this construction is explained in Theorem 9.5.

For fast “distributed correction” of MSTs see the work by Peleg [Pel98]. This
paper in fact deals with the more general case of matroids, and hence spotlights
how the matroid structure is exploited by the distributed version of Kruskal’s
algorithm as well as the adaption to changing edge sets and weights.
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The Republicans vs. Democrats problem was popularized by Peter Winkler,
in his column “Puzzled” [Win08]. Goles et al. already proved in [GO80] that
any configuration of any such system with symmetric edge weights will end up
in a situation where each citizen votes for the same party every second day. The
understanding of this problem has been significantly extended recently [FKW13,
KPW14]. Closely related to this puzzle is the well known Game of Life which
was described by the mathematician John Conway and made popular by Martin
Gardner [Gar70].

This lecture is in wide parts based on material by Roger Wattenhofer.
Thanks!
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Lecture 10

Mutual Exclusion and Store
& Collect

In the previous lectures, we’ve learned a lot about message passing systems.
We’ve also seen that neither in shared memory nor message passing systems
consensus can be solved deterministically. But what makes them different?
Obviously, the key difference to message passing is the shared memory: Different
processors can access the same register to store some crucial information, and
anyone interested just needs to access this register. In particular, we don’t
suffer from locality issues, as nodes are just one shared register away. Think
for instance about pointer jumping, which is not possible in a message passing
system, or about MST construction, where the diameter of components matters.

Alas, great power comes with its own problems. One of them is to avoid
that newly posted information is overwritten by other nodes before it’s noticed.

Definition 10.1 (Mutual Exclusion). We are given a number of nodes, each
executing the following code sections:
<Entry> → <Critical Section> → <Exit> → <Remaining Code>,
where <Remaining Code> means that the node can access the critical section
multiple times. A mutual exclusion algorithm consists of code for entry and exit
sections, such that the following holds1

Mutual Exclusion At all times at most one node is in the critical section.

No Deadlock If some node manages to get to the entry section, later some
(possibly different) node will get to the critical section (in a fair execution).

Sometimes we in addition ask for

No Lockout If some node manages to get to the entry section, later the same
node will get to the critical section.

Unobstructed Exit No node can get stuck in the exit section.

1Assuming that nodes finish the <Critical Section> in finite time.

125
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Remarks:

• We’re operating in the asynchronous model today, as is standard for shared
memory. The reason is that the assumption of strong memory primitives
and organization of modern computing systems (multiple threads, inter-
rupts, accesses to the hard drive, etc.) tend to result in unpredictable
response times that can vary dramatically.

10.1 Strong RMW Primitives

Various shared memory systems exist. A main difference is how they allow
nodes to access the shared memory. All systems can atomically read or write a
shared register R. Most systems do allow for advanced atomic read-modify-write
(RMW) operations, for example:

test-and-set(R): t := R; R := 1; return t

fetch-and-add(R, x): t := R; R := R+ x; return t

compare-and-swap(R, x, y): if R = x then R := y; return true; else return
false; endif;

load-link(R)/store-conditional(R, x): Load-link returns the current value of
the specified register R. A subsequent store-conditional to the same regis-
ter will store a new value x (and return true) only if the register’s content
hasn’t been modified in the meantime. Otherwise, the store-conditional
is guaranteed to fail (and return false), even if the value read by the
load-link has since been restored.

An operation being atomic means that it is only a single step in the execution.
For instance, no other node gets to execute the “fetch” part of the fetch-and-add
primitive while another already completed it, but hasn’t executed the addition
yet.

Using RMW primitives one can build mutual exclusion algorithms quite
easily. Algorithm 20 shows an example with the test-and-set primitive.

Algorithm 20 Mutual exclusion using test-and-set, code at node v.

Given: some shared register R, initialized to 0.
<Entry>

1: repeat
2: r := test-and-set(R)
3: until r = 0
<Critical Section>

4: . . .
<Exit>

5: R := 0
<Remainder Code>

6: . . .

Theorem 10.2. Algorithm 20 solves mutual exclusion and guarantees unobstruc-
ted exit.
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Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially R is 0. Let pi be the ith node to execute the test-and-set “successfully,”
i.e., such that the result is 0. Denote by ti the time when this happens and by
t′i the time when pi resets the shared register R to 0. Between ti and t′i no other
node can successfully test-and-set, hence no other node can enter the critical
section during [ti, t

′
i].

Proving no deadlock works similar: One of the nodes loitering in the entry
section will successfully test-and-set as soon as the node in the critical section
exited.

Since the exit section only consists of a single instruction (no potential infi-
nite loops), we have unobstructed exit.

Remarks:

• No lockout, on the other hand, is not ensured by this algorithm. Even
with only two nodes there are asynchronous executions in which always
the same node wins the test-and-set.

• Algorithm 20 can be adapted to guarantee this, essentially by ordering
the nodes in the entry section in a queue.

• The power of RMW operations can be measured with the consensus num-
ber. The consensus number k of an RMW operation is defined as the
number of nodes for which one can solve consensus with k (crashing)
nodes using basic read and write registers alongside the respective RMW
operations. For example, test-and-set has consensus number 2, whereas
the consensus number of compare-and-swap is infinite.

• It can be shown that the power of a shared memory system is determined
by the consensus number (“universality of consensus”). This insight has
a remarkable theoretical and practical impact. In practice, for instance,
after this was known, hardware designers stopped developing shared mem-
ory systems that support only weak RMW operations.

10.2 Mutual Exclusion using only RW Registers

Do we actually need advanced registers to solve mutual exclusion? Or to solve
it efficiently? It’s not as simple as before,2 but can still be done in a fairly
straightforward way.

We’ll look at mutual exclusion exclusion for two nodes p0 and p1 only. We
discuss how it can be extended to more nodes in the remarks. The general
idea is that node pi has to mark its desire to enter the critical section in a
“want” register Wi by setting Wi := 1. Only if the other node is not interested
(W1−i = 0) access is granted. To avoid deadlocks, we add a priority variable Π
enabling one node to enter the critical section even when the “want” registers
are saying that none shall pass.

Theorem 10.3. Algorithm 21 solves mutual exclusion and guarantees both no
lockout and unobstructed exit.

2Who would have guessed, we’re talking about a non-trivial problem here.
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Algorithm 21 Mutual exclusion: Peterson’s algorithm.

Given: shared registers W0,W1,Π, all initialized to 0.
Code for node pi, i ∈ {0, 1}:
<Entry>

1: Wi := 1
2: Π := 1− i
3: repeat nothing until Π = i or W1−i = 0 // “busy-wait”
<Critical Section>

4: . . .
<Exit>

5: Wi := 0
<Remainder Code>

6: . . .

Proof. The shared variable Π makes sure that one of the nodes can enter the
critical section. Suppose p0 enters the critical section first. If at this point it
holds that W1 = 0, p1 has not yet executed Line 1 and therefore will execute
Line 2 before trying to enter the critical section, which means that Π will be 0
and p1 has to wait until p0 leaves the critical section and resets W0 := 0. On the
other hand, if W1 = 1 when p0 enters the critical section, we already must have
that Π = 0 at this time, i.e., the same reasoning applies. Arguing analogously
for p1 entering the critical section first, we see that mutual exclusion is solved.

To see that there are no lockouts, observe that once, e.g., p0 is executing the
spin-lock (i.e., is “stuck” in Line 3), the priority variable is not going to be set
to 1 again until it succeeds in entering and passing the critical section. If p1 is
also interested in entering and “wins” (we already know that one of them will),
afterwards it either will stop trying to enter or again set Π to 0. In any event,
p0 enters the section next.

Since the exit section only consists of a single instruction (no potential infi-
nite loops), we have unobstructed exit.

Remarks:

• Line 3 in Algorithm 21 is a spinlock or busy-wait, like Lines 1-3 in Algo-
rithm 20. Here we have the extreme case that the node doesn’t even try
to do anything, it simply needs to wait for someone else to finish the job.

• Extending Peterson’s Algorithm to more than 2 nodes can be done by a
tournament tree, like in tennis. With n nodes every node needs to win
dlog ne matches before it can enter the critical section. More precisely,
each node starts at the bottom level of a binary tree, and proceeds to the
parent level if winning. Once winning the root of the tree it can enter the
critical section.

• This solution inherits the additional nice properties: no lockouts, unob-
structed exit.

• On the downside, more work is done than with the test-and-set opera-
tion, as the binary tree has depth dlog ne. One captures this by counting
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asynchronous rounds or the number of actual changes of variables,3 as
only signal transitions are “expensive” (i.e., costly in terms of energy) in
circuits.

10.3 Store & Collect

Informally, the store & collect problem can be stated as follows. There are
n nodes p1, . . . , pn. Every node pi has a read/write register Ri in the shared
memory, where it can store some information that is destined for the other
nodes. Further, there is an operation by which a node can collect (i.e., read)
the values of all the nodes that stored some value in their register.

We say that an operation op1 precedes an operation op2 iff op1 terminates
before op2 starts. An operation op2 follows an operation op1 iff op1 precedes
op2.

Definition 10.4 (Store and Collect). There are two operations: A store(val)
by node pi sets val to be the latest value of its register Ri. A collect operation
returns a view, i.e., a function f : V → VAL ∪ {⊥} from the set of nodes V
to a set of values VAL or the symbol ⊥, which means “nothing written yet.”
Here, f(pi) is intended to be the latest value stored by pi, for each node pi. For
a collect operation cop, the following validity properties must hold for every
node pi:

• If f(pi) = ⊥, then no store operation by pi precedes cop.

• If f(pi) = val 6= ⊥, then val is the value of a store operation sop of pi
that does not follow cop satisfying that there is no store operation by pi
that follows sop and precedes cop.

Put simply, a collect operation cop should not read from the future or
miss a preceding store operation sop.

Attention: A collect operation is not atomic, i.e., consists of multiple
(atomic) operations! This means that there can be reads that neither precede
nor follow a collect. Such overlapping operations are considered concurrent.
In general, also a write operation can be more involved, to simplify reads or
achieve other properties, so the same may apply to them.

We assume that the read/write register Ri of every node pi is initialized
to ⊥. We define the step complexity of an operation op to be the number of
accesses to registers in the shared memory. There is a trivial solution to the
collect problem shown in Algorithm 22.

3There may be an unbounded number of read operations due to the busy-wait, and it is
trivial to see that this cannot be avoided in a (completely) asynchronous system.

Algorithm 22 Trivial collect.

Operation store(val) (by node pi) :
1: Ri := val

Operation collect:
2: for i := 1 to n do
3: f(pi) := Ri // read register Ri
4: end for
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Remarks:

• Obviously,4 Algorithm 22 works. The step complexity of every store
operation is 1, the step complexity of a collect operation is n.

• The step complexities of Algorithm 22 is optimal: There are cases in
which a collect operation needs to read all n registers. However, there
are also scenarios in which the step complexity of the collect operation
is unnecessarily large. Assume that there are only two nodes pi and pj
that have stored a value in their registers Ri and Rj . Then, in principle,
collect needs to read the registers Ri and Rj only.

10.3.1 Splitters

Assume that up to a certain time t, k ≤ n nodes have started at least one
operation. We call an operation completing at time t adaptive to contention, if
its step complexity depends on k only.

To obtain adaptive collect algorithms, we will use a symmetry breaking
primitive called a splitter.

Definition 10.5 (Splitter). A splitter is a synchronization primitive with the
following characteristics. A node entering a splitter exits with either stop, left,
or right. If k nodes enter a splitter, at most one node exits with stop and at
most k − 1 nodes exit with left and right, respectively.

This definition guarantees that if a single node enters the splitter, then it
obtains stop, and if two or more nodes enter the splitter, then there is at most
one node obtaining stop and there are two nodes that obtain different values

4Be extra careful whenever such a word pops up. If it’s not indeed immediately obvious, it
may translate to “I believe it works, but didn’t have the patience to check the details,” which
is an excellent source of (occasionally serious) blunders. One of my lecturers once said: “If it’s
trivial, then why don’t we write it down? It should not take more than a line. If it doesn’t,
then it’s not trivial!”

Algorithm 23 Splitter Code

Shared Registers: X : {⊥} ∪ {1, . . . , n}; Y : boolean
Initialization: X := ⊥; Y := false

Splitter access by node pi:
1: X := i;
2: if Y then
3: return right
4: else
5: Y := true
6: if X = i then
7: return stop
8: else
9: return left

10: end if
11: end if
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k processors

at most 1

left
at most k−1

right
at most k−1

stop

Figure 10.1: A Splitter

(i.e., either there is exactly one stop or there is at least one left and at least
one right). For an illustration, see Figure 10.1. Algorithm 23 implements a
splitter.

Lemma 10.6. Algorithm 23 implements a splitter.

Proof. Assume that k nodes enter the splitter. Because the first node that
checks whether Y = true in line 2 will find that Y = false, not all nodes return
right. Next, assume that i is the last node that sets X := i. If i does not return
right, it will find X = i in Line 6 and therefore return stop. Hence, there is
always a node that does not return left.

It remains to show that at most 1 node returns stop. Suppose pi decides to
do this at time t, i.e., pi reads that X = i in Line 6 at time t. Then any pj that
sets X := j after time t will (re)turn right, as already Y = true. As any other
node pj will not read X = j after time t (there is no other way to change X to
j), this shows that at most one node will return stop. Finally, observe that if
k = 1, then the result for the single entering node will be stop.

10.3.2 Binary Splitter Tree

Assume that we are given 2n − 1 splitters and that for every splitter S, there
is an additional shared variable ZS : {⊥} ∪ {1, . . . , n} that is initialized to ⊥
and an additional shared variable MS : boolean that is initialized to false. We
call a splitter S marked if MS = true. The 2n − 1 splitters are arranged in a
complete binary tree of height n − 1. Let S(v) be the splitter associated with
a node v of the binary tree. The store and collect operations are given by
Algorithm 24.

Theorem 10.7. Algorithm 24 implements store and collect. Let k be the
number of participating nodes. The step complexity of the first store of a node
pi is O(k), the step complexity of every additional store of pi is O(1), and the
step complexity of collect is O(k).

Proof. Because at most one node can stop at a splitter, it is sufficient to show
that every node stops at some splitter at depth at most k − 1 ≤ n − 1 when
invoking the first store operation to prove correctness. We prove that at most
k− i nodes enter a subtree at depth i (i.e., a subtree where the root has distance
i to the root of the whole tree). This follows by induction from the definition
of splitters, as not all nodes entering a splitter can proceed to the same subtree
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Algorithm 24 Adaptive collect: binary tree algorithm

Operation store(val) (by node pi) :
1: Ri := val
2: if first store operation by pi then
3: v := root node of binary tree
4: α := result of entering splitter S(v);
5: MS(v) := true
6: while α 6= stop do
7: if α = left then
8: v := left child of v
9: else

10: v := right child of v
11: end if
12: α := result of entering splitter S(v);
13: MS(v) := true
14: end while
15: ZS(v) := i
16: end if

Operation collect:
Traverse marked part of binary tree:
17: for all marked splitters S do
18: if ZS 6= ⊥ then
19: i := ZS ; f(pi) := Ri // read value of node pi
20: end if
21: end for // f(pi) = ⊥ for all other nodes

rooted at a child of the splitter. Hence, at the latest when reaching depth k−1,
a node is the only node entering a splitter and thus obtains stop.

Note that the step complexity of executing a splitter is O(1). The bound of
k− 1 on the depth of the accessed subtree of the binary splitter tree thus shows
that the step complexity of the initial store is O(k) for each node, and each
subsequent store requires only O(1) steps.

To show that the step complexity of collect is O(k), we first observe
that the marked nodes of the binary tree are connected, and therefore can
be traversed by only reading the variables MS associated to them and their
neighbors. Hence, showing that at most 2k − 1 nodes of the binary tree are
marked is sufficient. Let xk be the maximum number of marked nodes in a
tree when k ∈ N0 nodes access the root. We claim that xk ≤ max{2k − 1, 0},
which is trivial for k = 0. Now assume the inequality holds for 0, . . . , k − 1.
Splitters guarantee that neither all nodes turn left nor all nodes turn right,
i.e., kl ≤ k − 1 nodes will turn left and kr ≤ min{k − kl, k − 1} turn right.
The left and right children of the root are the roots of their subtrees, hence the
induction hypothesis yields

xk ≤ xkl + xkr + 1 ≤ max{2kl − 1, 0}+ max{2kr − 1, 0}+ 1 ≤ 2k − 1,

concluding induction and proof.
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left

right

Figure 10.2: 5× 5 Splitter Matrix

Remarks:

• The step complexities of Algorithm 24 are very good. Clearly, the step
complexity of the collect operation is asymptotically optimal.5 In order
for the algorithm to work, we however need to allocate the memory for the
complete binary tree of depth n−1. The space complexity of Algorithm 24
therefore is exponential in n. We will next see how to obtain a polynomial
space complexity at the cost of a worse collect step complexity.

10.3.3 Splitter Matrix

In order to obtain quadratic memory consumption (instead of the exponential
memory consumption of the splitter tree), we arrange n2 splitters in an n × n
matrix as shown in Figure 10.2. The algorithm is analogous to Algorithm 24.
The matrix is entered at the top left. If a node receives left, it next visits
the splitter in the next row of the same column. If a node receives right, it
next visits the splitter in the next column of the same row. Clearly, the space
complexity of this algorithm is O(n2). The following theorem gives bounds on
the step complexities of store and collect.

Theorem 10.8. Let k be the number of participating nodes. The step complexity
of the first store of a node pi is O(k), the step complexity of every additional
store of pi is O(1), and the step complexity of collect is O(k2).

Proof. Let the top row be row 0 and the left-most column be column 0. Let xi
be the number of nodes entering a splitter in row i. By induction on i, we show

5Here’s another clearly to watch carefully. While the statement is correct, it’s not obvious
that we chose the performance measure wisely. We could refine our notion again and ask for
the step complexity in terms of the number of writes that did not precede the most recent
collect operation of the collecting process. But let’s not go there today.
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that xi ≤ k− i. Clearly, x0 ≤ k. Let us therefore consider the case i > 0. Let j
be the largest column such that at least one node visits the splitter in row i− 1
and column j. By the properties of splitters, not all nodes entering the splitter
in row i−1 and column j obtain left. Therefore, not all nodes entering a splitter
in row i − 1 move on to row i. Because at least one node stays in every row,
we get that xi ≤ k − i. Similarly, the number of nodes entering column j is at
most k− j. Hence, every node stops at the latest in row k− 1 and column k− 1
and the number of marked splitters is at most k2. Thus, the step complexity of
collect is at most O(k2). Because the longest path in the splitter matrix is
2k, the step complexity of store is O(k).

Remarks:

• With a slightly more complicated argument, it is possible to show that
the number of nodes entering the splitter in row i and column j is at most
k − i− j. Hence, it suffices to only allocate the upper left half (including
the diagonal) of the n× n matrix of splitters.

• Recently, it has been shown that with a considerably more complicated
deterministic algorithm, it is possible to achieve O(k) step complexity and
O(n2) space complexity.

What to take Home

• Obviously, more powerful RMW primitives are extremely useful. However,
their implementation might be more costly than an implementation using
read/write registers only. At the end of the day, RMW primitives solve
mutual exclusion at some level of the system hierarchy.

• Naturally, atomic read/write registers do not fall out of the sky either.
They are implemented from non-atomic registers using similar techniques.
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Lecture 11

Shared Counters

Maybe the most basic operation a computer performs is adding one, i.e., to
count. In distributed systems, this can become a non-trivial task. If the events
to be counted occur, e.g., at different processors in a multi-core system, deter-
mining the total count by querying each processor for its local count is costly.
Hence, in shared memory systems, one may want to maintain a shared counter
that permits to determine the count using a single or a few read operations.

11.1 A Simple Shared Counter

If we seek to implement such an object, we need to avoid that increments are
“overwritten,” i.e., two nodes increment the counter, but only one increment
is registered. So, the simple approach of using one register and having a node
incrementing the counter read the register and write the result plus one to the
register is not good enough with atomic read/write registers only. With more
powerful registers, things look differently.

Algorithm 25 Shared counter using compare-and-swap, code at node v.

Given: some shared register R, initialized to 0.
Increment:

1: repeat
2: r := R
3: success := compare-and-swap(R, r, r + 1)
4: until success = true

Read:
5: return R

11.1.1 Progress Conditions

Basically, this approach ensures that the read-write sequence for incrementing
the counter behaves as if we applied mutual exclusion. However, there is a cru-
cial difference. Unlike in mutual exclusion, no node obtains a “lock” and needs
to release it before other nodes can modify the counter again. The algorithm is
lock-free, meaning that it makes progress regardless of the schedule.

137
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Definition 11.1 (Lock-Freedom). An operation is lock-free, if whenever any
node is executing an operation, some node executing the same operation is guar-
anteed to complete it (in a bounded number of steps of that node). In asynchro-
nous systems, this must hold even in (infinite) schedules that are not fair, i.e.,
if some of the nodes executing the operation may be stalled indefinitely.

Lemma 11.2. The increment operation of Algorithm 25 is lock-free.

Proof. Suppose some node executes the increment code. It obtains some value
r from reading the register R. When executing the compare-and-swap, it either
increments the counter successfully or the register already contains a different
value. In the latter case, some other node must have incremented the counter
successfully.

This condition is strong in the sense that the counter will not cease to operate
because some nodes crash or are stalled for a long time. Yet, it is pretty weak
with respect to read operations: It would admit that a node that just wants to
read never completes this operation. However, as the read operations of this
algorithm are trivial, they satisfy the strongest possible progress condition.

Definition 11.3 (Wait-Freedom). An operation is wait-free if whenever a node
executes an operation, it completes if it is granted a bounded number of steps
by the execution. In asynchronous systems, this must hold even in (infinite)
schedules that are not fair, i.e., if nodes may be suspended indefinitely.

Remarks:

• Wait-freedom is extremely useful in systems where one cannot guarantee
reasonably small response times of other nodes. This is important in
multi-core systems, in particular if the system needs to respond to external
events with small delay.

• Consequently, wait-freedom is the gold standard in terms of progress. Of
course, one cannot always afford gold.

• From the FLP theorem, we know that wait-free consensus is not possible
without advanced RMW primitives.

11.1.2 Consistency Conditions

Progress is only a good thing if it goes in the right direction, so we need to figure
out the direction we deem right. Even for such a simple thing as a counter, this
is not as trivial as it might appear at first glance. If we require that the counter
always returns the “true” value when read, i.e., the sum of the local event counts
of all nodes, we cannot hope to implement this distributedly in any meaningful
fashion: whatever is read at a single location may already be outdated, so we
cannot satisfy the “traditional” sequential specification of a counter. Before we
proceed to relaxing it, let us first formalize it.

Definition 11.4 (Sequential Object). A sequential object is given by a tuple
(S, s0, R,O, t), where

• S is the set of states the object can attain,
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• s0 is its initial state,

• R is the set of values that can be read from the object,

• O is the set of operations that can be performed on the object, and

• t : O × S → S ×R is the transition function of the object.

A sequential execution of the object is a sequence of operations oi ∈ O and states
si ∈ S, where i ∈ N and (si, ri) = t(oi, si−1); operation oi returns value ri ∈ R.

Definition 11.5 (Sequential Counter). A counter is the object given by S = N0,
s0 = 0, R = N0 ∪ {⊥}, O = {read, increment}, and, for all i ∈ N0, t(read, i) =
(i, i) and t(increment, i) = (i+ 1,⊥).

We could now “manually” define a distributed variant of a counter that we
can implement. Typically, it is better to apply a generic consistency condition.
In order to do this, we first need “something distributed” we can relate the
sequential object to.

Definition 11.6 (Implementation). A (distributed) implementation of a se-
quential object is an algorithm1 that enables each node to access the object using
the operations from O. A node completing an operation obtains a return value
from the set of possible return values for that operation.

So far, this does not say anything about whether the returned values make
any sense in terms of the behavior of the sequential object; this is addressed by
the following definitions.

Definition 11.7 (Precedence). Operation o precedes operation o′ if o completes
before o′ begins.

Definition 11.8 (Linearizability). An execution of an implementation of an
object is linearizable, if there is a sequential execution of the object such that

• there is a one-to-one correspondence between the performed operations,

• if o precedes o′ in execution of the implementation, the same is true for
their counterparts in the sequential execution, and

• the return values of corresponding operations are identical.

An implementation of an object is linearizable if all its executions are lineariz-
able.

Theorem 11.9. Algorithm 25 is a linearizable counter implementation. Its
read operations are wait-free and its increment operations are lock-free.

Proof. All claims but linearizability are easily verified from the definitions and
the algorithm. For linearizability, note that read operations are atomic, so
we only need to worry about when we let a write operation take place in the
linearization. This is easy, too: we choose the point in time when the successful
compare-and-swap actually incrementing the value stored by R occurs.

1Or rather a suite of subroutines that can be called, one for each possible operation.



140 LECTURE 11. SHARED COUNTERS

Figure 11.1: Top: An execution of a distributed counter implementation. Each
mark is one atomic step of the respective node. Bottom: A valid linearization
of the execution. Note that if the second read of node 1 would have returned 2,
it would be ordered behind the increment by node 2. If it had returned 0, the
execution would not be linearizable.

Remarks:

• Linearizability is extremely useful. It means that we can treat a (possibly
horribly complicated) distributed implementation of an object as if it was
accessed atomically.

• This makes linearizability the gold standard in consistency conditions.
Unfortunately, also this gold has its price.

• Put simply, linearizability means “simulating sequential behavior,” but
not just any behavior – if some operation completed in the past, it should
not have any late side effects.

• There are many equivalent ways of defining linearizability:

– Extend the partial “precedes” order to a total order such that the
resulting list of operation/return value pairs is a (correct) sequential
execution of the object.

– Assign strictly increasing times to the (atomic) steps of the execution
of the implementation. Now each operation is associated with a time
interval spanned by its first and last step. Assign to each operation
a linearization point from its interval (such that no two linearization
points are identical). This induces a total order on the operations.
If this can be done in a way consistent with the specification of the
object, the execution is linearizable.

• One can enforce linearizability using mutual exclusion.
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• In the store & collect problem, we required that the “precedes” relation
is respected. However, our algorithms/implementations were not lineariz-
able. Can you see why?

• Coming up with a linearizable, wait-free, and efficient implementation of
an object can be seen as creating a more powerful shared register out of
existing ones.

• Shared registers are linearizable implementations of conventional registers.

• There are many weaker consistency conditions. For example one may just
ask that the implementation behaves like its sequential counterpart only
during times when a single node is accessing it.

11.2 No Cheap Wait-Free Linearizable Counters

There’s a straightforward wait-free, linearizable shared counter using atomic
read/write registers only: for each node, there’s a shared register to which it
applies increments locally; a read operation consists of reading all n registers
and summing up the result.

This clearly is wait-free. To see that it is linearizable, observe that local
increments require only a single write operation (as the node knows its local
count), making the choice of the linearization point of the operation obvious.
For each read, there must be a point in time between when it started and when
it completes at which the sum of all registers equals the result of the read; this
is a valid linearization point for the read operation.

Here’s the problem: this seems very inefficient. It requires n− 1 accesses to
shared registers just to read the counter, and it also requires n registers. We
start with the bad news. Even with the following substantially weaker progress
condition, this is optimal.

Definition 11.10 (Solo-Termination). An operation is solo-terminating if it
completes in finitely many steps provided that only the calling node takes steps
(regardless of what happened before).

Note that wait-freedom implies lock-freedom and that lock-freedom implies
solo-termination.

Theorem 11.11. Any linearizable deterministic implementation of a counter
that guarantees solo-termination of all operations and uses only atomic read/write
shared registers requires at least n− 1 registers and has step complexity at least
n− 1 for read operations.

Proof. We construct a sequence of executions Ei = IiWiRi, i ∈ {0, . . . , n− 1},
where Ei is the concatenation of Ii, Wi, and Ri. In each execution, the nodes
are {1, . . . , n}, and execution Ei is going to require i distinct registers; node n
is the one reading the counter.

1. In Ii, nodes j ∈ {1, . . . , i} increment the counter (some of these increments
may be incomplete).



142 LECTURE 11. SHARED COUNTERS

2. In Wi, nodes j ∈ {1, . . . , i} each write to a different register Rj once and
no other steps are taken.

3. In Ri, node n reads the registers R1, . . . , Ri as part of a (single) read
operation on the counter.

As in En−1 node n accesses n− 1 different registers, this shows the claim.
The general idea is to “freeze” nodes j ∈ {1, . . . , i} just before they write to

their registers Rj . This forces node i+ 1 to write to another register if it wants
to complete many increments (which wait-freedom enforces) in a way that is not

Figure 11.2: Example for the induction step from 3 to 4. Top: Execution E3.
Second: We extend E3 by letting node n complete its read operation. Third:
We consider the execution where we insert many increment operations by some
unused node between I3 and W3. This might change how node n completes its
read operation. However, if node n would not read a register not overwritten
by W3 to which the new node writes, the two new executions would be indis-
tinguishable to node n and its read would return a wrong (i.e., not linearizable)
value in at least one of the them. Bottom: We let the new node execute until
it writes the new register first and node n perform its read until it accesses the
register first, yielding E4.
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overwritten when we let nodes 1, . . . , i perform their stalled write steps. This is
necessary for node n to be able to complete a read operation without waiting
for nodes 1, . . . , i; otherwise n wouldn’t be able to distinguish between Ei and
Ei+1, which require different outputs if i + 1 completed more increments than
have been started in Ei.

The induction is trivially anchored at i = 0 by defining E0 as the empty
execution. Now suppose we are given Ei for i < n−1. We claim that node n must
access some new register Ri+1 before completing a read operation (its single task
in all executions we construct). Assuming otherwise, consider the following
execution. We execute Ei and then let node n complete its read operation. As
the implementation is solo-terminating, this must happen in finitely many steps
of n, and, by linearizability, the read operation must return at most the number
k of increments that have been started in Ei; otherwise, we reach a contradiction
by letting these operations complete (one by one, using solo-termination) and
observing that there is no valid linearization.

On the other hand, consider the execution in which we run Ii, then let some
node j ∈ {i + 1, . . . , n − 1} complete k + 1 increments running alone (again
possible by solo-termination), append Wi, and let node n complete its read
operation. Observe that the state of all registers R1, . . . , Ri before node n takes
any steps is the same as after IiWi, as any possible changes by node j were
overwritten. Consequently, as n does not access any other registers, it cannot
distinguish this execution from the previous run and thus must return a value
of at most k. However, this contradicts linearizability of the new execution, in
which already k+1 increments are complete. We conclude that when extending
Ei by letting node n run alone, n will eventually access some new register Ri+1.

Define Ri+1 as the sequence of steps n takes in this setting up to and in-
cluding the first access to register Ri+1. W.l.o.g., assume that there exists an
extension of Ii in which only nodes i + 1, . . . , n − 1 take steps and eventually
some j ∈ {i + 1, . . . , n − 1} writes to Ri+1. Otherwise, Ri+1 is never going
to be written (by a node different from n) in any of the executions we con-
struct, i.e., node n cannot distinguish any of the executions we construct by
reading Ri+1; hence it must read another register by repetition of the above
argument. Eventually, there must be a register it reads that is written by some
node i+ 1 ≤ j ≤ n− 1 (if we extend Ii such that only node j takes steps), and
we can apply the reasoning that follows.

W.l.o.g., assume that j = i+1 (otherwise we just switch the indices of nodes j
and i+1 for the purpose of this proof) and denote by Ii+1wi+1 such an extension
of Ii, where wi+1 is the write of j = i+1 to Ri+1. Setting Wi+1 := wi+1Wi and
Ei+1 := Ii+1Wi+1Ri+1 completes the induction and therefore the proof.

Remarks:

• There was some slight cheating, as the above reasoning applies only to un-
bounded counters, which we can’t have in practice anyway. Arguing more
carefully, one can bound the number of increment operations required in
the construction by 2O(n).

• The technique is far more general:

– It works for many other problems, such as modulo counters, fetch-
and-add, or compare-and-swap. In other words, using powerful RMW
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registers just shifts the problem.

– This can also seen by using reductions. Algorithm 25 shows that
compare-and-swap cannot be easy to implement, and load-link/store-
conditional can be used in the very same way. A fetch-and-add reg-
ister is even better: it trivially implements a wait-free linearizable
counter.

– The technique works if one uses historyless objects in the implemen-
tation, not just RW registers. An object is historyless, if the resulting
state of any operation that is not just a read (i.e., does never affect
the state) does not depend on the current state of the object.

– For instance, test-and-set registers are historyless, or even registers
that can hold arbitrary values and return their previous state upon
being written.

– It also works for resettable consensus objects. These support the
operations propose(i), i ∈ N, reset, and read, and are initiated in
state ⊥. A propose(i) operation will result in state i if the object is
in state ⊥ and otherwise not affect the state. The reset operation
brings the state back to ⊥. This means that the hardness of the
problem is not originating in an inability to solve consensus!

– The space bound also applies to randomized implementations. Basi-
cally, the same construction shows that there is a positive probability
that node n accesses n − 1 registers, so these registers must exist.
However, one can hope to achieve a small step complexity (in expec-
tation or w.h.p.), as the probability that such an execution occurs
may be very small.

• By now you might already expect that we’re going to “beat” the lower
bound. However, we’re not going to use randomization, but rather exploit
another loophole: the lower bound crucially relies on the fact that the
counter values can become very large.

11.3 Efficient Linearizable Counter from RW Reg-
isters

Before we can construct a linearizable counter, we first need to better understand
linearizability.

11.3.1 Linearizability “=” Atomicity

As mentioned earlier, a key feature of linearizability is that we can pretend that
linearizable objects are atomic. In fact, this is the reason why it is standard
procedure to assume that atomic shared registers are available: one simply uses
a linearizable implementation from simpler registers. Let’s make this more clear.

Definition 11.12 (Base objects). The base objects of an implementation of an
object O are all the registers and (implementations of) objects that nodes may
access when executing any operations of O.
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Figure 11.3: Bottom: An execution of an implementation using linearizable
base objects. Center: Exploiting linearizability of each base object, we obtain
an execution of a corresponding implementation from atomic base objects. Top:
By linearizability of the assumed implementation from atomic base objects, this
execution can be linearized, yielding a linearization of the original execution at
the bottom.

Lemma 11.13. Suppose some object O has a linearizable implementation us-
ing atomic base objects. Then replacing any atomic base object by a linearizable
implementation (where each atomic access is replaced by calling the respective
operation and waiting for it to complete) results in another linearizable imple-
mentation of O.

Proof. Consider an execution E of the constructed implementation of O from
linearizable implementations of its base objects. By definition of linearizability,
we can map the (sub)executions comprised of the accesses to (base objects of)
the implementations of base objects to sequential executions of the base objects
that preserve the partial order given by the “precedes” relation.

We claim that doing this for all of the implementations of base objects of
O yields a valid execution E ′ of the given implementation of O from atomic
base objects. To see this, observe that the view of a node in (a prefix of) E
is given by its initial state and the sequence of return values from its previous
calls to the atomic base objects. In E , the node calls an operation once all its
preceding calls to operations are complete. As, by definition of linearizability,
the respective return values are identical, the claim holds true.

The rest is simple. We apply linearizability to E ′, yielding a sequential exe-
cution E ′′ of O that preserves the “precedes” relation on E ′. Now, if operation o
precedes o′ in E , the same holds for their counterparts in E ′, and consequently for
their counterparts in E ′′; likewise, the return values of corresponding operations
match. Hence E ′′ is a valid linearization of E .

Remarks:

• Beware side effects, as they break this reasoning! If a call to an operation
affects the state of the node (or anything else) beyond the return value,
this can mess things up.

• For instance, one can easily extend this reasoning to randomized imple-
mentations. However, in practical systems, randomness is usually not
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“true” randomness, and the resulting dependencies can be. . . interesting.

• Lemma 11.13 permits to abstract away the implementation details of more
involved objects, so we can reason hierarchically. This will make our live
much, much easier!

• This result is the reason why it is common lingo to use the terms “atomic”
and “linearizable” interchangeably.

• We’re going to exploit this to the extreme now. Recursion time!

11.3.2 Counters from Max Registers

We will construct our shared counter using another, simpler object.

Definition 11.14 (Max Register). A max register is the object given by S = N0,
s0 = 0, R = N0 ∪ {⊥}, O = {read,write(i) | i ∈ N0}, and, for all i, j ∈ N0,
t(read, i) = (i, i) and t(write(i), j) = (max{i, j},⊥). In words, the register
always returns the maximum previously written value on a read.

Max registers are not going to help us, as the lower bound applies when con-
structing them. We need a twist, and that’s requiring a bound on the maximum
value the counter – and thus the max registers – can attain.

Definition 11.15 (Bounded Max Register). A max register with maximum
value M ∈ N is the object given by S = {0, . . . ,M}, s0 = 0, R = S ∪ {⊥}, O =
{read,write(i) | i ∈ S}, and, for all i, j ∈ S, t(read, i) = (i, i) and t(write(i), j) =
(max{i, j},⊥).

Definition 11.16 (Bounded Counter). A counter with maximum value M ∈ N
is the object given by S = {0, . . . ,M}, s0 = 0, R = S∪{⊥}, O = {read, increment},
and, for all i ∈ S, t(read, i) = (i, i) and t(increment, i) = (min{i+ 1,M},⊥).

Before discussing how to implement bounded max registers, let’s see how we
obtain an efficient wait-free linearizable bounded counter from them.

Lemma 11.17. Suppose we are given two atomic counters of maximum value
M that support k incrementing nodes (i.e., no more than k different nodes
have the ability to use the increment operation) and an atomic max register of
maximum value M . Then we can implement a counter with maximum value M
and the following properties.

• It supports 2k incrementing nodes.

• It is linearizable.

• All operations are wait-free.

• The step complexity of reads is 1, a read of a max register.

• The step complexity of increments is 4, where only one of the steps is a
counter increment.
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Proof. Denote the counters by C1 and C2 and assign k nodes to each of them.
Denote by R the max register. To read the new counter C, one simply reads R.
To increment C, a node increments its assigned counter, reads both counters,
and writes the sum to R. Obviously, we now support 2k incrementing nodes,
all operations are wait-free, and their step complexity is as claimed. Hence, it
remains to show that the counter is linearizable.

Fix an execution of this implementation of C. We need to construct a cor-
responding execution of a counter of maximum value M . At each point in time,
we rule that the state of C is the state of R.2 Thus, we can map the sequence of
read operations to the same sequence of read operations; all that remains is to
handle increments consistently. Suppose a node applies an increment. Denote
by σ the sum of the two counter values right after it incremented its assigned
counter. At this point, r < σ, where r denotes the value stored in R, as no node
ever writes a value larger than the sum it read from the two counters to R. As
the node reads C1 and C2 after incrementing its assigned counter, it will read
a sum of at least σ and subsequently write it to R. We conclude that at some
point during the increment operation the node performs on C, R will attain a
value of at least σ, while before it was smaller than σ. We map the increment
of the node to this step.

To complete the proof, we need to check that the result is a valid lineariza-
tion. For each operation o, we have chosen a linearization point l(o) during the
part of the execution in which the operation is performed. Thus, if o precedes
o′, we trivially have that l(o) < l(o′). As only reads have return values different
from ⊥ and clearly their return values match the ones they should have for
a max register whose state is given by R, we have indeed constructed a valid
linearization.

Corollary 11.18. We can implement a counter with maximum value M and
the following properties.

• It is linearizable.

• All operations are wait-free.

• The step complexity of reads is 1.

• The step complexity of each increment operation is 3dlog ne+ 1.

• Its base objects are O(n) atomic read/write registers and max registers of
maximum value M .

Proof. W.l.o.g., suppose n = 2i for some i ∈ N0. We show the claim by induction
on i, where the bound on the step complexity of increments is 3i + 1. For the
base case, observe that a linearizable wait-free counter with a single node that
may increment it is given by a read/write register that is written by that node
only, and it has step complexity 1 for all operations.

Now assume that the claim holds for some i ∈ N0. By the induction hypoth-
esis, we have linearizable wait-free counters supporting 2i incrementing nodes

2This is a slight abuse of notation, as it means that multiple increments may take effect at
the same instant of time. Formally, this can be handled by splitting them up into individual
increments that happen right after each other.
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Figure 11.4: The recursive construction from Corollary 11.18, resulting in a
tree. The leaves are simple read/write registers, which can be used as atomic
counters with a single writer. A subtree of depth d implements a linearizable
counter supporting 2d writers, and by Lemma 11.13 it can be treated as atomic.
Using a single additional max register, Lemma 11.19 shows how construct a
counter supporting 2d+1 writers using 2 counters supporting 2d writers.

(with the “right” step complexities and numbers of registers). If these were
atomic, Lemma 11.17 would immediately complete the induction step. Apply-
ing Lemma 11.13, it suffices that they are linearizable implementations, i.e., the
induction step succeeds.

Remarks:

• This is an application of a reliable recipe: Construct something linearizable
out of atomic base objects, “forget” that it’s an implementation, pretend
its atomic, rinse and repeat.

• Doing it without Lemma 11.13 would have meant to unroll the argument
for the entire tree construction of Corollary 11.18, which would have been
cumbersome and error-prone at best.

11.3.3 Max Registers from RW Registers

The construction of max registers with maximum value M from basic RW reg-
isters is structurally similar.

Lemma 11.19. Suppose we are given two atomic max registers of maximum
value M and an atomic read/write register. Then we can implement a max
register with maximum value 2M and the following properties from these.

• It is linearizable.

• All operations are wait-free.

• Each read operation consists of one read of the RW register and reading
one of the max registers.
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• Each write operation consists of at most one read of the RW register and
writing to one of the max registers.

The construction is given in Algorithm 26. The proof of linearizability is left
for the exercises.

Algorithm 26 Recursive construction of a max register of maximum value 2M
from two max registers of maximum value M and a read/write register.

Given: max registers R< and R≥ of maximum value M , and RW register
switch, all initialized to 0.

read
1: if switch = 0 then
2: return R<.read
3: else
4: return M +R≥.read
5: end if

write(i)
6: if i < M then
7: if switch = 0 then
8: R<.write(i)
9: end if

10: else
11: R≥.write(i−M)
12: switch := 1
13: end if
14: return ⊥

Corollary 11.20. We can implement a max register with maximum value M
and the following properties.

• It is linearizable.

• All operations are wait-free.

• The step complexity of all operations is O(logM).

• Its base objects are O(M) atomic read/write registers.

Proof sketch. Like in Corollary 11.18, we use Lemmas 11.13 and 11.19 induc-
tively, where in each step of the induction the maximum value of the register is
doubled. The base case of M = 1 is given by a read/write register initialized to
0: writing 0 requires no action, and writing 1 can be safely done, since no other
value is ever (explicitly) written to the register; since both reads and writes
require at most one step, the implementation is trivially linearizable.

Theorem 11.21. We can implement a counter with maximum value M and
the following properties.

• It is linearizable.

• All operations are wait-free.

• The step complexity of reads is O(logM).
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Figure 11.5: The recursive construction from Corollary 11.20, resulting in a tree.
The leaves are simple read/write registers, which can be used as atomic max
registers with maximum value 1. A subtree of depth d implements a linearizable
max register of maximum value 2d, and by Lemma 11.13 it can be treated as
atomic. Using a single read/write register “switch,” Lemma 11.19 shows how
to control access to two max registers with maximum value 2d to construct one
with maximum value 2d+1.

• The step complexity of each increment operation is O(logM log n).

• Its base objects are O(nM) atomic read/write registers.

Proof. We apply Lemmas 11.13 and 11.18 to the implementations of max reg-
isters of maximum value M given by Corollary 11.20. The step complexities
follow, as we need to replace each access to a max register by the step complex-
ity of the implementation. Similarly, the total number of registers is the number
of read/write registers per max register times the number of used max registers
(plus an additive O(n) read/write registers for the counter implementation that
gets absorbed in the constants of the O-notation).

Remarks:

• As you will show in the exercises, writing to R< only if switch reads 0 is
crucial for linearizability.

• If M is nO(1), reads and writes have step complexities of O(log n) and
O(log2 n), respectively, and the total number of registers is nO(1). As for
many algorithms and data structures only polynomially many increments
happen, this is a huge improvement compared to the linear step complexity
the lower bound seems to imply!

• If one has individual caps ci on the number of increments a node may per-
form, one can use respectively smaller registers. This improves the space
complexity to O(log n

∑n
i=1 ci), as on each of the dlog ne hierarchy levels

(read: levels of the tree) of the counter construction, the max registers
must be able to hold

∑n
i=1 ci in total, but not individually.
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• For instance, if one wants to know the number of nodes participating in
some algorithm or subroutine, this becomes O(n log n).

• One can generalize the construction to cap the step complexity at n. How-
ever, at this point the space complexity is already exponential.

What to take Home

• This is another example demonstrating how lower bounds do more than
just giving us a good feeling about what we’ve done. The lower bound
was an essential guideline for the max register and counter constructions,
as it told us that the bottleneck was the possibility of a very large number
of increments!

• Advanced RMW registers are very powerful. At the same time, this means
they are very expensive.

• Understanding and proving consistency for objects that should behave
like they are accessed sequentially is challenging. One may speculate that
we’re not seeing the additional computational power of multi-processor
systems with many cores effectively used in practice, due to the difficulty
of developing scalable parallel software.
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shown how to use the technique to implement general monotone circuits (i.e.,
things only “increase,” like for a counter), though the result is not linearizable,
but satisfies a weaker consistency condition. Moreover, the authors show that
randomized implementations of max registers with maximum value n must have
step complexity Ω(log n/ log log n) for read operations, assuming that write op-

erations take logO(1) n steps. In this sense their deterministic implementation
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Randomization [AC13] or using (deterministic) linearizable snapshots that
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Lecture 12

The Port Numbering Model

Today we’re looking at a particularly weak model of computation: deterministic
algorithms in the message passing model without node identifiers. This means
that we have to specify whether (and how) nodes can tell each other apart:
while nodes are anonymous, there is the question whether they can recognize if
two messages originate from the same neighbor or not. We assume that they
can, and model this by port numbers. A node of degree δv has a bijection p
from 1, . . . , δv to its edges. Whenever it receives a message, it “sees” the port
on which it arrives, and thus knows it was sent by the node incident to the
respective edge. Likewise, whenever it sends a message, it specifies the port on
which it sends the message, and the other endpoint of the respective edge is the
receiver of the message.

We care neither about message size nor the number of messages sent. Hence
we can run an α-synchronizer, which in turn means that it’s fine to assume
that the system is synchronous to begin with. Altogether, this is called the port
numbering model. Let’s wrap up how it works:

• The network is described by a simple connected graph G = (V,E).

• For each node v ∈ V , there is a bijection pv : {w ∈ V | {v, w} ∈ E} →
1, . . . , δv.

• The system operates in synchronous rounds. In each round, each node v

a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 12.1: A port numbering network consisting of nodes a, b, c, d.
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1
2
2

1
2
1 13

(a) (b)

Figure 12.2: The same network represented as a labeled graph (a) and without
indicating port numbers (b).

1. performs arbitrary (finite) local computations,

2. sends a message to each port 1, . . . , δv (sending none is ok, too), and

3. receives, for each neighbor w, on port pv(w) the message w sent to
its own port pw(v).

• As usual, nodes may be given additional inputs, and should eventually ter-
minate and return a value so that all outputs together describe a solution
of the problem at hand.

Remarks:

• Randomization is out of the question this time, simply because it permits
to generate unique identifiers with high probability.

• We study this model primarily for understanding the relative power of the
models.

• Lower bounds in the port numbering model can also be a good starting
point for ones in stronger models. They are usually easier to show, and
in some cases it’s possible to “lift” the result to a more powerful one by
using simulation (i.e., showing that at least for the considered problem
the “stronger” model is not actually stronger).

12.1 What we can’t do

Having no identifiers is quite the bummer. We cannot break symmetry, so we
can basically do nothing at all.1

Theorem 12.1. In general, it is impossible to break symmetry in the port num-
bering model. In particular, one cannot always

• solve leader election,

• find proper vertex or edge colorings,

• determine a non-empty independent set,

• determine a dominating set that does not contain all nodes,

1Or do we?
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Figure 12.3: A symmetric port numbering network with 8 nodes of degree 7.

• find a non-empty matching, or

• compute a minimum vertex cover.

This holds also when restricting to graphs of uniform degree ∆, for any 1 < ∆ ∈
N and n > ∆.

Proof. Assume that initially, all nodes are in the same state and all nodes have
the same degree ∆. Then each node will send the same message to a given
port i ∈ {1, . . . ,∆}. Thus, if each port i connects to the other endpoint of the
corresponding edge with the same port number j(i) ∈ {1, . . . ,∆}, each node
receives the same message on port j(i), implying that all nodes are in the same
state at the end of the first round. By induction, this shows that symmetry
cannot be broken and all the above statements readily follow.

Hence, all we need to do is to show that, for any fixed ∆ > 1 and any
n > ∆, connected, simple port-numbered graphs with the following property
exist: there is a bijection b : {1, . . . ,∆} → {1, . . . ,∆} so that for each edge
{v, w} ∈ E, it holds that pv(w) = b(pw(v)).

Consider the following graphs and port numberings:

• For even ∆, connect for each h ∈ {1, . . . ,∆/2} node i ∈ {1, . . . , n} to node
(i+ h) mod n with port number 2h− 1 at node i and port number 2h at
node (i+ h) mod n.
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• For odd ∆, observe that n must be even (as the sum of degrees must be
even). Do the same as for even ∆ for h ∈ {1, . . . , b∆/2c}. Then add
the perfect matching {1, dn/2e}, {2, dn/2e + 1}, . . . , {bn/2c, n} with port
number ∆ for both endpoints of each edge.

The bijection b is then given as follows

• If ∆ is even:

b(i) =

{
i+ 1 if i is odd, and

i− 1 if i is even.

• And for odd ∆:

b(i) =





i+ 1 if i < ∆ and i is odd,

i− 1 if i is even, and

i if i = ∆.

Remarks:

• Of course, the list of things one cannot do in this model given in the
theorem could go on forever.

• For ∆ ≤ n/2, one can also construct bipartite graphs with b(i) = i in
a similar fashion. So nothing solvable in this case either? Can we do
anything at all?!?

12.2 Bipartite Matching

Let’s make our life a little bit easier. We consider 2-colored graphs now, where
each node has its color as input. This is still fairly natural: Think of relations
such as client/server, VIP/fan, or hypergraphs,2 where we represent each hyper-
edge by a node (on one side of the bipartite graph) connected to its constituent
nodes (on the other side).

Now finding a maximal matching is straightforward.

Theorem 12.2. On 2-colored graphs of maximum degree ∆, Algorithm 27 com-
putes a maximal matching in 2∆ rounds.

Proof. Each white node is incident to at most one matching edge, because in
each iteration it proposes only a single edge and terminates if it is selected. Each
black node is incident to at most one matching edge, because it accepts only a
single proposal. Any edge will be proposed, unless its white endpoint is matched
before it gets to proposing it. Any proposed edge will be accepted, unless its
black endpoint is already matched. Hence, any edge that is not in the matching
is adjacent to a matching edge, implying that the matching is maximal.

The time complexity is 2∆, as there are ∆ iterations, each consisting of one
round for proposals and one for accepts.

2A hypergraphs is a structure H = (V,E) in which each hyperedge e ∈ E is an arbitrary
subset of the nodes.
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Algorithm 27 Matching in 2-colored graphs of maximum degree ∆ using port
numberings, code at node v. Nodes return their matched port or ⊥ if none of
their incident edges is in the matching.

1: for i = 1, . . . ,∆ do
2: if v is white then
3: send propose to port number i
4: else if v receives propose then
5: send accept to minimal port j at which propose was received
6: return j
7: end if
8: if v receives accept on port i then
9: return i

10: end if
11: end for
12: return ⊥
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Figure 12.4: An execution of the matching algorithm. Red edges are proposed
in this round, grey edges have not yet been proposed, and grey dotted lines did
not make it; thick edges are matched.
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• Not very fast if ∆ is large. However, if ∆ is a constant, so is the running
time of the algorithm.

• The assumption that we have a 2-coloring does some initial symmetry
breaking for us. For instance, we already have the best coloring one could
get, and each color is a maximal independent set (as the graph is con-
nected).

• However, we still cannot solve leader election, regardless of how much time
we spend. Based on identifiers, this is possible, so the model is still weaker
than the standard message passing model!

• This feels like cheating. Let’s do something without requiring a 2-coloring!

12.3 3-Approximating Minimum Vertex Cover

We know that we cannot solve minimum vertex cover precisely, but that’s ok –
it’s an NP-complete problem anyway. It’s even NP-hard to approximate within
a constant and, assuming the unique games conjecture, NP-hard to approximate
better than factor 2− o(1). On the other hand, obtaining a 2-approximation is
easy: just output a maximal matching!

. . . except that we can’t do that. We cannot compute any non-trivial match-
ing. We first need to transform the graph into something we can handle: a
2-colored graph. Once this goal is set, it is actually not too hard to achieve.

• Replace each node by 2 copies, a white copy and a black copy.

• For an edge {v, w}, connect the white copy of v to the black copy of w
and the black copy of v to the white copy of w.

• The new edges inherit their port numbers from the originals.

Lemma 12.3. For a port-numbered graph G = (V,E, {pv}v∈V ), denote the
(port-numbered) graph constructed above by G′. Then the constructed port num-
bering on G′ is feasible. Moreover, G′ is 2-colored (by nodes being white and
black), has the same maximum degree as G, and the port-numbering model on
G′ can be simulated on G without overhead in round complexity.

Proof. All properties are straightforward. Neighbors in G′ have different colors
by construction, the new nodes have the same degree as the originals, inheriting
port numbers results in port numbers 1, . . . , δv for a node of degree δv, and
each node can simulate both of its copies, where communication on new edges
is performed via the original edges.

Theorem 12.4. A 4-approximation to vertex cover can be computed in O(∆)
rounds of the port numbering model.

Proof. We construct G′ and simulate Algorithm 27. The algorithm can be
made to terminate without knowledge of ∆ by non-matched white nodes termi-
nating once they proposed on all their ports, letting their neighbors know, and
non-matched black nodes terminating once all their neighbors terminated. By
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Figure 12.5: The construction of G′ from G.

Theorem 12.2, Lemma 12.3, and this modification, the algorithm terminates in
O(∆) rounds.

If a black or white copy of a node is incident to a matching edge in G′,
the node is in the vertex cover, otherwise it is not. Recall that the endpoints
of a maximal matching form a 2-approximate vertex cover (as shown in Corol-
lary 5.17). Because any vertex cover of G induces a vertex cover of G′ of at
most twice the size, the returned set has at most 4 times the size of a minimum
vertex cover. As all edges in G′ have at least one incident node in the vertex
cover of G′, the same is true in the computed node set of G, i.e., we did indeed
find a vertex cover of G.

If we look a bit closer, there’s another surprise. The result is, in fact, a
3-approximation!

Corollary 12.5. The algorithm from Theorem 12.4 returns a vertex cover that
is at most factor 3 larger than the optimum.
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Figure 12.6: The computed matching in G′ and the corresponding edges in G.

Proof. Consider the originals of the matching edges in the maximal matching
of G′. These induce a subgraph of G of maximum degree 2, which is a disjoint
union of paths and cycles of k ≥ 2 nodes. To cover all edges of G, one needs to
cover in particular these edges, and they can only be covered by the nodes on
the respective paths and cycles. To cover a cycle of k nodes, at least k/2 of its
nodes must be selected. To cover a path of k nodes, at least bk/2c of its nodes
must be selected. As we choose all these nodes (and no others), the size of the
computed vertex cover is at most factor 3 = max2≤k∈N{k/bk/2c} larger than
the optimum.

What to take Home

• Even in very restricted models, some things can be done efficiently.
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(b)(a)

Figure 12.7: Examples for minimum vertex covers of cycles (a) and paths (b).

• Frequently, the resulting algorithms are very clean and simple, making
them easy to implement.

• Such models tend to highlight what makes stronger models stronger. This
can be useful in finding lower bounds or better algorithms, or just in
pointing out that, e.g., one very important use of having node identifiers
is the ability to execute Cole-Vishkin.

• Basic concepts such as simulation and indistinguishability are the name
of the game also here.

Bibliographic Notes

The presented vertex cover algorithm is due to Polishchuk and Suomela [PS09].
Using Cole-Vishkin on edge weights, it is possible to obtain a 2-approximation
of the weighted version of the problem [ÅS10]. On the negative side, one cannot
hope for anything better than a 2-approximation in the port-numbering model:
in an even cycle an optimum solution chooses half of the nodes, but a sym-
metric port numbering causes all nodes to be selected. Even if identifiers and
randomization are available, a classic construction shows that any distributed
algorithm finding a reasonable approximation requires Ω(

√
log n) and Ω(log ∆)

rounds.3 Recently, it has been shown that there is some constant δ > 0 so that
finding a (1 + δ)-approximation cannot be done in o(log n) rounds [GS12], even
if the graph is 2-colored and has degree 3! Note that this is an unconditional

3This is the same construction. Choosing the maximum feasible value of ∆ for a given
value of n yields the Ω(

√
logn) bound.
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lower bound. It does not depend on P 6=NP or similar assumptions, but arises
from locality issues.

All figures but Figure 12.1 are courtesy of Jukka Suomela and under a cre-
ative commons license.4 Large parts of today’s lecture are my own narrative of
a part of Jukka’s course on deterministic distributed algorithms. A reference
to his survey of local algorithms [Suo13] is also in order; a local algorithm is a
distributed algorithm whose running time is bounded by a constant.
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Appendix A

Notation and Preliminaries

This appendix sums up important notation, definitions, and key lemmas that
are not the main focus of the lecture.

A.1 Numbers and Sets

In this lecture, zero is not a natural number: 0 /∈ N; we just write N0 := N∪{0}
whenever we need it. Z denotes the integers, Q the rational numbers, and R
the real numbers. We use R+ = {x ∈ R | x > 0} and R+

0 = {x ∈ R | x ≥ 0},
with similar notation for Z and Q.

Rounding down x ∈ R is denoted by bxc := max{z ∈ Z | z ≤ x} and
rounding up by dxe := min{z ∈ Z | z ≥ x}.

For n ∈ N0, we define [n] := {0, . . . , n − 1}, and for a set M and k ∈ N0,(
M
k

)
:= {N ⊆ M | |N | = k} is the set of all subsets of M that contain exactly

k elements.

A.2 Graphs

A finite set of vertices, also referred to as nodes V together with edges E ⊆
(
V
2

)

defines a graph G = (V,E). Unless specified otherwise, G has n = |V | vertices
and m = |E| edges. Since edges are sets of exactly two vertices e = {v, w} ⊆
V ,1 our graphs have no loops, are undirected and have no parallel edges. This
definition does not include edge weights, either. All of this together is equivalent
of saying that we deal with simple graphs.

If e = {v, w} ∈ E, the vertices v and w are adjacent, and e is incident to v
and w, furthermore, e′ ∈ E is adjacent to e if e∩ e′ 6= ∅. The neighborhood of v
is

Nv := {w ∈ V | {v, w} ∈ E}, (A.1)

i.e., the set of vertices adjacent to v. The degree of v is

δv := |Nv|, (A.2)

1Still, we occasionally write edges as tuples: e = (v, w).

163
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the size of v’s neighborhood. We denote by

∆ := max
v∈V

δv (A.3)

the maximum degree in G.
A v1-vd-path p is a set of edges p = {{v1, v2}, {v2, v3}, . . . , {vd−1, vd}} such

that |{e ∈ p | v ∈ e}| ≤ 2 for all v ∈ V . p has |p| hops, and we call p a cycle if
it visits all of its nodes exactly twice. The distance between v, w ∈ V is

dist(v, w) := min{|p| | p is a v-w-path}, (A.4)

which gives rise to the diameter D of G,

D := max
v,w∈V

dist(v, w), (A.5)

the maximum pairwise distance between nodes.

A.2.1 Weighted Graphs

A weighted graph is a graph (V,E) together with weighting function W : E → R;
we write G = (V,E,W ). An edge e ∈ E has weight W (e), and an edge set
E′ ⊆ E has weight W (E′) :=

∑
e∈E′W (e). Observe that since paths are sets of

edges, this definition captures the weight of a path p: W (p) =
∑
e∈pW (e).

In weighted graphs, distances are more complex than in simple graphs, be-
cause there are several measures: the smallest weight of a path, and the number
of hops. The distance between v, w ∈ V is the weight of a shortest v-w-path

dist(v, w) := min{W (p) | p is a v-w-path}, (A.6)

and the hop distance is the smallest number of hops required to attain a shortest
v-w-path is

hop(v, w) := min{|p| | p is v-w-path ∧W (p) = dist(v, w)}. (A.7)

Note that shortest paths can be very long in terms of hops, even if there is some
(non-shortest) path with few hops: Even if {v, w} ∈ E, hop(v, w) = n−1 is still
possible (think about a circle with one heavy and n− 1 light edges).

A.2.2 Trees and Forests

A forest is a cycle-free graph, and a tree is a connected forest. Trees have n− 1
edges and a unique path between any pair of vertices. The tree T = (V,E) is
rooted if it has a designated root node r ∈ V ; in which case it has a depth d

d := max
v∈V

dist(r, v), (A.8)

which is the maximum distance from any node to the root node.

A.2.3 Cuts

Given a graph G = (V,E) and distinct vertices s, t ∈ V , an s-t cut is a non-
trivial partition of the vertices Vs ∪̇ Vt = V , such that s ∈ Vs and t ∈ Vt. The
weight of the cut is |E ∩ (Vs × Vt)|, i.e., the number of the edges connecting a
vertex in Vs with to a vertex in Vt (in a weighted graph, the weight of the cut
is the sum of those edges’ weights). Alternatively, cuts can be represented as
only the set Vs (Vt = V \ Vs), or as the edge set E ∩ (Vs × Vt).
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A.3 Logarithms and Exponentiation

Logarithms are base 2 logarithms, unless specified otherwise. Iterated exponen-
tiation is denoted by ab, which is the a-fold (a ∈ N0) exponentiation of b:

ab :=

{
1 if a = 0

b(
a−1b) otherwise.

(A.9)

This is commonly referred to as power tower a2 = 22·
··
2

. log∗b x answers the
inverse question of how often the logarithm has to be iteratively applied to end
up with a result of at most 1:

log∗b x :=

{
0 if x ≤ 1

1 + log∗b(logb x) otherwise.
(A.10)

A simple inductive check confirms log∗b
ab = a.

A.4 Probability Theory

We use some basic tools from probability theory in order to analyze randomized
algorithms. The first of these tools states that the probability that at least one
of k events occur is bounded by the sum of the individual events’ probabilities.

Theorem A.1 (Union Bound). Let Ei, i ∈ [k] be events. Then

P


 ⋃

i∈[k]

Ei


 ≤

∑

i∈[k]

pi, (A.11)

which is tight if E[k] are disjoint.

Another key property is that expectation is compatible with summation:

Theorem A.2 (Linearity of Expectation). Let Xi for i ∈ [k] denote random
variables. Then

E


∑

i∈[k]

Xi


 =

∑

i∈[k]

E[Xi]. (A.12)

Markov’s inequality and Chernoff’s bound both bound the probability that
a random variable attains a very different value from its expected value. The
preconditions for Markov’s inequality are much weaker than those for Chernoff’s
bound, but the latter is stronger than the former.

Theorem A.3 (Markov’s Inequality). Let X be a positive random variable (in
fact, P [X ≥ 0] = 1 and P [X = 0] < 1 suffice). Then for any K > 1,

P [X ≥ KE[X]] ≤ 1

K
. (A.13)
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Theorem A.4 (Chernoff’s Bound). Let X =
∑
i∈[k]Xi be the sum of k indepen-

dent Bernoulli variables (i.e., 0-1-variables). Then we have, for any 0 < δ ≤ 1,

P [X ≥ (1 + δ)E[X]] ≤ e−δ2E[X]/3, and (A.14)

P [X ≤ (1− δ)E[X]] ≤ e−δ2E[X]/2. (A.15)

The concept of something happening with high probability (w.h.p.), i.e., with
probability at least 1− n−c, is the following. First, the larger your input n, the
larger the probability that the event occurs. Second, c can be picked at will,
meaning that the probabilities can be picked as close to 1 as desired. This is
useful for randomized algorithms. Suppose you have a randomized algorithm
A that succeeds with probability p. If you want to use A several times (e.g.
to construct a new algorithm) the probability that all of these calls succeed
decreases. But if each call of A succeeds w.h.p. and there only are polynomially
many of them, you can use the union bound and pick a large enough c to show
that all calls of A succeed w.h.p. as well.

Definition A.5 (With high Probability). The event E occurs with high prob-
ability (w.h.p.) if P [E ] ≥ 1− 1/nc for any fixed choice of 1 ≤ c ∈ R. Note that
c typically is considered a constant in terms of the O-notation.

A.5 Asymptotic Notation

We require asymptotic notation to reason about the complexity of algorithms.
This section is adapted from Chapter 3 of Cormen et al. [CLR90]. Let f, g : N0 →
R be functions.

A.5.1 Definitions

O(g(n)) is the set containing all functions f that are bounded from above by
cg(n) for some constant c > 0 and for all sufficiently large n, i.e. f(n) is asymp-
totically bounded from above by g(n).

O(g(n)) := {f(n) | ∃c ∈ R+, n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ f(n) ≤ cg(n)}
(A.16)

The counterpart of O(g(n)) is Ω(g(n)), the set of functions asymptotically
bounded from below by g(n), again up to a positive scalar and for sufficiently
large n:

Ω(g(n)) := {f(n) | ∃c ∈ R+, n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ cg(n) ≤ f(n)}
(A.17)

If f(n) is bounded from below by c1g(n) and from above by c2g(n) for positive
scalars c1 and c2 and sufficiently large n, it belongs to the set Θ(g(n)); in this
case g(n) is an asymptotically tight bound for f(n). It is easy to check that
Θ(g(n)) is the intersection of O(g(n)) and Ω(g(n)).

Θ(g(n)) := {f(n) | ∃c1, c2 ∈ R+, n0 ∈ N0 : ∀n ≥ n0 :

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)} (A.18)

f(n) ∈ Θ(g(n)) ⇔ f ∈ (O(g(n)) ∩ Ω(g(n))) (A.19)
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For example, n ∈ O(n2) but n /∈ Ω(n2) and thus n /∈ Θ(n2).2 But 3n2−n+ 5 ∈
O(n2), 3n2 − n + 5 ∈ Ω(n2), and thus 3n2 − n + 5 ∈ Θ(n2) for c1 = 1, c2 = 3,
and n0 = 4.

In order to express that an asymptotic bound is not tight, we require o(g(n))
and ω(g(n)). f(n) ∈ o(g(n)) means that for any positive constant c, f(n) is
strictly smaller than cg(n) for sufficiently large n.

o(g(n)) := {f(n) | ∀c ∈ R+ : ∃n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ f(n) < cg(n)} (A.20)

As an example, consider 1
n . For arbitrary c ∈ R+, 1

n < c we have that for all
n ≥ 1

c + 1, so 1
n ∈ o(1). A similar concept exists for lower bounds that are not

asymptotically tight; f(n) ∈ ω(g(n)) if for any positive scalar c, cg(n) < f(n)
as soon as n is large enough.

ω(g(n)) := {f(n) | ∀c ∈ R+ : ∃n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ cg(n) < f(n)} (A.21)

f(n) ∈ ω(g(n)) ⇔ g(n) ∈ o(f(n)) (A.22)

A.5.2 Properties

We list some useful properties of asymptotic notation, all taken from Chap-
ter 3 of Cormen et al. [CLR90]. The statements in this subsection hold for all
f, g, h : N0 → R.

Transitivity

f(n) ∈ O(g(n)) ∧ g(n) ∈ O(h(n)) ⇒ f(n) ∈ O(h(n)), (A.23)

f(n) ∈ Ω(g(n)) ∧ g(n) ∈ Ω(h(n)) ⇒ f(n) ∈ Ω(h(n)), (A.24)

f(n) ∈ Θ(g(n)) ∧ g(n) ∈ Θ(h(n)) ⇒ f(n) ∈ Θ(h(n)), (A.25)

f(n) ∈ o(g(n)) ∧ g(n) ∈ o(h(n)) ⇒ f(n) ∈ o(h(n)), and (A.26)

f(n) ∈ ω(g(n)) ∧ g(n) ∈ ω(h(n)) ⇒ f(n) ∈ ω(h(n)). (A.27)

Reflexivity

f(n) ∈ O(f(n)), (A.28)

f(n) ∈ Ω(f(n)), and (A.29)

f(n) ∈ Θ(f(n)). (A.30)

Symmetry

f(n) ∈ Θ(g(n)) ⇔ g(n) ∈ Θ(f(n)). (A.31)

Transpose Symmetry

f(n) ∈ O(g(n)) ⇔ g(n) ∈ Ω(f(n)), and (A.32)

f(n) ∈ o(g(n)) ⇔ g(n) ∈ ω(f(n)). (A.33)

2We write f(n) ∈ O(g(n)) unlike some authors who, by abuse of notation, write f(n) =
O(g(n)). f(n) ∈ O(g(n)) emphasizes that we are dealing with sets of functions.
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A.6 Approximation

We require a precise definition of approximation algorithms in order to specify
the (im)possibility of such solutions. Let A be an algorithm, G the input, f the
function to be approximated, A(G) the cost or value of the valid approximation,
and α the approximation degree.

If for all inputs G,
f(G) ≤ A(G) ≤ α · f(G) , (A.34)

then we call A to be an α-approximation algorithm.
We will apply this in the context of distances, diameters, arboricities, etc.
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