Exercise 5: Size matters!

Task 1: As small as possible, please?

A forest decomposition of a graph G = (V, E) is a decomposition of G into directed forests $F_1 = (V, E_1), \ldots, F_f = (V, E_f)$, such that (i) each $e \in E$ occurs in one and only one E_i , and (ii) every $v \in V$ knows, for every forest F_i , its parent node w.r.t. F_i if applicable.

Consider the following minimum dominating set (MDS) approximation algorithm, where P(v) is the set of parents of v. Let M be an MDS of G.

Algorithm 1 MDS approximation algorithm based on a forest decomposition.

1: $H := \left(V, \left\{ \{v, w\} \in {V \choose 2} \mid P(v) \cap P(w) \neq \emptyset \right\} \right)$ 2: compute an MIS *I* of *H* 3: $D := \bigcup_{v \in I} P(v)$ 4: add all $v \in V \setminus D$ without a neighbor in *D* to *D* 5: return *D*

- a) Show that Algorithm 1 can be implemented in the synchronous message passing model with running time $\mathcal{O}(\log n)$ w.h.p.!
- b) Denote by $V_C \subseteq V$ the set of nodes that are in M or have a child in M. Show that $|V_C| \leq (f+1)|M|!$
- c) Denote by $V_P \subseteq V$ the set of nodes that have some parent in M. Show that $|I \cap V_P| \leq |M|!$
- d) Prove that after Line 3 of the Algorithm 1, at most (f+1)|M| nodes are not covered by D.
- e) Conclude that Algorithm 1 computes a dominating set that is at most by factor $\mathcal{O}(f^2)$ larger than the optimum!

Hint: $V = V_C \cup V_P$.

f)* Show that even if we restrict message size to $\mathcal{O}(\log n)$ bits, the algorithm can be implemented with running time $\mathcal{O}(\log n)$ w.h.p.

Task 2: Lots of Wood

Denote by A(G) the *arboricity* of G = (V, E), i.e., the minimum number of forests into which E can be decomposed. Our goal in this exercise is to decompose G into $f \in \mathcal{O}(A)$ forests.

Algor	ithm	2	Forest	decomposition	n, A	(G)) is	known.	
-------	------	---	--------	---------------	------	-----	------	--------	--

1: while $V \neq \emptyset$ do 2: for all $v \in V$ with $\delta_v \leq 4A(G)$ in parallel do 3: v assigns its incident edges to different forests $F_1, \ldots, F_{4A(G)}^{-1}$ 4: delete v (and its incident edges) from G5: end for 6: end while 7: return the computed forests (each node knows its parent in $F_1, \ldots, F_{4A(G)})$

¹Ties where an edge would be deleted by 2 nodes are broken by node id.

a) Show that in each iteration of the WHILE loop, at least half of the remaining nodes are deleted!

Hint: Assume that this is false and bound the number of remaining edges from below. Compare the result to the maximum number of edges in A(G) forests.

- b) Conclude that the algorithm computes a decomposition of G into at most 4A(G) forests in $\mathcal{O}(\log n)$ rounds!
- c) Change the algorithm so that it does not require knowledge of A(G), but instead relies on an upper bound $N \in n^{\mathcal{O}(1)}$ on n! You may use up to 8A(G) forests and increase the running time of the algorithm by a factor of $\mathcal{O}(\log A(G))!^2$
- d) Conclude that in graphs of arboricity A, a factor- $\mathcal{O}(A^2)$ approximation to MDS³ can be found in $\mathcal{O}(\log n \log A)$ rounds w.h.p., provided that an upper bound $N \in n^{\mathcal{O}(1)}$ on n is known!
- e)* Can you do it in $\mathcal{O}(\log n)$ rounds if A is unknown, but an upper bound $N \in n^{\mathcal{O}(1)}$ on n is known?

Task 3*: Exponential Enhancement

- a) Why is Chernoff's bound called Chernoff's bound?
- b) Show that for independent variables $X_i, i \in I, \mathbb{E}\left[\prod_{i \in I} X_i\right] = \prod[\mathbb{E}[X_i]].$
- c) Let $X_i, i \in I$, be random variables, and define $X = \sum_{i \in I} X_i$. Use Markov's bound to show that for arbitrary $t, \delta > 0$,

$$P[X \ge (1+\delta)\mathbb{E}[X]] \le \frac{\mathbb{E}\left[\prod_{i \in I} e^{tX_i}\right]}{e^{t(1+\delta)\mathbb{E}[X]}}.$$

d) Use b) and c) to infer that if the X_i are independent Bernoulli variables, then

$$P[X \ge (1+\delta)\mathbb{E}[X]] \le \frac{e^{(e^t-1)\mathbb{E}[X]}}{e^{t(1+\delta)\mathbb{E}[X]}}.$$

- e) Plug in $t := \ln(1 + \delta)$. You obtain the upper tail bound; choosing $\delta \in (0, 1)$ and $t = 1 \delta$ yields the lower tail bound.⁴ The bounds derived here are stronger than those in the lecture, but more unwieldy. For most applications, the simpler versions suffice.
- f) Enlarge the knowledge of the exercise group by reporting your findings!

²Forest decompositions into f forests are particularly interesting if $f \ge A(G)$ is small, hence usually $\log A(G)$ is very small!

³Read: "a dominating set at most a constant factor larger than an MDS."

 $^{^4\}mathrm{Note}$ that one has to introduce a minus sign in the exponents in b) to still be able to apply Markov's inequality.