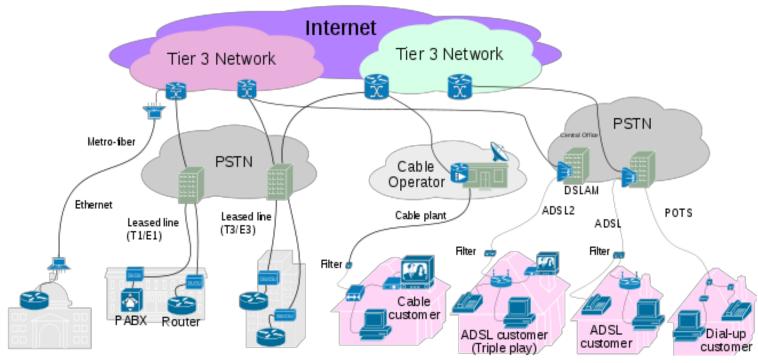


Ideen und Konzepte der Informatik


Das Internet

Antonios Antoniadis

(Foliensatz von Kurt Mehlhorn)

Was passiert alles,

- wenn ich eine Webseite aufrufe?
- wenn ich eine E-Mail abschicke?

Überblick

- Datenübertragung
 - zwischen zwei Rechnern
 - zwischen Rechnern in einem Netzwerk
 - zwischen Netzen im Internet
- Aufbau von Webseiten
- Darstellung im Webbrowser
- E-Mail

Datenübertragung

- Bits werden als Spannung am Kabel übertragen, z. B.
 + 5V = 1, -5V = 0
- ... Oder per WLAN
- ... Oder per Satellit
- ... Oder per Brieftaube
- Unterschiede müssen für den Benutzer unsichtbar sein!

Konstruieren in Schichten

- Eine Schicht (Layer) bietet Dienste an höhere Schichten an und nutzt die Dienste der darunterliegenden Schicht zur Realisierung. Realisierung ist nach oben hin verborgen.
- Unterste Schicht setzt auf der physikalischen Realität auf.
- Klempner nutzt Rohre, Zangen, Bohrmaschine und bietet Installationsdienst für Häuser. Architekt nutzt Installationsdienst und bietet Bäder. Normen erleichtern die Zusammenarbeit

Schichten

- Link Layer
 - Abstrahiert von der Technik im lokalen Netz, von der Physik zum Bit
- Internet Layer
 - Verbindet das lokale Netz mit dem Netzanbieter, Transport ohne Garantien, vom Bit zu Paketzustellung
- Transport Layer
 - Fehlertolerante Datenübertragung
- Data Layer
 - Kommunikationsprotokoll zwischen Browser und Server, Dienste für den Endnutzer

Ethernet, ein populäres Netzwerk

- Kabelgebunden
- +5V = 1, -5V = 0
- 100 1000 Millionen Bits pro Sekunde

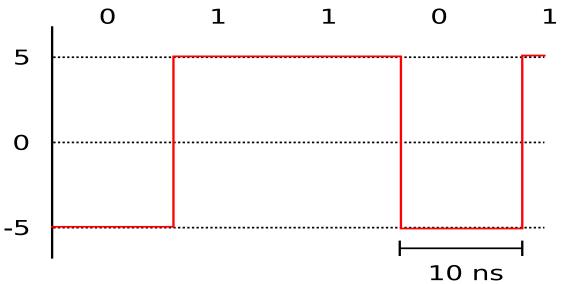


Abbildung ist stark idealisiert

Probleme

Uhren:

- Wann messe ich die Spannung?
- Welche Uhrenqualität braucht man?
- 1000000 Einsen = 10^{-2} Sekunden 5V, nicht 10^{-2} Sekunden + 10 ns

Störungen

– Sollte das eine 1 sein, oder hat jemand den Föhn angemacht?

Selbstsynchronisierung billige Uhren tun's auch

- Uhren mit Nanosekundenpräzision sind teuer.
- Lösung: Nie zu lange 1 oder 0 senden, z. B.

Manchester-Kodierung:

- Kodiere 0 als 01 und 1 als 10
- Also 0001101 als 01010110100110
- In der kodierten Folge nie mehr als 2 gleiche Symbole hintereinander; Unterscheidung von 1 und 2 Takten reicht; selbstsynchronisierend

Störungen

- Übertragungsfehler passieren ständig
 - 1 Fehler pro 10 Millionen Bits = 10 Fehler/s
- Meistens: Viele Bits hintereinander falsch
- Bits werden in Pakete zusammengefasst
- Jedes Paket bekommt eine Prüfsumme; siehe nächste Folie
- Bei Fehlern im Paket: Neuübertragung

Prüfsummen

- Einfachste Prüfsumme = Quersumme
- besser (Zahlendreher): gewichtete QS

Beispiel: Prüfziffer bei der ISBN-13

9+21+8+9+1+6+7+9+2+9+2+0=83

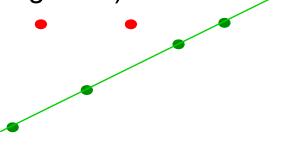
Fehlerkorrigierende Kodes (Reed-Solomon)

- Ich will k Zahlen senden, z. B. k = 128; ich sende Zahlen statt Bits, weil das die Mathematik einfacher macht.
- Ich sende k + 2d Zahlen.
- Bis zu *d* Zahlen dürfen bei der Übertragung korrumpiert werden. Trotzdem kann der Empfänger die *k* Zahlen rekonstruieren.
- Ich zeige das Prinzip für k = 2 und d = 2. Es gibt auch noch Folien für k = 3 und d = 2 zum Selbststudium.

Mathematischer Hintergrund (k = 2)

- Eine Gerade ist durch zwei Punkte bestimmt.
- Durch zwei beliebige Punkte geht eine Gerade.
- Stimmen zwei Geraden an zwei Punkten überein, so sind sie gleich.
- Zwei verschiedene Gerade schneiden sich höchstens einmal.

Fehlerkorrigierende Kodes (Reed-Solomon)


- Ich will 1 2 senden.
- Bestimme die eindeutige Gerade p mit p(1) = 1, p(2) = 2.
- p(x) = x.
- Sende 1 2 p(3) = 3, p(4) = 4, p(5) = 5, p(6) = 6.
- Bei der Übertragung passieren 2 Fehler. Der Empfänger erhält

1 6 3 6 5 6

Fehlerkorrigierende Kodes (Reed-Solomon)

- Der Empfänger erhält 163656. Für jedes Paar von Werten bestimmt er die Gerade. Es gibt 15 = 5 · 6/2 Paare.
- p(1) = 1, $p(3) = 3 \rightarrow \text{richtige Gerade}$
- p(1) = 1, $p(4) = 6 \rightarrow$ falsche Gerade
- Auf der richtigen Gerade liegen 4 (grüne) Punkte. Auf einer falschen Gerade liegen höchstens 3 Punkte (zwei rote und ein grüner).

Also wird die richtige Gerade öfter gefunden als jede falsche.

Mehrheitsentscheid

Ein Geheimnis teilen

- Möchten Bob und Alice ein Geheimnis geben, so dass es einer allein nicht rekonstruieren kann.
- Sei g das Geheimnis. Wähle eine zufällige Zahl a und gib Bob die Zahl g – a und Alice die Zahl g + a.
- Zusammen können sie g bestimmen, da (g a + g + a)/2
 = g.
- Einer allein weiß gar nichts: g + a ist eine zufällige Zahl.

Mathematischer Hintergrund (k = 3)

- Ein Polynom vom Grad < 3 ist durch seine Werte an drei Stellen eindeutig bestimmt.
- Stimmen zwei Polynome vom Grad < 3 an drei Stellen überein, so sind sie gleich.
- Für drei Stellen darf man die Werte beliebig vorgeben: Interpolationspolynom.
- Zwei verschiedene Polynome vom Grad < 3 schneiden sich höchstens zweimal.

Mathematischer Hintergrund (k = 3)

- Ein Polynom vom Grad < 3 ist durch seine Werte an drei Stellen eindeutig bestimmt.
- $p(x) = a_2 x^2 + a_1 x + a_0$, Polynom vom Grad < 3; a_2, a_1, a_0 sind die Koeffizienten.
- $p(5) = 25a_2 + 5a_1 + a_0$
- Falls p(0)=2, p(2)=16, p(-1)=4, dann $a_2=3$, $a_1=1$, $a_0=2$.

Fehlerkorrigierende Kodes (Reed-Solomon)

- Ich will 1 1 3 senden.
- Bestimme das eindeutige Polynom vom Grad < 3 mit p(1) = 1, p(2) = 1, p(3) = 3.
- $p(x) = x^2 3x + 3$
- Sende 1 1 3 p(4) = 7, p(5) = 13, p(6) = 21, p(7) = 31.
- Bei der Übertragung passieren 2 Fehler. Der Empfänger erhält

4 7 3 7 13 21 31.

Fehlerkorrigierende Kodes (Reed-Solomon)

- Der Empfänger erhält 4 7 3 7 13 19 31. Für jedes Tripel von Werten interpoliert er. Es gibt 35 Tripel.
- p(3) = 3, p(5) = 13, $p(7) = 31 \rightarrow \text{richtiges Polynom}$
- p(1) = 4, p(5) = 13, $p(7) = 31 \rightarrow falsches Polynom$
- Auf dem richtigen Polynom liegen mindestens 5 Punkte (mindestens k + d). Auf einem falschen Polynom liegen höchstens 4 Punkte (zwei rote und zwei grüne, allgemein k – 1 + d)
 Daher wird das richtige Polynom öfter gefunden als jedes falsche.

Mehrheitsentscheid.

Ein Geheimnis teilen

- Möchte n Personen ein Geheimnis geben, so dass es je k rekonstruieren können, aber k – 1 es nicht können.
- Sei g das Geheimnis. Wähle zufällige Zahlen a₁ bis a_{k-1} und bestimme das eindeutige Polynom p vom Grad < k mit p(0) = g und p(i) = a₁ für 1 ≤ i ≤ k 1.
- Gib der i-ten Person das Paar (i, p(i)), 1 ≤ i ≤ n.
- Anwendung: g ist ein Schlüssel. Je k Teilnehmer können schließen, aber keine k – 1 können es.

MAC (media access control) Adressen

- Im Ethernet hört jeder alles auf der Leitung.
- Konfliktauflösung
- Jedes Gerät hat eine eindeutige MAC Adresse (von Geburt an).
- Datenpakete haben einen Adresspräfix.
 Prozessor holt sich die für ihn bestimmten Nachrichten von der Leitung.

Internet Protocol (IP)

- Bietet Paket-Kommunikation zwischen Netzwerken
- Egal ob die Technik gleich ist oder nicht (Ethernet vs. WLAN).
- Best Effort, keine Garantien:
 - Pakete gehen verloren
 - Pakete kommen doppelt an
 - Reihenfolge kann sich ändern

IP Adressen

- Wie Telefonnummern f
 ür Computer
- 32 Bits für die Adresse (inzwischen 128 Bits)
 - Vier Zahlen zwischen 0 und 255
 - Zum Beispiel 139.19.14.56 = MPI-INF
 - Regionales Clustering
 - Hat man nicht von Geburt an (wie bei der MAC-Adresse), sondern bekommt man zugewiesen
- Ungefähr 4 Milliarden mögliche Adressen

IP Routing

Jeder Router (Verteiler) hat eine Tabelle

Ziel	Link	Distanz
192.168.*.*	1	15
192.169.*.*	2	5
192.170.*.*	1	12

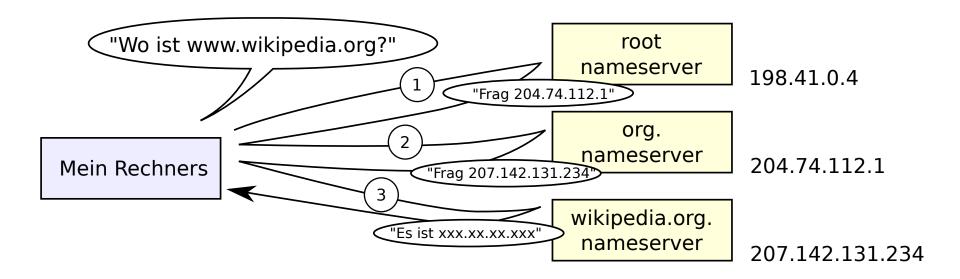
- Ist Ziel in meinem Netz? Direkt an MAC.
- Sonst in der Tabelle nachschlagen und auf entsprechendem Ausgabelink weiterleiten.

Routing Information Protocol

- Das Netz ändert sich ständig, z. B. Reparaturen oder neue Hardware.
- Router berechnen kontinuierlich kürzeste Pfade im Netz (kurz = wenige Hops).
- Alle 30 Sekunden: Tabelle an alle Nachbarn weiterreichen.
- Update: Wenn mein Nachbar einen deutlich besseren Weg zu einem Ziel kennt, schicke ich die entsprechenden Pakete in Zukunft an ihn.

Transmission Control Protocol (TCP)

- Zuverlässige Datenübertragung zwischen Rechnern
 - Pakete nummerieren → Reihenfolge
 - Pakete mit Rückschein
 - Bleiben Bestätigungen aus → Neu senden



DNS

- Telefonbuch für IP Adressen
 - Übersetzt www.google.de in 173.194.35.151
- "Nameserver" speichern Tabellen
 - Tabelle enthält entweder Paar (Name, IP).
 - Oder Verweis auf Nameserver (mit .de gehst du besser zur Telekom).
 - Lokales Telefonbuch versus Auskunft.
- Jeder Computer hat eine Liste mit Nameservern.

Nachschlagen von Wikipedia.org

Man geht zuerst zum Root-Nameserver. Der verweist einen weiter.

Zwischenstand

- Ethernet und WLAN, um im lokalen Netzwerk zu reden.
- IP, um zwischen Netzwerken Pakete zu schicken.
- TCP, um zuverlässig über IP zu reden.
- DNS, um IP Adressen nachzuschlagen.

E-Mail

- Post an antonios.antoniadis@mpi-inf.mpg.de schicken.
- Mailprogramm fragt Nameserver nach mpi-inf.mpg.de und schickt die E-Mail an mpi-inf.mpg.de.
- mpi-inf.mpg.de speichert alle E-Mails an antonios.antoniadis in dessen Postfach.
- Ich hole sie von dort ab.

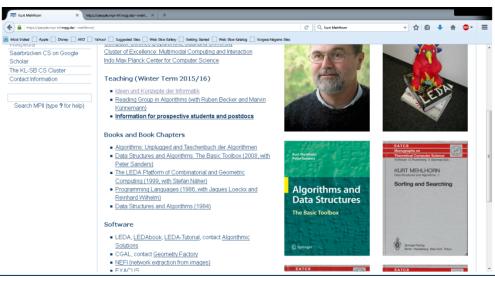
Hypertext Transfer Protocol, HTTP

- HTTP ist ein Protokoll zur Übertragung von Daten auf der Anwendungsschicht über ein Rechnernetz.
- Es wird hauptsächlich eingesetzt, um Webseiten (Hypertext-Dokumente) aus dem World Wide Web (WWW) in einen Webbrowser zu laden.
- Webseiten sind in HTML kodiert.

Hypertext (HTML)

- "Sprache", in der Webseiten beschrieben sind.
- Der Text legt die Struktur der Webseite fest (Überschriften, Gliederung in Abschnitte, Tabellen, ...) aber nur die ungefähre Darstellung.
- Webseiten enthalten Text, Bilder, Verweise, klickbare Objekte, ...
- Browser berechnet Details der Darstellung, etwa Zeilenumbrüche,

Ausschnitt aus Prof. Mehlhorns Webseite


```
<H2><A>Books and Book Chapters</A></H2>
```

<UL type=circle>

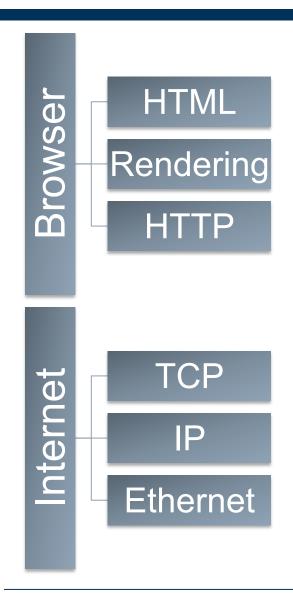
Algorithms: Unplugged and Taschenbuch der
Algorithmen

Data Structures and Algorithms: The Basic Toolbox (2008, with Peter Sanders)

The LEDA Platform of Combinatorial and Geometric
Computing (1999, with Stefan Näher)

Dynamische Elemente

- Mausbewegungen, Klicks etc. werden vom Betriebssystem verwaltet
- Browser wird über "Events" benachrichtigt
- Darstellung kann sich dynamisch ändern
 - Seite muss (effizient!) neu gezeichnet werden
- Klicken löst Aktionen aus
 - Zum Beispiel werden Videos abgespielt



HTTPS versus HTTP

- http: unverschlüsselte Übertragung. Problematisch bei offenen WLANs
- S = secure
- Bietet
 - Authentifizierung der Partner
 - Verschlüsselte Kommunikation
- Empfehlung: HTTPS Everywhere benutzen

Zusammenfassung

