
Antonios Antoniadis and Marvin Künnemann Winter 2018/19

Exercises for Randomized and Approximation Algorithms
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter18/rand-apx-algo/

Project: Average-Case Analysis of Orthogonal Vectors

In lieu of lecture and exercise session on January 8th and 10th
Discussion takes place on January 24th, 2018

This project asks you to ponder about research-level questions and involves a certain amount of
study on your own. Some questions may be challenging, but don’t despair: We don’t expect you
to solve all questions. Rather, we invite you to attack interesting questions on your own, giving
you the opportunity to earn bonus points, and more importantly, to impress us ;).

To obtain bonus points, please bring a write-up of your (partial) answers on January 24th and
participate in the discussion.

The following problem is a fundamental polynomial-time problem.

Orthogonal Vectors problem (OV): Given are two sets of n d-dimensional 0-1-vectors, i.e.,
A = {a1, . . . , an}, B = {b1, . . . , bn} ⊆ {0, 1}d. The task is to determine whether there exists an
orthogonal pair, i.e., a pair ai ∈ A, bj ∈ B with inner product 0. Note that the inner product∑d

k=1 ai[k] · bj[k] is 0 if and only if for each coordinate k ∈ [d], at least one of ai[k] and bj[k]
is 0.

By checking all pairs, we obtain a simple O(n2d)-time algorithm. Also, there is a simple O(2dn)-
time algorithm (warm-up question: How does it work?). A fundamental open question is
the following: If d = ω(log n), do we need essentially quadratic time in n? More precisely, there
is the hypothesis that no algorithm solves OV in time O(n2−εpoly(d)) for some constant ε > 0.
In this project, we want to show that average instances of OV are simpler, i.e., solvable in time
O(n2−ε) for some ε > 0.1

Exercise 1 (15 Bonus Points) Let p = p(n) be a probability possibly depending on n. We
generate an input randomly by choosing, independently for each i, j ∈ [n], k ∈ [d],

ai[k] =

{
1 with probability p,

0 with probability 1− p,
bj[k] =

{
1 with probability p,

0 with probability 1− p.

a) (Warm-up) What is the expected number of orthogonal pairs?
1Throughout the project, we assume that d = no(1), which means that the input has almost-linear size

O(nd) = n1+o(1).

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter18/rand-apx-algo/


b) (10 Bonus Points) Give as tight as possible upper and lower bounds on the probability
that at least one orthogonal pair exists (this value depends on n, p, d).
Self-study task: Read up on the so called first- and second-moment methods!

c) (5 Bonus Points) Let 0 ≤ q ≤ 1. Consider the problem of choosing p such that the
probability that at least one orthogonal pair exists is exactly q. Fix n and d to some
values, e.g., n = 20, d = 6. Generate a graph that plots your upper and lower bounds
on p following from b) against the true value (that you can compute numerically) for q
ranging from 0 to 1.

Exercise 2 (10 Bonus Points) Let 0 < p < 1 be a fixed constant. We call an OV algorithm an
Average-Case OV Solver if it has the following guarantees: (1) the probability that it correctly
decides whether the given instance has an orthogonal pair is 1 − o(1), and (2) its expected
running time is O(n2−ε) for some constant ε > 0. Here, the probability is taken over the
instances generated randomly (as described in Exercise 1).

a) (Warmup) Show that if d is very large (e.g., d = Ω(log2 n)), we can give an Average-Case
OV Solver running in constant time, since with high probability no orthogonal pair exists.
Give an analogous solver for small d. Try to optimize the bounds on d that you need!

b) (10 Points) Give an Average-Case OV Solver for general d that is as fast as possible.
A possible approach:

Step 1 Compute the expected number of ones of u and v conditioned on u and v being
orthogonal.

Step 2 Show that you only need to regard vectors with sufficiently few ones to decide an
Average-Case OV instance with high probability.


