
Homework 4

Algorithms on Directed Graphs, Winter 2018/9

Due: 23.11.2018 by 16:00

1 Disjoint Paths and k-linkage

In this note we consider two related problems on directed graphs: disjoint
paths, and k-linkage. In the following sections, we describe three reductions
with implications for the computational complexity of disjoint paths and
k-linkage.

Let G = (V (G), E(G)) be a directed graph, and let A,B ⊆ V (G) be
disjoint subsets with |A| = |B| = k. For concreteness we write

A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bk}

We say that (G,A,B) satisfies the disjoint paths property if there exist
k pair-wise vertex disjoint directed paths P1, P2, . . . , Pk such that the first
vertex of each Pi is in A and the last vertex of each Pi is inB. We say that the
paths P1, P2, . . . , Pk form a k-linkage if additionally for each i = 1, 2, . . . , k,
Pi is a path from ai to bi. If such a family of paths exist, we say that (G,A,B)
satisfies the k-linkage property .

2 Reducing Disjoint Paths to Max Flow/Min Cut

We describe a reduction from disjoint paths to the max flow/min cut prob-
lem. Let (G,A,B) be an instance of the disjoint paths problem. We con-
struct the graph G′ as follows. The vertex set V (G′) contains vertices as
follows:

• For each ai ∈ A and bi ∈ B, i ∈ [k], we have ai, bi ∈ V (G′).

• For each v ∈ V (G) \ (A ∪B), there are two vertices v′, v′′ ∈ V (G′).

• There are two additional vertices s, t ∈ V (G′).

The edge set of G′ and edge capacities are constructed as follows:

• For each ai ∈ A, bi ∈ B, we have (s, ai), (bi, t) ∈ E(G′) with c((s, ai)) =
c((bi, t)) = 1.

1



• For each v ∈ V (G) \ (A ∪B), (v′, v′′) ∈ E(G′) with c((v′, v′′)) = 1

• For each (u, v) ∈ E(G) we have

– (u′′, v′) ∈ E(G′) if u, v /∈ A ∪B
– (u, v′) ∈ E(G′) if u ∈ A, v /∈ A ∪B
– (u′′, v) ∈ E(G′) if u /∈ A ∪B, v ∈ B
– (u, v) ∈ E(G′) if u ∈ A, v ∈ B.

The capacities of all edges above are ∞.

There are no other edges in E(G′). In particular, G′ does not contain any
edges of the form (u, a) for a ∈ A, u 6= s, nor does it contain edges of the
form (b, w) for w 6= t.

Exercise 1. Prove that the graph G′ constructed above has max flow/min
cut value of k if and only if (G,A,B) satisfies the disjoint paths property.

Exercise 2. Use the construction above and the max flow/min cut theorem
to prove Menger’s theorem: the size of the minimum vertex cut1 separating
A and B is equal to the number of vertex-disjoint paths between A and B.

3 Reducing 3-SAT to k-linkage

Let x1, x2, . . . , xn be Boolean variables, and let Φ be a 3-CNF formula over
x1, x2, . . . , xn. That is,

Φ = φ1 ∧ φ2 ∧ · · · ∧ φm,

where each φj is of the form

φj = y1j ∨ y2j ∨ y3j

and each y`j is a literal (equal to some xi or its negation ¬xi). The 3-SAT
problem is to determine if there exists an assignment of the xi to true or
false such that Φ evaluates to true—in this case we say that Φ is satisfiable .
3-SAT is one of the classical NP-complete problems.

Given a 3-CNF formula Φ as above, we construct a directed acyclic graph
G = G(Φ) such that G satisfies the k-linkage property if and only if Φ is
satisfiable. We build the graph G as follows.

• For each literal xi, V (G) contains two vertices si, ti along with two
vertex-disjoint paths from si to ti. We label the two paths by Ti and
Fi respectively. Initially Ti and Fi each consists of a single edge from
si to ti, but the edges will be sub-divided as the construction proceeds.

1A vertex cut separating A and B is a set X ⊆ V (G) such that removing the vertices
in X from G disconnects A \ X and B \ X. In particular, the cuts X = A and X = B
separate A and B, so that a min cut has size at most k.
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• For each clause φj in Φ, V (G) contains two vertices uj and wj along
with three vertex-disjoint paths from uj to wj . The paths correspond
to the three literals in φj . For each literal y in φj :

– if y = xi appears as a positive literal in φj , subdivide the path Fi

by adding a new vertex v to this path (between si and ti),

– if y = ¬xi appears as a negative literal in φj , subdivide the path
Ti by adding a new vertex v to this path.

Then add the edges (uj , v) and (v, wj) to E(G) so that they form a
path from uj to wj .

Exercise 3. For the graph G constructed as above, prove that there exists a
k-linkage fromA = {s1, s2, . . . , sn}∪{u1, u2, . . . , um} toB = {t1, t2, . . . , tn}∪
{w1, w2, . . . , wm} (k = n+m) if and only if Φ is satisfiable.

4 Reducing k-linkage for DAGs to Connectivity

Let G be a directed acyclic graph (DAG), and let A,B ⊆ V (G) with A∩B =
∅ and |A| = |B| = k. Without loss of generality, we assume that there are
no edges of the form (u, a) for a ∈ A, nor any edges of the form (b, w) for
b ∈ B.2 We construct a graph G′ from G in the following manner. The
vertex set V (G′) is the the set of k-tuples of pair-wise distinct vertices in G:

V (G′) = {(v1, v2, . . . , vk) | v1, v2, . . . , vk ∈ V (G), i 6= j =⇒ vi 6= vj} .

The edge set E(G′) is defined as follows. Since G is a DAG, for every
v = (v1, v2, . . . , vk) ∈ V (G′), there is some index r such that vr is not
reachable from any of the other vi (i 6= r). That is, there is no directed path
from any vi to vr. For this index r (choosing one arbitrarily if there is more
than one), and each edge (vr, w) ∈ E(G) with w 6= v1, v2, . . . , vn, we add the
edge (v,vr(w)) ∈ E(G′) where vr(w) is v with vr replaced by w:

vr(w) = (v1, v2, . . . , vr−1, w, vr+1, . . . , vk).

We will first show that if G′ contains a directed path P ′ from a =
(a1, a2, . . . , ak) to b = (b1, b2, . . . , bk), then G contains a k-linkage from A
to B. To this end, suppose P ′ consists of vertices

v1(= a),v1, . . . ,v`,v`+1(= b).

From the definition of G′, for each edge (vj ,vj+1) along P ′, there is a unique
index rj such that vj and vj+1 differ only in the entry with index rj . Let
uj and wj denote the rj-th entry of vj and vj+1, respectively. Further, by
the definition of E(G′), we must have (uj , wj) ∈ E(G). If rj = i, we call
(uj , wj) an i-edge.

2No edge of the form (u, a) or (b, w) can appear in any k-linkage, so removing such
edges will not change whether or not G satisfies the k-linkage property.
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Claim. The set of i-edges induced by P ′ forms a path Pi from ai to bi in G.

To see the claim, consider a fixed i, and let consider the i-edges in the
order that they appear in P ′. Consider the first i-edge (uj , wj), and let
(vj ,vj+1) be the corresponding edge in P ′. Since this the first i-edge, the
i-th entry of vj is the same as the i-th entry of v1 = a. Therefore, uj = ai,
so the first i-edge is an edge out of ai: (ai, wj). Similarly, the next i-edge is
an edge from wj to some other vertex. Continuing in this way, i-edges form
a path from ai. Since the final vertex in P ′ is v`+1 = b, the final i-edge in
P ′ must change the i-th entry of the corresponding vj to bi, so that Pi does
indeed terminate at bi.

By the claim, the path P ′ induces k paths P1, P2, . . . , Pk where each
Pi is a path from ai to bi. We now show that the Pi are pair-wise vertex
disjoint, thus forming a k-linkage from A to B. To this end, suppose towards
a contradiction that there exist i 6= j and a vertex w appearing in both Pi

and Pj . Let ui denote the vertex before w in Pi and let uj denote the vertex
before w in Pj . Thus (ui, w) is and i-edge and (uj , w) is a j-edge. Suppose
the edges in P ′ corresponding to (ui, w) and (uj , w) are the ti-th and tj-th
edges respectively. Assume without loss of generality that ti < tj . Let u′j be
the j-th entry of vti—i.e., u′j is the j-th entry of v when the i-edge (ui, w)
appears in P ′.

Observe that j-edges induced by the sub-path vti ,vti+1, . . . ,vtj of P ′

form a path from u′j to uj (and then to w). Thus, w is reachable from u′j
in G. Therefore (by the definition of G′) the i-th entry of vtj cannot have
changed from w in this sub-path. But this implies that in vtj , both the i-th
and j-th entries are equal to w, contradicting the definition of G′! Therefore,
the paths Pi and Pj do not intersect, as desired.

Exercise 4. Assume (without loss of generality) that G does not contain
edges of the form (u, a) for a ∈ A, nor any edges (b, w) for b ∈ B. Prove
that if G contains a k linkage from A to B, then there exists a path P ′ in
G′ from (a1, a2, . . . , ak) to (b1, b2, . . . , bk).
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