Homework 4

Algorithms on Directed Graphs, Winter 2018/9
Due: 23.11.2018 by 16:00

1 Disjoint Paths and k-linkage

In this note we consider two related problems on directed graphs: disjoint
paths, and k-linkage. In the following sections, we describe three reductions
with implications for the computational complexity of disjoint paths and

k-linkage.
Let G = (V(G), E(G)) be a directed graph, and let A, B C V(G) be
disjoint subsets with |A| = |B| = k. For concreteness we write

A:{al,ag,...,ak} and B:{bl,bg,...,bk}

We say that (G, A, B) satisfies the disjoint paths property if there exist
k pair-wise vertex disjoint directed paths P, Ps,..., P, such that the first
vertex of each P; is in A and the last vertex of each P; isin B. We say that the
paths Py, Ps, ..., P, form a k-linkage if additionally for each i =1,2,...,k,
P; is a path from a; to b;. If such a family of paths exist, we say that (G, A, B)
satisfies the k-linkage property.

2 Reducing Disjoint Paths to Max Flow/Min Cut

We describe a reduction from disjoint paths to the max flow/min cut prob-
lem. Let (G, A, B) be an instance of the disjoint paths problem. We con-
struct the graph G’ as follows. The vertex set V(G') contains vertices as
follows:

e For each a; € A and b; € B, i € [k], we have a;,b; € V(G').
e For each v € V(G) \ (AU B), there are two vertices v’,v" € V(G').
e There are two additional vertices s,t € V(G).

The edge set of G’ and edge capacities are constructed as follows:

e Foreacha; € A, b; € B, we have (s, q;), (b;,t) € E(G") with ¢((s,a;)) =
c((bi,t)) = 1.



e For each v € V(G) \ (AU B), (v',v") € E(G") with ¢((v',0")) =1
e For each (u,v) € E(G) we have

— (u",v') € E(G') ifu,v¢ AUB
— (u,v") € BE(G")ifue A,v¢ AUB
- (W) e BE(@)ifu¢g AUB,veEB
— (u,v) € E(G")ifue A,v e B.

The capacities of all edges above are oo.

There are no other edges in F(G’). In particular, G’ does not contain any
edges of the form (u,a) for a € A, u # s, nor does it contain edges of the
form (b, w) for w # t.

Exercise 1. Prove that the graph G’ constructed above has max flow/min
cut value of k if and only if (G, A, B) satisfies the disjoint paths property.
Exercise 2. Use the construction above and the max flow/min cut theorem
to prove Menger’s theorem: the size of the minimum vertex cut! separating
A and B is equal to the number of vertex-disjoint paths between A and B.

3 Reducing 3-SAT to k-linkage

Let x1,x9,..., 2, be Boolean variables, and let ® be a 3-CNF formula over
T1,%2,...,Tn. That is,

S =1 NP2 A+ A i,

where each ¢; is of the form
b=y ViV

and each yf is a literal (equal to some z; or its negation —x;). The 3-SAT
problem is to determine if there exists an assignment of the x; to true or
false such that ® evaluates to true—in this case we say that ® is satisfiable.
3-SAT is one of the classical NP-complete problems.

Given a 3-CNF formula ® as above, we construct a directed acyclic graph
G = G(®P) such that G satisfies the k-linkage property if and only if @ is
satisfiable. We build the graph G as follows.

e For each literal z;, V(G) contains two vertices s;,t; along with two
vertex-disjoint paths from s; to t;. We label the two paths by T; and
F; respectively. Initially 7T; and F; each consists of a single edge from
s; to t;, but the edges will be sub-divided as the construction proceeds.

! A vertex cut separating A and B is a set X C V(G) such that removing the vertices
in X from G disconnects A\ X and B\ X. In particular, the cuts X = A and X = B
separate A and B, so that a min cut has size at most k.



e For each clause ¢; in ®, V(G) contains two vertices u; and w; along
with three vertex-disjoint paths from u; to w;. The paths correspond
to the three literals in ¢;. For each literal y in ¢;:

— if y = x; appears as a positive literal in ¢;, subdivide the path F;
by adding a new vertex v to this path (between s; and t;),

— if y = —x; appears as a negative literal in ¢;, subdivide the path
T; by adding a new vertex v to this path.

Then add the edges (uj,v) and (v, w;) to E(G) so that they form a
path from u; to w;.

Exercise 3. For the graph G constructed as above, prove that there exists a
k-linkage from A = {s1, s2, ..., sp U{u1,ug, ..., um} to B = {t1,ta,...,t,}U
{wi,wa,...,wn} (k=mn+m) if and only if ¢ is satisfiable.

4 Reducing k-linkage for DAGs to Connectivity

Let G be a directed acyclic graph (DAG), and let A, B C V(G) with ANB =
@ and |A| = |B| = k. Without loss of generality, we assume that there are
no edges of the form (u,a) for a € A, nor any edges of the form (b, w) for
b € B.2 We construct a graph G’ from G in the following manner. The
vertex set V(G') is the the set of k-tuples of pair-wise distinct vertices in G:

V(G = {(v1,v9,...,05) |v1,02,..., 00 € V(G),i #j = v; #vj}.

The edge set E(G’) is defined as follows. Since G is a DAG, for every
v = (v1,v2,...,0,) € V(G'), there is some index r such that v, is not
reachable from any of the other v; (i # r). That is, there is no directed path
from any v; to v,. For this index r (choosing one arbitrarily if there is more
than one), and each edge (v, w) € E(G) with w # v1,ve, ..., v,, we add the
edge (v,v,(w)) € E(G’) where v,(w) is v with v, replaced by w:

Vr(w) = (Ula V2w Up—1, W, Up41,-- -, Uk)‘
We will first show that if G’ contains a directed path P’ from a =

(a1,a2,...,ax) to b = (by,be,...,bx), then G contains a k-linkage from A
to B. To this end, suppose P’ consists of vertices

vi(=a),vi,...,ve v (=b).

From the definition of G’, for each edge (v;, v;+1) along P’, there is a unique
index r; such that v; and v;; differ only in the entry with index r;. Let
u; and w; denote the r;-th entry of v; and v;i1, respectively. Further, by
the definition of E(G’), we must have (uj,w;) € E(G). If r; = i, we call
(uj, w;) an i-edge.

2No edge of the form (u,a) or (b,w) can appear in any k-linkage, so removing such
edges will not change whether or not GG satisfies the k-linkage property.



Claim. The set of i-edges induced by P’ forms a path P; from a; to b; in G.

To see the claim, consider a fixed ¢, and let consider the i-edges in the
order that they appear in P’. Consider the first i-edge (u;,w;), and let
(vj,vjt1) be the corresponding edge in P’. Since this the first i-edge, the
i-th entry of v; is the same as the i-th entry of vi = a. Therefore, u; = a;,
so the first i-edge is an edge out of a;: (a;,w;). Similarly, the next i-edge is
an edge from w; to some other vertex. Continuing in this way, i-edges form
a path from a;. Since the final vertex in P’ is vy, 1 = b, the final i-edge in
P’" must change the i-th entry of the corresponding v; to b;, so that P; does
indeed terminate at b;.

By the claim, the path P’ induces k paths P, P, ..., P, where each
P; is a path from a; to b;. We now show that the P, are pair-wise vertex
disjoint, thus forming a k-linkage from A to B. To this end, suppose towards
a contradiction that there exist ¢ # j and a vertex w appearing in both P;
and P;. Let u; denote the vertex before w in P; and let u; denote the vertex
before w in P;. Thus (u;,w) is and i-edge and (uj, w) is a j-edge. Suppose
the edges in P’ corresponding to (u;, w) and (uj, w) are the ¢;-th and ¢;-th
edges respectively. Assume without loss of generality that ¢t; < t;. Let ug be
the j-th entry of v4,—i.e., u; is the j-th entry of v when the i-edge (u;, w)
appears in P’.

Observe that j-edges induced by the sub-path v, v 1,...,ve; of P
form a path from u} to u; (and then to w). Thus, w is reachable from uj
in G. Therefore (by the definition of G’) the i-th entry of v, cannot have
changed from w in this sub-path. But this implies that in v¢;, both the i-th
and j-th entries are equal to w, contradicting the definition of G’! Therefore,
the paths P; and P; do not intersect, as desired.

Exercise 4. Assume (without loss of generality) that G does not contain
edges of the form (u,a) for a € A, nor any edges (b, w) for b € B. Prove
that if G' contains a k linkage from A to B, then there exists a path P’ in
G’ from (ay,az,...,ax) to (b1, b2, ..., bg).



