
Lecture 8

Distance Approximation
and Routing

Knowing how to construct a minimum spanning tree is very useful to many
problems, but it is not always enough. Cheaply connecting all nodes is one
thing, but what about finding a short path between an arbitrary pair of nodes?
Clearly, an MST is not up to the task, as even for a single edge, the route in
the MST might be factor n− 1 more costly: Just think of a cycle!

Trivially, finding the distance between two nodes is a global problem, just
like MST. However, the connection runs deeper. As we saw in the exercises
for the previous lecture, even just approximating the weight of a shortest s-t
path requires Ω(

√
n/ log2 n+D) rounds in the worst case (with messages of size

O(log n)).

Doing this every time a routing request is made would take too long and
cause a lot of work. We’re too lazy for that! So instead, we preprocess the
graph and construct a distributed data structure that helps us serving such
requests.

Definition 8.1 (All-Pairs-Shortest-Paths (APSP)). In the distributed all-pairs-
shortest-paths (APSP) problem, we are given a weighted, simple, connected
graph G = (V,E,W). The task is for each node v ∈ V to compute a routing ta-
ble, so that given an identifier w ∈ V , v can determine dist(v, w), the (weighted)
distance from v to w, i.e., the minimum weight of a path from v to w, and the
next node on a shortest path from v to w. For α > 1, an α-approximation merely
guarantees the that the stated distance d satisfies dist(v, w) ≤ d ≤ α dist(v, w)
and that the routing path has weight at most α dist(v, w).

We will solve this problem in the synchronous message passing model without
faults. In other words, we accept some preprocessing out of necessity, but refuse
to fall back to a centralized algorithm!

8.1 APSP is Hard

As mentioned above, we know that we should not even try to find an algorithm
faster than (roughly) Ω(

√
n).

103

104 LECTURE 8. DISTANCE APPROXIMATION AND ROUTING

Corollary 8.2. An α-approximate solution to APSP with O(log n)-bit messages
requires Ω(

√
n/ log2 n+D) rounds, regardless of α.

However, things are much worse. Even in an unweighted (i.e., W (e) = 1 for
all e ∈ E) tree of depth 2, solving APSP requires Ω(n/ log n) rounds!

Theorem 8.3. Any deterministic α-approximation to APSP with O(log n)-bit
messages requires Ω(n/ log n) rounds, even in trees of depth 2.

Proof. Consider a tree whose root has two children, which together in total
have k children with identifiers 1, . . . , k. We consider all such graphs. Note
that the root can only tell them apart by the bits that its two children send,
which are O(R log n) for an R-round algorithm. The number of different routing
tables the root may produce is thus 2O(R logn). Note also that for each of the
considered graphs, we need a different routing table: Any two partitions of k
nodes must differ in at least one node, for which the routing table then must
output a different routing decision. How many such partitions are there? Well,
2k – just decide for each node 1, . . . , k to which child of the root it’s attached.
Hence,

k ∈ O(R log n),

or R ∈ Ω(k/ log n) = Ω(n/ log n), as the considered graph family has n = k + 3
nodes.

Will randomization save us? Not today. If the number of bits received by
the root is too small, it will in fact err with a large probability.

Corollary 8.4. Any randomized α-approximation to APSP with O(log n)-bit
messages requires Ω(n/ log n) rounds, even in trees of depth 2.

Proof. Suppose there’s a randomized algorithm that terminates in o(n/ log n)
rounds. Fix the random bit strings of all nodes, and execute the resulting
deterministic algorithm, on a uniformly random topology as in the proof of
Theorem 8.3. Now, as there are 2o(n) different bit strings the root can possibly
receive in R ∈ o(n/ log n) rounds, the probability that the algorithm computed
a correct table is at most 2o(n)/2n = 2(o(1)−1)n, i.e., astronomically small. As we
used the same random distribution of topologies irrespectively of the assigned
random bits, we can now argue that choosing the random bit strings of the nodes
uniformly and independently at random after we picked the topology yields the
same result.

Remarks:

• The above corollary is an application of Yao’s principle. If one provides a
distribution of inputs, no randomized algorithms can perform better than
the best deterministic algorithm for this distribution.

• For exact algorithms with weights, the bound becomes Ω(n): Just add
a weight from 1, . . . , n to each edge to a leaf, resulting in nk distinct
combinations, even with a single child!

• This also shows that if we only care about distances (and not how to
route), we’re still screwed. Even for approximate distances we can make
sure that there are at least two different “classes” of distances for each
node that need to be distinguished.

8.2. EXACT APSP IN UNWEIGHTED GRAPHS 105

• Essentially, the bound still holds even if we permit dynamic routing (with-
out knowing distances), where nodes on the routing path may attach some
routing information to the message. This way, one can “check” whether
the destination is attached to a child and return to the root if the decision
was wrong. One then uses Θ(ρ) children of the root to show that a ρ-
approximation (even on average) is not possible in o(n/(ρ2 log n)) rounds.

• In n rounds, everyone can learn the entire tree, so at least for this family of
graphs the bound is tight. Let’s see what we can do for arbitrary graphs!

8.2 Exact APSP in Unweighted Graphs

If a problem appears to be difficult, one shouldn’t always try to take on the most
general form first. We start by considering unweighted graphs.1 In a nutshell,
solving APSP here is equivalent to constructing for each node a BFS tree rooted
at it.

The setting is synchronous, so we know how to do this for a single node in
O(D) rounds. The challenge is that the different constructions might interfere.
We have seen that we cannot avoid this completely, as it will take Ω(n) rounds
even if D ∈ O(1), but we can still hope for a running time that is much faster
than the trivial solution of running n instances of the Bellman-Ford algorithm
sequentially, i.e., Θ(Dn) rounds.

It turns out that there is a straightforward solution to this problem.2 We
employ Bellman-Ford for all sources concurrently, where always the seemingly
most useful piece of information is communicated. “Seemingly most useful”
here means to always announce the closest node that hasn’t been announced
before, breaking ties by identifiers. “Source” refers to a node s ∈ S ⊆ V ; as we
will see, the algorithm works very well for the more general setting where only
distances to a subset S ⊆ V of nodes are to be determined.

Definition 8.5 (Total order of distance/node pairs). Let (dv, v), (dw, w) ∈ N0×
V be two distance/node pairs. Then

(dv, v) < (dw, w) ⇔ (dv < dw) ∨ (dv = dw ∧ v < w).

Here the comparison “v < w” means to numerically compare the identifiers of
v and w.

In the following, we consider all sets of distance/node pairs to be ordered
ascendingly according to the above definition (and consequently refer to them
as lists).

Let’s fix some helpful notation.

Definition 8.6. For each node v ∈ V and each round r ∈ N, denote by Lrv the
content of v’s Lv variable at the end of round r; by L0

v we denote the value at
initialization. Furthermore, define Lv := {(dist(v, s), s) | s ∈ S}.3 For h ∈ N0,
denote by Lv(h) the sublist of Lv containing only elements (dist(v, s), s) with

1That’s not how we did it, but there’s no reason you shouldn’t learn from our mistakes!
2Actually several, but we’re going for the one that will be most useful later on.
3This is slight abuse of notation; we will show that the algorithm returns exactly this Lv ,

though.

106 LECTURE 8. DISTANCE APPROXIMATION AND ROUTING

Algorithm 17 Pipelined Bellman-Ford, code at node v. Initially, v knows
whether it is in S, as well as parameters H,K ∈ N. Remembering the sender
for each entry in Lv reveals the next routing hop on a shortest path to the
respective source w.

1: if v ∈ S then
2: Lv := {(0, v)}
3: else
4: Lv := {}
5: end if
6: for i = 1, . . . ,H +K − 1 do
7: (ds, s) := smallest element of Lv not sent before (⊥ if there is none)
8: if (ds, s) 6= ⊥ then
9: send (ds + 1, s) to all neighbors

10: end if
11: for each (ds, s) received from a neighbor do
12: if @(d′s, s) ∈ Lv : d′s ≤ ds then
13: Lv := Lv ∪ {(ds, s)}
14: end if
15: if ∃(d′s, s) ∈ Lv : d′s > ds then
16: Lv := Lv \ {(d′s, s)}
17: end if
18: end for
19: end for
20: return Lv

dist(v, s) ≤ h. For k ∈ N denote by Lv(h, k) the sublist of the (up to) k first
elements of Lv(h).

We will show that Algorithm 17 guarantees that after r rounds, for h+ k ≤
r+ 1, the first |Lv(h, k)| entries of Lrv are already correct. Inserting h = D and
k = n, we will then see that the algorithm indeed returns the lists Lv.

With the right induction hypothesis, the proof is actually going to be quite
simple. Let’s assemble the pieces first.

Lemma 8.7. If (dw, w) ∈ Lrv for any r ∈ N0, then w ∈ S and dw ≥ dist(v, w).

Proof. We never add entries for nodes that are not in S. Moreover, initially for
each s ∈ S only s has an entry (0, s) ∈ L0

s. As we increase the d-values by one
for each hop, it follows that ds ≥ dist(v, s) for any entry (ds, s) ∈ Lrv.

Corollary 8.8. If for any s ∈ S and v ∈ V , it holds that v receives (dist(v, s), s)
from a neighbor in round r ∈ N (or already stores it on initialization), then
(dist(v, s), s) ∈ Lr′v for all r′ ≥ r. Moreover, if Lv(h, k) ⊆ Lrv for any r ∈ N0, it
is in fact the head of the list Lrv.

Lemma 8.9. For all h, k ∈ N and all v ∈ V ,

Lv(h, k) ⊆{(dist(w, s) + 1, s) | (dist(w, s), s) ∈ Lw(h− 1, k) ∧ {v, w} ∈ E}
∪ {(0, v)}.

8.2. EXACT APSP IN UNWEIGHTED GRAPHS 107

Proof. Since (dist(v, v), v) = (0, v), the case of v ∈ S is covered. Hence, suppose
(dist(v, s), s) ∈ Lv(h, k) for some s 6= v. Consider a neighbor w of v on a shortest
path from v to s. We have that dist(w, s) = dist(v, s) − 1 ≤ h − 1. Hence, it
suffices to show that (dist(w, s), s) ∈ Lw(h − 1, k). Assuming otherwise, there
are k elements (dist(w, s′), s′) ∈ Lw(h − 1, k) satisfying that (dist(w, s′), s′) ≤
(dist(w, s), s). Hence, (dist(v, s′), s′) ≤ (dist(w, s′) + 1, s′) ≤ (h, s′), and if
dist(v, s′) = dist(v, s), then also dist(w, s′) = dist(w, s) and thus s′ < s. It
follows that (dist(v, s′), s′) < (dist(v, s), s). But this means there are at least
k elements in Lv(h, k) that are smaller than (dist(v, s), s), contradicting the
definition of Lv(h, k)!

Now we can prove the statement sketched above.

Lemma 8.10. For every node v ∈ V , r ∈ {0, . . . ,H+K−1}, and h+k ≤ r+1,

(i) Lv(h, k) ⊆ Lrv, and

(ii) v has sent Lv(h, k) by the end of round r + 1.

Proof. We show the statement by induction on r. It trivially holds for k = 0,
as well as for h = 0 and all k, as Lv(0, k) = {(0, v)} if v ∈ S and Lv(0, k) = ∅
otherwise, and clearly this will be sent by the end of round 1. In particular, the
claim holds for r = 0.

Now suppose both statements hold for r ∈ N0 and consider r + 1. As the
case h = 0 is already covered, we may assume that h > 0. By the induction
hypothesis (Statement (ii) for r), for h+ k ≤ r+ 1, node v has already received
the lists Lw(h− 1, k + 1) and Lw(h, k) from all neighbors w. By Lemma 8.9, v
thus has received all elements of Lv(h, k+1) and Lv(h+1, k). By Corollary 8.8,
this implies Statement (i) for h+ k ≤ r + 2 = (r + 1) + 1.

It remains to show Statement (ii) for h+k = r+2. Since we just have shown
(i) for h + k = r + 2, we know that Lv(h, k) ⊆ Lr+1

v for all h + k = r + 2. By
Corollary 8.8, these are actually the first elements of Lr+1

v , so v will sent the
next unsent entry in round r+ 2 (if there is one). By the induction hypothesis,
v sent Lv(h, k − 1) during the first r + 1 rounds (where Lv(h, 0) := ∅), hence
only Lv(h, k) \Lv(h, k− 1) may still be missing. As |Lv(h, k) \Lv(h, k− 1)| ≤ 1
by definition, this proves (ii) for h + k = r + 2. This completes the induction
step and thus the proof.

Corollary 8.11. APSP on unweighted graphs can be solved with message size
O(log n) in n+O(D) rounds.

Proof. We construct a BFS tree, count the number of nodes and determine the
depth d of the BFS tree; this takes O(D) rounds, and we have that d ≤ D ≤ 2d.
The root then initiates Algorithm 17 with S = V , H = 2d, and K = n, so
that all nodes jointly start executing it in some round R0 ∈ O(D). As for
S = V , Lv = Lv(D,n) = Lv(2d, n) (and remembering senders yields routing
information), Lemma 8.10 shows that this solves APSP.

108 LECTURE 8. DISTANCE APPROXIMATION AND ROUTING

Remarks:

• Somewhat depressing, but we have seen that this is essentially optimal.

• We’ve actually shown something stronger. For any S ⊆ V and any h, k ∈
N, we can determine Lv(h, k) at all nodes v ∈ V in h+ k − 1 rounds.

• There’s a straightforward example showing that this is the best that’s
possible for any h and k. Even more depressing!

• What do we do when we’re getting depressed due to lower bounds? We
change the rules of the game!

8.3 Relabeling

Basically, the lower bound might mean that we haven’t asked the right question.
The problem is that we insisted on using the original identifiers. If there are
bottleneck edges – like in the above construction the edges between the root and
its children – this dooms us (modulo nitpicking over details) to transmit them
all over these edges. The problem is easily resolved if we permit relabeling.

Definition 8.12 (APSP with Relabeling). The APSP problem with relabeling
is identical to the APSP problem from Definition 8.1, except that each node now
also outputs a label. The task is now to construct a routing table and a label
λ(v) at each node v so that, given λ(w) of some node w, v can determine the
distance and next routing hop to w. Approximate solutions are defined as before.

How does this help us? Let’s consider a peculiar special case first: in a tree,
we want to be able to route from the root to each node.

Lemma 8.13. Suppose we are given a tree (V,E) of depth d. Using messages
of size O(log n), in O(d) rounds we can determine routing tables and assign
labels 1, . . . , |V | such that given the label λ(v) of node v ∈ V , we can route from
the root to v.

Proof. We enumerate the tree nodes in a pre-order depth-first-search manner.4

In a distributed fashion, this is done as follows.

1. Determine for each v ∈ V the number of nodes in its subtree. This is done
in a bottom-up fashion in O(d) rounds: each node announces the number
of nodes in its subtree to its parent, starting from the leaves.

2. The root labels itself 1 and assigns to each child a range of labels match-
ing the size of its subtree. Each child then takes the first label from its
assigned range and splits the remaining labels between its children in the
same way. This top-down procedure takes O(d) rounds, too. Note that
since the assigned ranges are consecutive, they can be communicated us-
ing O(log n) bits by announcing the smallest and largest element of the
respective interval.

The tables at each node store the label ranges assigned to the children. Hence,
given a label λ(w) of a node w, each node on the unique path from the root to
w can determine the next routing hop.

4First list the root, then recursively list the subtrees rooted at its children, one by one.

8.4. FAST APSP WITH RELABELING: THE UNWEIGHTED CASE 109

Remarks:

• This construction is inefficient in terms of memory, i.e., the size of tables.
In a tree, one can be much more efficient and have tables of size logO(1) n,
without increasing label size significantly.

• We can also make distances available. Each node learns its distance to
the root (O(d) rounds; simply do a “flooding” that sums up the weights
of traversed edges) and adds it to the label. The resulting labels have size
O(log n).

• While handling trees does not seem very impressive, the labels help cir-
cumvent the bottleneck problem we might experience with the original
identifiers. Let’s now handle general (unweighted) graphs!

8.4 Fast APSP with Relabeling:
The Unweighted Case

From a previous exercise, we know that approximating the diameter of an un-
weighted graph better than factor 3/2 takes Ω(n/ log n) rounds. Hence, we’ll
have to live with getting only an approximation if we want to obtain a faster
algorithm. The key idea in Algorithm 18 is to use a small set of “landmarks”
to navigate to distant nodes, while handling close-by nodes directly:

The landmarks S ⊆ V are sampled. Each node v ∈ V is assigned to the
landmark sv ∈ S that is closest to v. Now each node learns the following things:
(i) its landmark sv, (ii) the next hop on a shortest path to all nodes closer than
some threshold, and (iii) the next hop on a shortest path to any landmark s ∈ S,
no matter how far away it is. Landmarks use the routing trick from Section 8.3
to reach all nodes assigned to them. The label of v consists of three parts:
(i) the ID of sv, (ii) a bit indicating whether v ∈ S, and (iii) the label for the
routing tree of sv as in Section 8.3. Also see Figure 8.1. The key idea is that v
either knows a shortest path to w because dist(v, w) is small enough, or that w
is so far away that it becomes acceptable to take the detour via sw (extracted
from λ(w)) and then to w (sw knows how to get there).

Algorithm 18 5-approximate APSP with relabeling in unweighted graphs. By
c we denote a sufficiently large constant.

1: determine n and D̃ ∈ [D, 2D] and make both known to all nodes
2: sample each node into S ⊆ V with independent probability c

√
log n/n

3: determine |S| and make it known to all nodes
4: add to each node’s identifier a bit indicating whether it is in S
5: for source set S, compute Lv(D̃, |S|) for all v ∈ V
6: for each v ∈ V , sv := argmins∈S{dist(v, s)}
7: for each s ∈ S, compute labels λs(v) for routing from/distances to the root
s of the (partial) BFS tree with nodes {v ∈ V | sv = s} rooted at s

8: relabel each v ∈ V by λ(v) := (sv, λsv (v))
9: for source set V , compute Lv(

√
n log n,

√
n log n)

10: return labels λ(v) and all computed tables

110 LECTURE 8. DISTANCE APPROXIMATION AND ROUTING

Figure 8.1: An example of the “clustering” constructed for the hierarchical
routing scheme. The dotted ovals indicate the regions belonging to the sampled
node framed in the same color. The oriented edges are part of the shortest-path
tree rooted at that node. Each node is labeled by the identifier of its root and
the number assigned to it according to the DFS enumeration of the trees (only
these are written next to the nodes). The grey nodes are those for which node v
(labeled (sv, 4)) knows how to route directly to.

The algorithm is for label and table construction. Before we discuss that
it can be implemented quickly, let’s first explain how we can route and esti-
mate distances with approximation factor at most 5. For routing and distance
estimation, given a label λ(w) at a node v, v does the following:

• If ∃(dist(v, w), w) ∈ Lv(
√
n log n,

√
n log n) for sources V , then v knows

dist(v, w) and knows the next hop on a shortest path to w.

• Otherwise, we first route from v to sw (sw is part of λ(w)) using the
tables for Lv(D̃, |S|) = Lv(D, |S|) and then from sw to w using the tree
label λsw(w). The distance is estimated as dist(v, sw)+dist(sw, w), where
dist(sw, w) is available from λsw(w).

Let’s first show that this is indeed a factor-5 approximation if for each v, sv
is close enough.

Lemma 8.14. Suppose (dist(v, sv), sv) ∈ Lv(
√
n log n,

√
n log n) with source set

V for all v ∈ V , then the above routing and distance approximation scheme has
approximation factor at most 5.

8.4. FAST APSP WITH RELABELING: THE UNWEIGHTED CASE 111

Proof. If (dist(v, w), w) ∈ Lv(
√
n log n,

√
n log n), then the solution is optimal.

If not, the assumption that (dist(v, sv), sv) ∈ Lv(
√
n log n,

√
n log n) implies that

(dist(v, sv), sv) ≤ (dist(v, w), w). In particular, dist(v, sv) ≤ dist(v, w). As by
definition dist(w, sw) ≤ dist(w, sv), the triangle equality yields that

dist(v, sw) + dist(sw, w) ≤ dist(v, w) + dist(w, sw) + dist(sw, w)

= dist(v, w) + 2 dist(w, sv)

≤ dist(v, w) + 2(dist(w, v) + dist(v, sv))

≤ 5 dist(v, w).

Using Chernoff’s bound, it’s straightforward to see that the prerequisite of
this lemma is satisfied w.h.p.

Lemma 8.15. W.h.p., (dist(v, sv), sv) ∈ Lv(
√
n log n,

√
n log n) for all v ∈ V .

Proof. We sampled nodes into S with independent probability c
√

log n/n. The
expected number of nodes from S among a set of at least

√
n log n nodes – in

particular the nodes indicated by Lv(
√
n log n,

√
n log n) for a given v ∈ V – is

thus at least c log n. By Chernoff’s bound, the probability that the number of
such nodes is fewer than c log n/2 is 2−Ω(c logn) = n−Ω(c). As the constant c is
assumed to be sufficiently large, we conclude that for each v ∈ V , it holds that
(dist(v, sv), sv) ∈ Lv(

√
n log n,

√
n log n) w.h.p. By the union bound, the joint

event that this holds for all v ∈ V occurs w.h.p., too.

It remains to understand the time complexity of the construction. An im-
mediate consequence of the above lemma is that the partial BFS trees rooted
at the nodes in S are not too deep.

Corollary 8.16. W.h.p., the partial BFS trees rooted at the nodes s ∈ S con-
taining the nodes {v ∈ V | sv = s} all have depth O(

√
n log n).

Now we just need to check the complexities of the individual steps.

Corollary 8.17. Algorithm 18 can be implemented such that it terminates in
O(
√
n log n+D) rounds w.h.p.

Proof. Lines 2, 4, 6, 8, and 10 are local computations only. Lines 1 and
3 can be done in O(D) rounds by constructing and using a BFS tree. By
Lemma 8.10, calling Algorithm 17 with source set S, H = D̃ ∈ Θ(D), and
K = |S| will handle Line 5. By Chernoff’s bound, |S| ∈ Θ(

√
n log n) w.h.p.,

i.e., this takes O(
√
n log n + D) rounds w.h.p. By Lemma 8.13 and Corol-

lary 8.16, Line 7 can be completed in O(
√
n log n+D) rounds. By Lemma 8.10,

calling Algorithm 17 with source set V and K = H =
√
n log n will yield

lists containing Lv(
√
n log n,

√
n log n); by Lemma 8.7, we can obtain the lists

Lv(
√
n log n,

√
n log n) by discarding all entries (dw, w) with dw >

√
n log n and

truncating the list to (at most)
√
n log n elements. Summing this all up, we get

the claimed running time bound.

Theorem 8.18. In unweighted graphs, we can find a 5-approximate solution to
APSP using messages of size O(log n) in O(

√
n log n+D) rounds w.h.p.

Proof. By Lemmas 8.14 and 8.15, the approximation guarantee holds w.h.p. By
Corollary 8.17, the time bound is satisfied w.h.p.

112 LECTURE 8. DISTANCE APPROXIMATION AND ROUTING

W(e)

#hops

W(e)

#hops

Figure 8.2: Approximating paths using coarse (left) and fine (right) weight
classes. Coarse weight classes induce a larger error and require fewer hops, fine
weight classes yield a better approximation at the expense of using more hops.

Remarks:

• One can reduce the approximation factor to 3 if one permits access to
routing tables of both source and destination when determining where to
route/approximating the distance, as then one can route via sv or sw,
whatever is shorter.

• This is typically done in centralized constructions, where the main point
is to make the tables small. In this context it makes sense to be able to
access both tables, but in the distributed setting this would defeat the
purpose.

• The argument in Lemma 8.14 can be used repeatedly for a sampling hier-
archy of k levels (i.e., each node makes it to the next level with probability
roughly n−1/k), resulting in an O(k)-approximation. This yields a run-
ning time of O(k(n1/k

√
log n+D)). And one can make the tables to have

size about n1/k, too!

8.5 Weighted APSP*

In order to handle the weighted case, we reduce it to a small number of un-
weighted instances. Denote by Wmax := maxe∈E{W (e)} the maximum edge
weight. Fix any constant 0 < ε ≤ 1. Set imax := dlog1+εWmaxe and define for
for x ∈ R and i ∈ {0, . . . , imax} that ddxeei := (1 + ε)idW (e)/(1 + ε)ie, i.e., dd·eei
rounds up to multiples of bi := (1 + ε)i.

Now, given G = (V,E,W), we define Gi := (V,E,Wi) by Wi(e) := ddW (e)eei.
Denoting by disti(v, w) the distance of v and w in Gi, obviously we have that
disti(v, w) ≥ dist(v, w). The interesting bit is that there’s a “sweet spot” for
which disti(v, w) ≤ (1 + ε) dist(v, w), yet disti(v, w) is roughly hop(v, w)bi,
where hop(v, w) denotes the hop count of a shortest path from v to w in G,
compare Figure 8.2.

Lemma 8.19. For i(v, w) := max{0, blog1+ε(εdist(v, w)/ hop(v, w))c}, it holds
that disti(v,w)(v, w) ≤ (1 + ε) dist(v, w) ∈ O(bi(v,w) hop(v, w)).

8.5. WEIGHTED APSP* 113

Proof. If i(v, w) = 0, we have that disti(v,w) = dist(v, w). Otherwise,

disti(v,w)(v, w) ≤ dist(v, w) + bi(v,w) hop(v, w)

= dist(v, w) + (1 + ε)i(v,w) hop(v, w)

≤ (1 + ε) dist(v, w)

∈ O(dist(v, w)).

Regarding the second inequality, observe that

dist(v, w) =
hop(v, w)

ε
· ε dist(v, w)

hop(v, w)

≤ hop(v, w)

ε
· (1 + ε)bi(v,w)

∈ O(bi(v,w) hop(v, w)).

Theorem 8.20. For any constant ε > 0, we can (1 + ε)-approximate APSP in
O(n log n) rounds with messages of size O(log n).

Proof. By Lemma 8.19, for all v, w ∈ V we have that

disti(v,w)(v, w) ≤ (1 + ε) dist(v, w) ∈ O(bi(v,w) hop(v, w)).

Replace for each Gi each edge of weight kbi by a virtual path of k edges of
weight 1. The result is an unweighted graph G̃i. Denote by Li,v(h, k) the

list for G̃i; the lemma states that if we determine Li(v,w),v(O(hop(v, w)), n) =
Li(v,w),v(O(n), n), then there is an entry (d,w) ∈ Li(v,w),v(O(n), n) such that
bi(v,w)d ≤ (1 + ε) dist(v, w). Note also that we have dist(v, w) ≤ bid for any i
and (d,w) ∈ Li,v(O(n), n) (as we rounded weights up), as well as i(v, w) ≤ imax,
because εdist(v, w)/ hop(v, w) ≤ Wmax. Consequently, for all v, w ∈ V it holds
that

dist(v, w) ≤ min
i∈{1,...,imax}

{bid | (d,w) ∈ Li,v(O(n), n)} ≤ (1 + ε) dist(v, w).

As the Gi are unweighted graphs and rounding edge weights can be done locally,
we can compute for each i the lists Li,v(O(n), n) concurrently in O(n) rounds
by Corollary 8.11; the virtual nodes “on” edges are simply simulated by one of
the nodes incident to the corresponding edge in G. As ε is a constant,

imax = dlog1+εW e ∈ O(logW) ⊆ O(log n).

Remarks:

• One can use this rounding approach also to construct faster approximate
solutions.

What to take Home

• Sometimes a simplified version of the problem is worth studying, as the
ideas turn out to be useful for more general cases, too.

114 LECTURE 8. DISTANCE APPROXIMATION AND ROUTING

• On the other hand, special cases may admit better solutions, and some-
times this is all we care about. For instance, in unweighted graphs one
can solve APSP with small messages up to factor O(log n) in D logO(1) n
rounds. On weighted graphs, any algorithm that fast may hit the fan!

• If you want small messages: pipelining, pipelining, pipelining! Throw in
some pipelining for good measure.

Bibliographic Notes

The almost linear lower bound for the APSP problem (without renaming) was
shown independently and concurrently in two papers [Nan14, PSL13]. The ex-
act unweighted APSP algorithm given here is from [LP13]. An elegant previous
solution solving APSP in the same time was given concurrently and indepen-
dently in two papers [HW12, PRT12]. However, this algorithm requires Ω(n)
time for computing the lists Lv(h, k) for any h > 0, k > 1, and |S|. The paper
by Holzer and Wattenhofer [HW12] contains a second algorithm that achieves
running time O(h + |S|) for that task. This is ok for a large variety of ap-
plications, but if we have S = V , the algorithm is slow. For the fast APSP
approximation with relabeling, we need the algorithm presented here.

The tree relabeling scheme in this lecture is nothing more than a composition
of folklore results. In contrast, the compact (i.e., little-memory and small-labels)
tree labeling scheme by Thorup and Zwick [TZ01] is more clever and at the heart
of many compact routing schemes!

The rounding technique for transforming the ((1+ε)-approximate) weighted
problem into a collection of unweighted problems was used by Nanongkai [Nan14]
in the distributed context. However, it found earlier application for the central-
ized APSP problem [Zwi02], for which the fastest known algorithms are based
on fast matrix multiplication.

Bibliography

[HW12] Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs
shortest paths and applications. In Proc. 31st ACM Symp. on Princi-
ples of Distributed Computing, 2012.

[LP13] Christoph Lenzen and David Peleg. Efficient distributed source detec-
tion with limited bandwidth. In Proc. 32nd ACM Symp. on Principles
of Distributed Computing, 2013.

[Nan14] Danupon Nanongkai. Distributed Approximation Algorithms for
Weighted Shortest Paths. In Proceedings of the 46th Annual ACM
Symposium on Theory of Computing, STOC ’14, pages 565–573, 2014.

[PRT12] David Peleg, Liam Roditty, and Elad Tal. Distributed algorithms for
network diameter and girth. In Proc. 39th Int. Colloq. on Automata,
Languages, and Programming, 2012.

[PSL13] B. Patt-Shamir and C. Lenzen. Fast Routing Table Construction Using
Small Messages [Extended Abstract]. In Proc. 45th Symposium on the
Theory of Computing (STOC), 2013.

BIBLIOGRAPHY 115

[TZ01] Mikkel Thorup and Uri Zwick. Compact Routing Schemes. In Proc.
13th ACM Symp. on Parallel Algorithms and Architectures, 2001.

[Zwi02] Uri Zwick. All pairs shortest paths using bridging sets and rectangular
matrix multiplication. Journal of the ACM, 49(3):289–317, 2002.

116 LECTURE 8. DISTANCE APPROXIMATION AND ROUTING

