Time Complexity of Link Reversal Routing

work with Bernadette Charron-Bost (CNRS, LIX), Jennifer L. Welch (Texas A&M University), and Josef Widder (TU Wien)

(Sirocco, '11), (ACM Trans. on Algorithms, '15).

Algorithms on Graphs

```
Graph rewriting algorithms:
G_0, G_1, G_2, \ldots
```
Link reversal algorithms: on link directions

Applications:

- \blacktriangleright Routing algorithms
- \blacktriangleright Behavior of asynchronous circuits
- \blacktriangleright Behavior of Physarum (?)

The Routing Problem

Requirements:

- \blacktriangleright Computationally efficient algorithm.
- \blacktriangleright Adapt to failures/mobility fast.

Routing to a destination

acyclic, destination oriented

Acyclic and destination oriented ⇒ Routing is simple.

Routing to a destination

Executions

Execution: G_0, G_1, G_2, \ldots

Two extremes:

- Greedy execution: all sinks in G_i make step
- \blacktriangleright Lazy execution(s): one sink in G_i makes a step

. . . and many executions in between.

Distributed Algorithm

Local graph rewriting: $\dots, G_i, G_{i+1}, \dots$

Local mutex: no two sinks are neighbors

Asynchronous execution possible

Algorithm always terminates destination oriented.

At all steps, graph is acyclic.

Algorithm steps are commutative:

- \blacktriangleright Final graph is the same.
- \blacktriangleright Each node performs same number of steps.

Complexity

For an initial graph:

work complexity of node *i*

- ighthrow number of steps made by node i in any execution
- \triangleright first exact expression established in (Busch et al., 2003)
- \triangleright work complexity for more general algorithms in (Charron-Bost) et al., 2009)

time complexity of node i

- \triangleright time node *i* makes its last step in the greedy execution
- riangleptic problem: only approximate bounds (by work)

Complexity

For an initial graph:

work complexity of node *i*

- ighthrow number of steps made by node i in any execution
- \triangleright first exact expression established in (Busch et al., 2003)
- \triangleright work complexity for more general algorithms in (Charron-Bost) et al., 2009)

time complexity of node i

- \triangleright time node *i* makes its last step in the greedy execution
- riangleptic problem: only approximate bounds (by work)

Due to concurrency, understanding of work complexity is not sufficient to get exact time complexity.

A dynamical system

System state $\vec{W}(t)=\left(\vec{W}_0(t),\vec{W}_1(t),\ldots,\vec{W}_N(t)\right)$ at time $t.$

 $\vec{W}_i(t)$... number of steps of node *i* up to time *t*.

A dynamical system

System state $\vec{W}(t)=\left(\vec{W}_0(t),\vec{W}_1(t),\ldots,\vec{W}_N(t)\right)$ at time $t.$

 $\vec{W}_i(t)$... number of steps of node *i* up to time *t*.

$$
\vec{W}_i(0) = 0
$$
 for all nodes *i*

$$
\vec{W}_0(t) = 0
$$
 for all times *t*

Looking for a function F such that

$$
\vec{W}(t)=F\left(\vec{W}(t-1)\right)
$$

The influence of links

Proposition

Between two consecutive steps by a node i, each neighbor of i takes exactly one step.

Proposition

In any FR execution in which i takes a step, before the first step by i, each node $j \in In_i$ takes no step and each node $k \in Out_i$ takes exactly one step.

The influence of links

Proposition

Between two consecutive steps by a node i, each neighbor of i takes exactly one step.

Proposition

In any FR execution in which i takes a step, before the first step by i, each node $j \in In_i$ takes no step and each node $k \in Out_i$ takes exactly one step.

⇒ Links induce strict alternation.

Strict alternation ⇒

$$
\begin{aligned} \vec{W}_i(t) &\leq \vec{W}_j(t-1) + 1 \text{ for } j \in \mathit{In}_i \\ \vec{W}_i(t) &\leq \vec{W}_k(t-1) + 0 \text{ for } k \in \mathit{Out}_i \end{aligned}
$$

Theorem

In a greedy FR execution, for any node i other than 0 and any $t \geq 1$,

$$
\vec{W}_i(t) \leq \min \left\{ \vec{W}_j(t-1)+1, \ \vec{W}_k(t-1)+0 : j \in In_i, \ k \in Out_i \right\}.
$$

Strict alternation ⇒

$$
\begin{aligned} \vec{W}_i(t) &\leq \vec{W}_j(t-1) + 1 \text{ for } j \in \mathit{In}_i \\ \vec{W}_i(t) &\leq \vec{W}_k(t-1) + 0 \text{ for } k \in \mathit{Out}_i \end{aligned}
$$

Theorem

In a greedy FR execution, for any node i other than 0 and any $t \geq 1$,

$$
\vec{W}_i(t) = \min \left\{ \vec{W}_j(t-1) + 1, \ \vec{W}_k(t-1) + 0 : j \in In_i, \ k \in Out_i \right\}.
$$

$$
\vec{W}_i(t) = \min \left\{ \vec{W}_j(t-1) + 1, \ \vec{W}_k(t-1) + 0 : j \in In_i, \ k \in Out_i \right\}.
$$

$$
\vec{W}_i(t) = \min \left\{ \vec{W}_j(t-1) + 1, \ \vec{W}_k(t-1) + 0 : j \in In_i, \ k \in Out_i \right\}.
$$

$$
\begin{array}{c}\n\geq \\\n\text{min-plus algebra} \\
\vec{W}_i(t) = \sum_{j \in In_i} \vec{W}_j(t-1) \otimes 1 + \sum_{k \in Out_i} \vec{W}_k(t-1) \otimes 0.\n\end{array}
$$

$$
\vec{W}_i(t) = \min \left\{ \vec{W}_j(t-1) + 1, \ \vec{W}_k(t-1) + 0 : j \in In_i, \ k \in Out_i \right\}.
$$
\n
$$
\begin{aligned}\n&\geq \min_{\mathbf{W}_i(t)} \text{min-plus algebra} \\
\vec{W}_i(t) = \sum_{j \in In_i} \vec{W}_j(t-1) \otimes 1 + \sum_{k \in Out_i} \vec{W}_k(t-1) \otimes 0. \\
&\geq \max_{\mathbf{W}_i(t)} \text{matrix form} \\
&\vec{W}_i(t) = A \otimes \vec{W}(t-1).\n\end{aligned}
$$

$$
\vec{W}_i(t) = \min \left\{ \vec{W}_j(t-1) + 1, \ \vec{W}_k(t-1) + 0 : j \in In_i, \ k \in Out_i \right\}.
$$
\n
$$
\begin{aligned}\n&\geq \min_{\mathbf{V}_i(t)} \sum_{i=1}^{n} \min_{\mathbf{V}_i(t)} \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1).\n\end{aligned}
$$
\n
$$
\begin{aligned}\n&\text{Matrix form} \\
&\text{Matrix form} \\
&\text{Matrix for } \mathbf{W}_i(t) = A \otimes \vec{W}(t-1).\n\end{aligned}
$$

$$
\vec{W}_i(t) = \min \left\{ \vec{W}_j(t-1) + 1, \ \vec{W}_k(t-1) + 0 : j \in In_i, \ k \in Out_i \right\}.
$$
\n
$$
\begin{aligned}\n&\geq \min_{\mathbf{W}_i(t)} \sum_{i=1}^{\infty} \min_{\mathbf{W}_i(t)} \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1) \otimes \mathbf{W}_i(t-1).\\
&\leq \min_{\mathbf{W}_i(t)} \text{matrix form} \\
&\leq \text{matrix form} \\
&\text{if } \mathbf{W}_i(t) = A \otimes \vec{W}(t-1).\n\end{aligned}
$$

⇒ discrete linear dynamical system in min-plus algebra

Reduction to graph properties

▶ computing: $\vec{W}(t) = A^t \otimes \vec{0} = (A^{t/2})^2 \otimes \vec{0}$

Reduction to graph properties

- ▶ computing: $\vec{W}(t) = A^t \otimes \vec{0} = (A^{t/2})^2 \otimes \vec{0}$
- \blacktriangleright but:

matrix A quite similar to initial graph's adjacency matrix

 \triangleright $W_i(t) = \min \{weight(p) : p \text{ is path to } i \text{ of length } t\}$

Reduction to graph properties

- ▶ computing: $\vec{W}(t) = A^t \otimes \vec{0} = (A^{t/2})^2 \otimes \vec{0}$
- \blacktriangleright but:

matrix \overline{A} quite similar to initial graph's adjacency matrix

 \triangleright $W_i(t) = \min \{ weight(p) : p \text{ is path to } i \text{ of length } t \}$

 \triangleright $W_i(t) = \min \{r(c) : c \text{ is chain to } i \text{ of length } t\}$

Simple work complexity proof

 $w_i = \lim_{t \to \infty} W_i(t) = \lim_{t \to \infty} \min \{ weight(p) : p \text{ is path to } i \text{ of length } t \}$

 \triangleright A path long enough to reach 0, will loop there for free.

 \triangleright $w_i = \min \{ weight(p) : p \text{ is path from } 0 \text{ to } i \}$

Simple work complexity proof

 $w_i = \lim_{t \to \infty} W_i(t) = \lim_{t \to \infty} \min \{ weight(p) : p \text{ is path to } i \text{ of length } t \}$

 \triangleright A path long enough to reach 0, will loop there for free.

 \triangleright $w_i = \min \{ weight(p) : p \text{ is path from } 0 \text{ to } i \}$

 \triangleright $w_i = \min \{r(c) : c \text{ is chain from 0 to } i\}$

Can we say something about time complexity?

Dual of $W_i(t)$ is $T_i(w)$

$$
\blacktriangleright \; W_i(T_i(w)) = w
$$

$$
\blacktriangleright W_i(T_i(w)-1)=w-1
$$

 $\mathsf{v} \rightarrow W_i(\theta_i) = w_i$ 1 $\Rightarrow W_i(\theta_i - 1) = w_i - 1$ Can we say something about time complexity?

Dual of $W_i(t)$ is $T_i(w)$

$$
W_i(T_i(w)) = w \Rightarrow W_i(\theta_i) = w_i
$$

\n
$$
W_i(T_i(w) - 1) = w - 1 \Rightarrow W_i(\theta_i - 1) = w_i - 1
$$

\n
$$
\downarrow
$$

Theorem

The termination time θ_i of any node i that takes a step is equal to

 $\theta_i = \max\{ \text{length}(c) : c \text{ is chain to } i \text{ with } r(c) = w_i - 1 \} + 1.$

Can we say something about time complexity?

Dual of $W_i(t)$ is $T_i(w)$

$$
W_i(T_i(w)) = w \Rightarrow W_i(\theta_i) = w_i
$$

\n
$$
W_i(T_i(w) - 1) = w - 1 \Rightarrow W_i(\theta_i - 1) = w_i - 1
$$

\n
$$
\downarrow
$$

Theorem

The termination time θ_i of any node i that takes a step is equal to

 $\theta_i = \max\{ \text{length}(c) : c \text{ is chain to } i \text{ with } r(c) = w_i - 1 \} + 1.$

Immediate results

Corollary

There is an N node graph family with FR time complexities scaled from $\Theta(N)$ to $\Theta(N^2)$

Corollary

In any tree with $N+1$ nodes, the FR time complexity is at most equal to $2N - 1$.

Corollary

In general FR time complexity is unstable. Adding one link can increase it from $\Theta(N)$ to $\Theta(N^2)$.

FR only for routing?

Distributed algorithm where no two sinks are neighbors.

 \Rightarrow Distributed scheduling with local mutex.

FR only for routing?

Distributed algorithm where no two sinks are neighbors.

 \Rightarrow Distributed scheduling with local mutex.

Work until termination: $w_i = \min\{r(c) : c \text{ is chain from 0 to } i\}.$

 \Rightarrow What if we remove the special node 0?

FR only for routing?

Distributed algorithm where no two sinks are neighbors.

 \Rightarrow Distributed scheduling with local mutex.

Work until termination: $w_i = \min\{r(c) : c$ is chain from 0 to i}.

 \Rightarrow What if we remove the special node 0?

Will run forever.

Scheduling frequency lim $_{t\rightarrow\infty}$ W_i(t)/t

Again a dynamical system $\vec{W}(t)$

 $\vec{W}_i(t) = \min \left\{ r(c) : c \text{ is chain to } i \text{ of length } t \right\}$

Again a dynamical system $\vec{W}(t)$

 $\vec{W}_i(t) = \min \left\{ r(c) : c \text{ is chain to } i \text{ of length } t \right\}$

 \Rightarrow eventually c will find a cycle γ with minimal $r(\gamma)/\ell(\gamma)$.

Theorem $\lim_{t\to\infty} W_i(t)/t = \min \{r(\gamma)/\ell(\gamma) : \gamma \text{ is cycle}\}$

$$
\lim_{t\to\infty}W_i(t)/t=1/4
$$

Beyond Full Reversal

 $\mathsf{LR} \triangleq \mathsf{Reverse}$ only some links.

Proof idea:

- \triangleright Not necessarily linear in N-dimensional system
- \triangleright But: simulate nodes with one or two nodes (transformed graph).
- \triangleright Relate chains in transformed graph to chain in original graph.
- \Rightarrow analogous results with other potentials Π .

Theorem

The termination time θ_i of any node i that takes a step is equal to

 $\theta_i = \max \{ \text{length}(c) : c \text{ is chain to } i \text{ with } \Pi(c) = w_i - 1 \} + 1.$