Time Complexity of Link Reversal Routing

work with Bernadette Charron-Bost (CNRS, LIX), Jennifer L. Welch (Texas A&M University), and Josef Widder (TU Wien)

(Sirocco, '11), (ACM Trans. on Algorithms, '15).

Algorithms on Graphs

```
Graph rewriting algorithms: G_0, G_1, G_2, \ldots
```

Link reversal algorithms: on link directions

Applications:

- Routing algorithms
- Behavior of asynchronous circuits
- Behavior of Physarum (?)

The Routing Problem

Requirements:

- Computationally efficient algorithm.
- Adapt to failures/mobility fast.

Routing to a destination

acyclic, destination oriented

 $\begin{array}{l} \mbox{Acyclic and} \\ \mbox{destination oriented} \Rightarrow \\ \mbox{Routing is simple.} \end{array}$

Routing to a destination

Executions

Execution: G_0, G_1, G_2, \ldots

Two extremes:

- ▶ Greedy execution: all sinks in G_i make step
- Lazy execution(s): one sink in G_i makes a step
- ... and many executions in between.

Distributed Algorithm

Local graph rewriting: ..., G_i, G_{i+1}, \ldots

Local mutex: no two sinks are neighbors

Asynchronous execution possible

Algorithm always terminates destination oriented.

At all steps, graph is acyclic.

Algorithm steps are commutative:

- Final graph is the same.
- Each node performs same number of steps.

Complexity

For an initial graph:

work complexity of node *i*

- number of steps made by node i in any execution
- first exact expression established in (Busch et al., 2003)
- work complexity for more general algorithms in (Charron-Bost et al., 2009)

time complexity of node *i*

- time node i makes its last step in the greedy execution
- problem: only approximate bounds (by work)

Complexity

For an initial graph:

work complexity of node *i*

- number of steps made by node i in any execution
- first exact expression established in (Busch et al., 2003)
- work complexity for more general algorithms in (Charron-Bost et al., 2009)

time complexity of node *i*

- time node i makes its last step in the greedy execution
- problem: only approximate bounds (by work)

Due to concurrency, understanding of work complexity is not sufficient to get exact time complexity.

A dynamical system

System state $\vec{W}(t) = \left(\vec{W}_0(t), \vec{W}_1(t), \dots, \vec{W}_N(t)\right)$ at time t.

 $\vec{W}_i(t)$... number of steps of node *i* up to time *t*.

A dynamical system

System state $\vec{W}(t) = (\vec{W}_0(t), \vec{W}_1(t), \dots, \vec{W}_N(t))$ at time t. $\vec{W}_i(t) \dots$ number of steps of node i up to time t.

 $ec{W}_i(0) = 0$ for all nodes i $ec{W}_0(t) = 0$ for all times t

Looking for a function F such that

$$ec{W}(t) = F\left(ec{W}(t-1)
ight)$$

The influence of links

Proposition

Between two consecutive steps by a node *i*, each neighbor of *i* takes exactly one step.

Proposition

In any FR execution in which i takes a step, before the first step by i, each node $j \in In_i$ takes no step and each node $k \in Out_i$ takes exactly one step.

The influence of links

Proposition

Between two consecutive steps by a node *i*, each neighbor of *i* takes exactly one step.

Proposition

In any FR execution in which i takes a step, before the first step by i, each node $j \in In_i$ takes no step and each node $k \in Out_i$ takes exactly one step.

 \Rightarrow Links induce strict alternation.

Strict alternation \Rightarrow

$$ec{W_i}(t) \leq ec{W_j}(t-1) + \mathbf{1} ext{ for } egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} et{W_i}(t) \leq ec{W_k}(t-1) + 0 ext{ for } k \in Out_i \end{array}$$

Theorem

In a greedy FR execution, for any node i other than 0 and any $t\geq 1,$

$$\vec{W}_i(t) \leq \min \left\{ \vec{W}_j(t-1) + 1, \ \vec{W}_k(t-1) + 0: j \in ln_i, \ k \in Out_i \right\}.$$

Strict alternation \Rightarrow

$$ec{W_i}(t) \leq ec{W_j}(t-1) + \mathbf{1} ext{ for } egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} et{W_i}(t) \leq ec{W_k}(t-1) + 0 ext{ for } k \in Out_i \end{array}$$

Theorem In a greedy FR execution, for any node *i* other than 0 and any $t \ge 1$,

$$ec{W}_i(t) = \min\left\{ec{W}_j(t-1)+1, \ ec{W}_k(t-1)+0: j \in In_i, \ k \in Out_i
ight\}.$$

$$ec{W_i}(t) = \min\left\{ec{W_j}(t-1) + 1, \ ec{W_k}(t-1) + 0 \colon j \in \mathit{In}_i, \ k \in \mathit{Out}_i
ight\}.$$

$$ec{W_i}(t) = \min\left\{ec{W_j}(t-1)+1, \ ec{W_k}(t-1)+0 \colon j \in \mathit{In}_i, \ k \in \mathit{Out}_i
ight\}.$$
 $\searrow \ \min \ \min \ \max \ \operatorname{digebra}$
 $ec{W_i}(t) = \sum_{j \in \mathit{In}_i} ec{W_j}(t-1) \otimes 1 + \sum_{k \in \mathit{Out}_i} ec{W_k}(t-1) \otimes 0.$

$$\vec{W}_i(t) = \min \left\{ \vec{W}_j(t-1) + 1, \ \vec{W}_k(t-1) + 0 : j \in In_i, \ k \in Out_i \right\}.$$

$$\begin{cases} & \text{min-plus algebra} \\ \vec{W}_i(t) = \sum_{j \in In_i} \vec{W}_j(t-1) \otimes 1 + \sum_{k \in Out_i} \vec{W}_k(t-1) \otimes 0. \\ & \text{matrix form} \\ \\ \vec{W}(t) = A \otimes \vec{W}(t-1). \\ & \vec{W}(t) = A^t \otimes \vec{0}. \end{cases}$$

$$ec{W}_i(t) = \min\left\{ec{W}_j(t-1) + 1, \ ec{W}_k(t-1) + 0: j \in \mathit{In}_i, \ k \in \mathit{Out}_i
ight\}.$$
 $ec{V}_i(t) = \sum_{j \in \mathit{In}_i} ec{W}_j(t-1) \otimes 1 + \sum_{k \in \mathit{Out}_i} ec{W}_k(t-1) \otimes 0.$
 $ec{V}_i(t) = A \otimes ec{W}(t-1).$
 $ec{W}(t) = A \otimes ec{W}(t-1).$
 $ec{W}(t) = A^t \otimes ec{0}.$

 \Rightarrow discrete *linear* dynamical system in min-plus algebra

Reduction to graph properties

• computing: $\vec{W}(t) = A^t \otimes \vec{0} = (A^{t/2})^2 \otimes \vec{0}$

Reduction to graph properties

- computing: $\vec{W}(t) = A^t \otimes \vec{0} = (A^{t/2})^2 \otimes \vec{0}$
- but:

matrix A quite similar to initial graph's adjacency matrix

• $W_i(t) = \min \{ weight(p) : p \text{ is path to } i \text{ of length } t \}$

Reduction to graph properties

- computing: $\vec{W}(t) = A^t \otimes \vec{0} = (A^{t/2})^2 \otimes \vec{0}$
- but:

matrix A quite similar to initial graph's adjacency matrix

• $W_i(t) = \min \{ weight(p) : p \text{ is path to } i \text{ of length } t \}$

• $W_i(t) = \min \{r(c) : c \text{ is chain to } i \text{ of length } t\}$

Simple work complexity proof

 $w_i = \lim_{t \to \infty} W_i(t) = \lim_{t \to \infty} \min \{ weight(p) : p \text{ is path to } i \text{ of length } t \}$

A path long enough to reach 0, will loop there for free.

• $w_i = \min \{ weight(p) : p \text{ is path from 0 to } i \}$

Simple work complexity proof

 $w_i = \lim_{t \to \infty} W_i(t) = \lim_{t \to \infty} \min \left\{ weight(p) : p \text{ is path to } i \text{ of length } t
ight\}$

A path long enough to reach 0, will loop there for free.

• $w_i = \min \{ weight(p) : p \text{ is path from 0 to } i \}$

• $w_i = \min \{r(c) : c \text{ is chain from 0 to } i\}$

Can we say something about time complexity?

Dual of $W_i(t)$ is $T_i(w)$

$$\blacktriangleright W_i(T_i(w)) = w$$

►
$$W_i(T_i(w) - 1) = w - 1$$

 $\Rightarrow W_i(\theta_i) = w_i$ $\Rightarrow W_i(\theta_i - 1) = w_i - 1$

Can we say something about time complexity?

Dual of $W_i(t)$ is $T_i(w)$

$$W_i(T_i(w)) = w \qquad \Rightarrow W_i(\theta_i) = w_i W_i(T_i(w) - 1) = w - 1 \qquad \Rightarrow W_i(\theta_i - 1) = w_i - 1 \downarrow$$

Theorem

The termination time θ_i of any node i that takes a step is equal to

 $\theta_i = \max \{ length(c) : c \text{ is chain to } i \text{ with } r(c) = w_i - 1 \} + 1.$

Can we say something about time complexity?

Dual of $W_i(t)$ is $T_i(w)$

$$W_i(T_i(w)) = w \implies W_i(\theta_i) = w_i$$

$$W_i(T_i(w) - 1) = w - 1 \implies W_i(\theta_i - 1) = w_i - 1$$

$$\Downarrow$$

Theorem

The termination time θ_i of any node *i* that takes a step is equal to

 $\theta_i = \max \{ length(c) : c \text{ is chain to } i \text{ with } r(c) = w_i - 1 \} + 1.$

Immediate results

Corollary

There is an N node graph family with FR time complexities scaled from $\Theta(N)$ to $\Theta(N^2)$

Corollary

In any tree with N + 1 nodes, the FR time complexity is at most equal to 2N - 1.

Corollary

In general FR time complexity is unstable. Adding one link can increase it from $\Theta(N)$ to $\Theta(N^2)$.

FR only for routing?

Distributed algorithm where no two sinks are neighbors.

 \Rightarrow Distributed scheduling with local mutex.

FR only for routing?

Distributed algorithm where no two sinks are neighbors.

 \Rightarrow Distributed scheduling with local mutex.

Work until termination: $w_i = \min \{r(c) : c \text{ is chain from 0 to } i\}$.

 \Rightarrow What if we remove the special node 0?

FR only for routing?

Distributed algorithm where no two sinks are neighbors.

 \Rightarrow Distributed scheduling with local mutex.

Work until termination: $w_i = \min \{r(c) : c \text{ is chain from 0 to } i\}$.

 \Rightarrow What if we remove the special node 0?

Will run forever.

Scheduling frequency $\lim_{t \to \infty} W_i(t)/t$

Again a dynamical system $\vec{W}(t)$

 $\vec{W}_i(t) = \min \{r(c) : c \text{ is chain to } i \text{ of length } t\}$

Again a dynamical system $\vec{W}(t)$

 $\vec{W}_i(t) = \min \{r(c) : c \text{ is chain to } i \text{ of length } t\}$

 \Rightarrow eventually c will find a cycle γ with minimal $r(\gamma)/\ell(\gamma)$.

Theorem $\lim_{t\to\infty} W_i(t)/t = \min \{r(\gamma)/\ell(\gamma) : \gamma \text{ is cycle}\}$

$$\lim_{t\to\infty} W_i(t)/t = 1/4$$

Beyond Full Reversal

 $LR \cong$ Reverse only some links.

Proof idea:

- Not necessarily linear in N-dimensional system
- But: simulate nodes with one or two nodes (transformed graph).
- ▶ Relate chains in transformed graph to chain in original graph.
- \Rightarrow analogous results with other potentials Π .

Theorem

The termination time θ_i of any node i that takes a step is equal to

 $\theta_i = \max \{ length(c) : c \text{ is chain to } i \text{ with } \Pi(c) = w_i - 1 \} + 1.$