
Time Complexity of Link Reversal Routing



Talk is based on . . .

work with Bernadette Charron-Bost (CNRS, LIX),
Jennifer L. Welch (Texas A&M University), and
Josef Widder (TU Wien)

(Sirocco, ’11), (ACM Trans. on Algorithms, ’15).



Algorithms on Graphs

Graph rewriting algorithms:
G0,G1,G2, . . .

Link reversal algorithms: on link directions

Applications:

I Routing algorithms

I Behavior of asynchronous circuits

I Behavior of Physarum (?)



The Routing Problem

Requirements:

I Computationally efficient algorithm.

I Adapt to failures/mobility fast.



Routing to a destination

0

54

1 2 3

6

acyclic, destination oriented

Acyclic and

destination oriented ⇒
Routing is simple.

0

54

1 2 3

66

acyclic



Routing to a destination

0

54

1 2 3

6

acyclic, destination oriented

Acyclic and

destination oriented ⇒
Routing is simple.

0

54

1 2 3

66

acyclic



Full Reversal routing (Gafni and Bertsekas, 1981)

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

66

2

time 3
acyclic

0

54

1 2 3

6

31

time 4
acyclic, destination oriented

0

54

1 2 3

6



Full Reversal routing (Gafni and Bertsekas, 1981)

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

66

2

time 3
acyclic

0

54

1 2 3

6

31

time 4
acyclic, destination oriented

0

54

1 2 3

6



Full Reversal routing (Gafni and Bertsekas, 1981)

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

66

2

time 3
acyclic

0

54

1 2 3

6

31

time 4
acyclic, destination oriented

0

54

1 2 3

6



Full Reversal routing (Gafni and Bertsekas, 1981)

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

66

2

time 3
acyclic

0

54

1 2 3

6

31

time 4
acyclic, destination oriented

0

54

1 2 3

6



Full Reversal routing (Gafni and Bertsekas, 1981)

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

66

2

time 3
acyclic

0

54

1 2 3

6

31

time 4
acyclic, destination oriented

0

54

1 2 3

6



Full Reversal routing (Gafni and Bertsekas, 1981)

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

66

2

time 3
acyclic

0

54

1 2 3

6

31

time 4
acyclic, destination oriented

0

54

1 2 3

6



Full Reversal routing - alternative execution

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

65

time 3
acyclic

0

54

1 2 3

66

2

time 4
acyclic

0

54

1 2 3

6

31

time 5
acyclic, destination oriented

0

54

1 2 3

6



Full Reversal routing - alternative execution

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

65

time 3
acyclic

0

54

1 2 3

66

2

time 4
acyclic

0

54

1 2 3

6

31

time 5
acyclic, destination oriented

0

54

1 2 3

6



Full Reversal routing - alternative execution

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

65

time 3
acyclic

0

54

1 2 3

66

2

time 4
acyclic

0

54

1 2 3

6

31

time 5
acyclic, destination oriented

0

54

1 2 3

6



Full Reversal routing - alternative execution

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

65

time 3
acyclic

0

54

1 2 3

66

2

time 4
acyclic

0

54

1 2 3

6

31

time 5
acyclic, destination oriented

0

54

1 2 3

6



Full Reversal routing - alternative execution

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

65

time 3
acyclic

0

54

1 2 3

66

2

time 4
acyclic

0

54

1 2 3

6

31

time 5
acyclic, destination oriented

0

54

1 2 3

6



Executions

Execution: G0,G1,G2, . . .

Two extremes:

I Greedy execution: all sinks in Gi make step

I Lazy execution(s): one sink in Gi makes a step

. . . and many executions in between.



Distributed Algorithm

Local graph rewriting: . . . ,Gi ,Gi+1, . . .

Local mutex: no two sinks are neighbors

Asynchronous execution possible



Some Facts

Algorithm always terminates destination oriented.

At all steps, graph is acyclic.

Algorithm steps are commutative:

I Final graph is the same.

I Each node performs same number of steps.



Complexity

For an initial graph:

work complexity of node i

I number of steps made by node i in any execution

I first exact expression established in (Busch et al., 2003)

I work complexity for more general algorithms in (Charron-Bost
et al., 2009)

time complexity of node i

I time node i makes its last step in the greedy execution

I problem: only approximate bounds (by work)

Due to concurrency, understanding of work complexity is not
sufficient to get exact time complexity.



Complexity

For an initial graph:

work complexity of node i

I number of steps made by node i in any execution

I first exact expression established in (Busch et al., 2003)

I work complexity for more general algorithms in (Charron-Bost
et al., 2009)

time complexity of node i

I time node i makes its last step in the greedy execution

I problem: only approximate bounds (by work)

Due to concurrency, understanding of work complexity is not
sufficient to get exact time complexity.



A dynamical system

System state ~W (t) =
(
~W0(t), ~W1(t), . . . , ~WN(t)

)
at time t.

~Wi (t) . . . number of steps of node i up to time t.

~Wi (0) = 0 for all nodes i

~W0(t) = 0 for all times t

Looking for a function F such that

~W (t) = F
(
~W (t − 1)

)



A dynamical system

System state ~W (t) =
(
~W0(t), ~W1(t), . . . , ~WN(t)

)
at time t.

~Wi (t) . . . number of steps of node i up to time t.

~Wi (0) = 0 for all nodes i

~W0(t) = 0 for all times t

Looking for a function F such that

~W (t) = F
(
~W (t − 1)

)



The influence of links

i k

j

time0 1 2 3 4 5 6 7 8

time0 1 2 3 4 5 6 7 8

Proposition

Between two consecutive steps
by a node i , each neighbor of i
takes exactly one step.

Proposition

In any FR execution in which i
takes a step, before the first step
by i , each node j ∈ Ini takes no
step and each node k ∈ Out i
takes exactly one step.

⇒ Links induce strict alternation.



The influence of links

i k

j

time0 1 2 3 4 5 6 7 8

time0 1 2 3 4 5 6 7 8

Proposition

Between two consecutive steps
by a node i , each neighbor of i
takes exactly one step.

Proposition

In any FR execution in which i
takes a step, before the first step
by i , each node j ∈ Ini takes no
step and each node k ∈ Out i
takes exactly one step.

⇒ Links induce strict alternation.



Recurrence

Strict alternation ⇒
~Wi (t) ≤ ~Wj(t − 1) + 1 for j ∈ Ini

~Wi (t) ≤ ~Wk(t − 1) + 0 for k ∈ Out i

Theorem
In a greedy FR execution, for any node i other than 0 and
any t ≥ 1,

~Wi (t) ≤ min
{
~Wj(t − 1) + 1, ~Wk(t − 1) + 0: j ∈ Ini , k ∈ Out i

}
.



Recurrence

Strict alternation ⇒
~Wi (t) ≤ ~Wj(t − 1) + 1 for j ∈ Ini

~Wi (t) ≤ ~Wk(t − 1) + 0 for k ∈ Out i

Theorem
In a greedy FR execution, for any node i other than 0 and
any t ≥ 1,

~Wi (t) = min
{
~Wj(t − 1) + 1, ~Wk(t − 1) + 0: j ∈ Ini , k ∈ Out i

}
.



Recurrence

~Wi (t) = min
{
~Wj(t − 1) + 1, ~Wk(t − 1) + 0: j ∈ Ini , k ∈ Out i

}
.

min-plus algebra

~Wi (t) =
∑

j∈Ini
~Wj(t − 1)⊗ 1 +

∑
k∈Out i

~Wk(t − 1)⊗ 0.

matrix form

~W (t) = A⊗ ~W (t − 1).

~W (t) = At ⊗~0.

⇒ discrete linear dynamical system in min-plus algebra



Recurrence

~Wi (t) = min
{
~Wj(t − 1) + 1, ~Wk(t − 1) + 0: j ∈ Ini , k ∈ Out i

}
.

min-plus algebra

~Wi (t) =
∑

j∈Ini
~Wj(t − 1)⊗ 1 +

∑
k∈Out i

~Wk(t − 1)⊗ 0.

matrix form

~W (t) = A⊗ ~W (t − 1).

~W (t) = At ⊗~0.

⇒ discrete linear dynamical system in min-plus algebra



Recurrence

~Wi (t) = min
{
~Wj(t − 1) + 1, ~Wk(t − 1) + 0: j ∈ Ini , k ∈ Out i

}
.

min-plus algebra

~Wi (t) =
∑

j∈Ini
~Wj(t − 1)⊗ 1 +

∑
k∈Out i

~Wk(t − 1)⊗ 0.

matrix form

~W (t) = A⊗ ~W (t − 1).

~W (t) = At ⊗~0.

⇒ discrete linear dynamical system in min-plus algebra



Recurrence

~Wi (t) = min
{
~Wj(t − 1) + 1, ~Wk(t − 1) + 0: j ∈ Ini , k ∈ Out i

}
.

min-plus algebra

~Wi (t) =
∑

j∈Ini
~Wj(t − 1)⊗ 1 +

∑
k∈Out i

~Wk(t − 1)⊗ 0.

matrix form

~W (t) = A⊗ ~W (t − 1).

~W (t) = At ⊗~0.

⇒ discrete linear dynamical system in min-plus algebra



Recurrence

~Wi (t) = min
{
~Wj(t − 1) + 1, ~Wk(t − 1) + 0: j ∈ Ini , k ∈ Out i

}
.

min-plus algebra

~Wi (t) =
∑

j∈Ini
~Wj(t − 1)⊗ 1 +

∑
k∈Out i

~Wk(t − 1)⊗ 0.

matrix form

~W (t) = A⊗ ~W (t − 1).

~W (t) = At ⊗~0.

⇒ discrete linear dynamical system in min-plus algebra



Reduction to graph properties

I computing: ~W (t) = At ⊗~0 = (At/2)2 ⊗~0

I but:
matrix A quite similar to initial graph’s adjacency matrix

0

54

1 2 3

6

0

54

1 2 3

6

+0

+1

I Wi (t) = min {weight(p) : p is path to i of length t}

I Wi (t) = min {r(c) : c is chain to i of length t}



Reduction to graph properties

I computing: ~W (t) = At ⊗~0 = (At/2)2 ⊗~0

I but:
matrix A quite similar to initial graph’s adjacency matrix

0

54

1 2 3

6

0

54

1 2 3

6

+0

+1

I Wi (t) = min {weight(p) : p is path to i of length t}

I Wi (t) = min {r(c) : c is chain to i of length t}



Reduction to graph properties

I computing: ~W (t) = At ⊗~0 = (At/2)2 ⊗~0

I but:
matrix A quite similar to initial graph’s adjacency matrix

0

54

1 2 3

6

0

54

1 2 3

6

+0

+1

I Wi (t) = min {weight(p) : p is path to i of length t}

I Wi (t) = min {r(c) : c is chain to i of length t}



Simple work complexity proof

wi = lim
t→∞

Wi (t) = lim
t→∞

min {weight(p) : p is path to i of length t}

0

54

1 2 3

6

0

54

1 2 3

6

+0

+1

I A path long enough to reach 0, will loop there for free.

I wi = min {weight(p) : p is path from 0 to i}

I wi = min {r(c) : c is chain from 0 to i}



Simple work complexity proof

wi = lim
t→∞

Wi (t) = lim
t→∞

min {weight(p) : p is path to i of length t}

0

54

1 2 3

6

0

54

1 2 3

6

+0

+1

I A path long enough to reach 0, will loop there for free.

I wi = min {weight(p) : p is path from 0 to i}

I wi = min {r(c) : c is chain from 0 to i}



Can we say something about time complexity?

Dual of Wi (t) is Ti (w)

I Wi (Ti (w)) = w ⇒ Wi (θi ) = wi

I Wi (Ti (w)− 1) = w − 1 ⇒ Wi (θi − 1) = wi − 1

⇓
Theorem
The termination time θi of any node i that takes a step is equal to

θi = max {length(c) : c is chain to i with r(c) = wi − 1}+ 1.

0

54

1 2 3

6

w3 = 2

θ3 = 4



Can we say something about time complexity?

Dual of Wi (t) is Ti (w)

I Wi (Ti (w)) = w ⇒ Wi (θi ) = wi

I Wi (Ti (w)− 1) = w − 1 ⇒ Wi (θi − 1) = wi − 1

⇓
Theorem
The termination time θi of any node i that takes a step is equal to

θi = max {length(c) : c is chain to i with r(c) = wi − 1}+ 1.

0

54

1 2 3

6

w3 = 2

θ3 = 4



Can we say something about time complexity?

Dual of Wi (t) is Ti (w)

I Wi (Ti (w)) = w ⇒ Wi (θi ) = wi

I Wi (Ti (w)− 1) = w − 1 ⇒ Wi (θi − 1) = wi − 1

⇓
Theorem
The termination time θi of any node i that takes a step is equal to

θi = max {length(c) : c is chain to i with r(c) = wi − 1}+ 1.

0

54

1 2 3

6

w3 = 2

θ3 = 4



Full Reversal routing (Gafni and Bertsekas, 1981)

before failure
acyclic, destination oriented

0

54

1 2 3

6

time 0
acyclic

0

54

1 2 3

66

time 1
acyclic

0

54

1 2 3

65

3

time 2
acyclic

0

54

1 2 3

66

2

time 3
acyclic

0

54

1 2 3

6

31

time 4
acyclic, destination oriented

0

54

1 2 3

6



Immediate results

Corollary

There is an N node graph family with FR time complexities scaled
from Θ(N) to Θ(N2)

Corollary

In any tree with N + 1 nodes, the FR time complexity is at most
equal to 2N − 1.

Corollary

In general FR time complexity is unstable. Adding one link can
increase it from Θ(N) to Θ(N2).



FR only for routing?

Distributed algorithm where no two sinks are neighbors.

⇒ Distributed scheduling with local mutex.

Work until termination: wi = min {r(c) : c is chain from 0 to i}.

⇒ What if we remove the special node 0?

acyclic

54

1 2 3

66

Will run forever.



FR only for routing?

Distributed algorithm where no two sinks are neighbors.

⇒ Distributed scheduling with local mutex.

Work until termination: wi = min {r(c) : c is chain from 0 to i}.

⇒ What if we remove the special node 0?

acyclic

54

1 2 3

66

Will run forever.



FR only for routing?

Distributed algorithm where no two sinks are neighbors.

⇒ Distributed scheduling with local mutex.

Work until termination: wi = min {r(c) : c is chain from 0 to i}.

⇒ What if we remove the special node 0?

acyclic

54

1 2 3

66

Will run forever.



Distributed scheduling

Scheduling frequency limt→∞Wi (t)/t



Distributed scheduling

Again a dynamical system ~W (t)

~Wi (t) = min {r(c) : c is chain to i of length t}

acyclic

54

1 2 3

66

⇒ eventually c will find a cycle γ with minimal r(γ)/`(γ).



Distributed scheduling

Again a dynamical system ~W (t)

~Wi (t) = min {r(c) : c is chain to i of length t}

acyclic

54

1 2 3

66

⇒ eventually c will find a cycle γ with minimal r(γ)/`(γ).



Distributed scheduling

Theorem
limt→∞Wi (t)/t = min {r(γ)/`(γ) : γ is cycle}

acyclic

54

1 2 3

66

limt→∞Wi (t)/t = 1/4



Beyond Full Reversal

LR ∧= Reverse only some links.

Proof idea:

I Not necessarily linear in N-dimensional system

I But: simulate nodes with one or two nodes (transformed
graph).

I Relate chains in transformed graph to chain in original graph.

⇒ analogous results with other potentials Π.

Theorem
The termination time θi of any node i that takes a step is equal to

θi = max {length(c) : c is chain to i with Π(c) = wi − 1}+ 1.


