Time Complexity of Link Reversal Routing

Talk is based on . ..

work with Bernadette Charron-Bost (CNRS, LIX),
Jennifer L. Welch (Texas A&M University), and
Josef Widder (TU Wien)

(Sirocco, '11), (ACM Trans. on Algorithms, '15).

Algorithms on Graphs

Graph rewriting algorithms:
Go, G1, G, . ..

Link reversal algorithms: on link directions

Applications:
» Routing algorithms
» Behavior of asynchronous circuits
» Behavior of Physarum (?)

The Routing Problem

Requirements:
» Computationally efficient algorithm.
» Adapt to failures/mobility fast.

Routing to a destination

Acyclic and
e e e destination oriented =
Routing is simple.

acyclic, destination oriented

Routing to a destination

O =%;t

(@) @

acyclic, destination oriented acyclic

Full Reversal routing (Gafni and Bertsekas, 1981)

before failure @

acyclic, destination oriented

Full Reversal routing (Gafni and Bertsekas, 1981)

OO O——0)
ee.ee.e

before failure @ time 0 o

acyclic, destination oriented acyclic

Full Reversal routing (Gafni and Bertsekas, 1981)

mI @

before failure time 1
acyclic, destination oriented acyclic acyclic

Full Reversal routing (Gafni and Bertsekas, 1981)

before failure
acyclic, destination oriented

O—G—0)
-
@

O—O
OO
T)

acyclic

T

wt @
|
® —?
(O
time 2 @

acyclic

Full Reversal routing (Gafni and Bertsekas, 1981)

tm f” =

before failure
acyclic, destinatiol

Full Reversal routing (Gafni and Bertsekas, 1981)

before failure time 0
acyclic, destination oriented acyclic
time 4 time 3

acyclic, destination oriented acyclic

&?—.

time 1

acyclic
time 2
acyclic

Full Reversal routing - alternative execution

e en

before failure time 0 time 1
acyclic, destination oriented acyclic acyclic

Full Reversal routing - alternative execution

G-

before failure
acyclic, destination oriented

time 0 time 1
acyclic acyclic

®
C—O0—©
time .2 o

acyclic

Full Reversal routing - alternative execution

before failure
acyclic, destination oriented

T -
Ve

O—0C ®

@
we @ v @
|
O—0@

O, 6

= @0

Full Reversal routing - alternative execution

before failure
acyclic, destination oriented

T -
Ve

O—0 O
@
we @ w: @

u
—0—0 O0—0
—O—® @ e
o @ = @0

Full Reversal routing - alternative execution

(I

before failure time 0 time 1
acyclic, destination oriented acyclic acyclic

(P—(?—(?= O, @0

time 5 @ time 4 o time 3
acyclic, destination oriented I al i

acyclic cyclic

—CP

O &b o

© —@ ©

Executions

Execution: Gp, Gy, G, ...

Two extremes:
» Greedy execution: all sinks in G; make step

» Lazy execution(s): one sink in G; makes a step

. and many executions in between.

Distributed Algorithm

Local graph rewriting: ..., Gj, Gj11, ...
Local mutex: no two sinks are neighbors

Asynchronous execution possible

Some Facts

Algorithm always terminates destination oriented.
At all steps, graph is acyclic.

Algorithm steps are commutative:
» Final graph is the same.

» Each node performs same number of steps.

Complexity

For an initial graph:
work complexity of node i
» number of steps made by node / in any execution
> first exact expression established in (Busch et al., 2003)

» work complexity for more general algorithms in (Charron-Bost
et al., 2009)

time complexity of node i
P time node / makes its last step in the greedy execution

» problem: only approximate bounds (by work)

Complexity

For an initial graph:
work complexity of node i
> number of steps made by node i in any execution
> first exact expression established in (Busch et al., 2003)

» work complexity for more general algorithms in (Charron-Bost
et al., 2009)

time complexity of node i
P time node / makes its last step in the greedy execution

» problem: only approximate bounds (by work)

Due to concurrency, understanding of work complexity is not
sufficient to get exact time complexity.

A dynamical system

System state W/(t) = (Wo(t), Wl(t),...,WN(t)) at time t.

W;(t) ...number of steps of node i up to time t.

A dynamical system
System state W/(t) = (vT/O(t), Wl(t),...,WN(t)) at time t.

W;(t) ...number of steps of node i up to time t.

W;(0) = 0 for all nodes i

Wo(t) = 0 for all times t

Looking for a function F such that

W(t) = F (W(t— 1))

The influence of links

Proposition

Between two consecutive steps
by a node i, each neighbor of i
takes exactly one step.

Proposition

In any FR execution in which i
takes a step, before the first step
by i, each node j € In; takes no
step and each node k € Out;
takes exactly one step.

The influence of links

Proposition

Between two consecutive steps
by a node i, each neighbor of i
takes exactly one step.

Proposition

In any FR execution in which i

takes a step, before the first step

o——o0— ——o0-0— by i, each node j € In; takes no
¢ step and each node k € Out;

takes exactly one step.

= Links induce strict alternation.

Recurrence

Strict alternation =

Wi(t) < Wi(t —1)+1 for j € In;
Wi(t) < Wi(t — 1) +0 for k € Out;
Theorem

In a greedy FR execution, for any node i other than 0 and
any t > 1,

Wi(t) < min{m7j(t—1)+1, Wit —1)+0:j € Inj, k € Out,-}.

Recurrence

Strict alternation =

Wi(t) < Wi(t —1)+1 for j € In;
Wi(t) < Wi(t — 1) +0 for k € Out;
Theorem

In a greedy FR execution, for any node i other than 0 and
any t > 1,

vv,(t):min{mZ(t—1)+1, Wit —1)+0:j € Inj, k € Out,-}.

Recurrence

VV,-(t)zmin{WG(t—l)—Fl, Wi(t—1)+0:j € ln;, ke Out,-}.

Recurrence

VV,-(t):min{VlZ(t—l)+1, Wi(t—1)+0:j € ln;, ke Out,-}.

% min-plus algebra

—

VV,(t) = Zjeln,' VVJ(t - 1) ®1+ ZkEOut; Wk(t - 1) ® 0.

Recurrence

VV,-(t)zmin{WG(t—l)—Fl, Wi(t—1)+0:j € ln;, ke Out,-}.

% min-plus algebra

—

VV,(t) = Zjeln,' VVJ(t - 1) ®1+ ZkEOut; Wk(t - 1) ® 0.
% matrix form

—

W(t) = Ao W(t-1).

Recurrence

VV,-(t)zmin{WG(t—l)—Fl, Wi(t—1)+0:j € ln;, ke Out,-}.

% min-plus algebra

—

VV,(t) = Zjeln,' VVJ(t - 1) ®1+ ZkEOut; Wk(t - 1) ® 0.
% matrix form
W(t)=A® W(t—1).

W(t) = At 0.

Recurrence

VV,-(t):min{VlZ(t—l)+1, Wi(t—1)+0:j € ln;, ke Out,-}.

% min-plus algebra

—

VV’(t) = Zjeln; V_Vl(t - 1) ® 1 + ZkeOut; VT/k(t -]‘) ® 0
% matrix form
W(t)=A® W(t—1).
W(t) = At @ 0.

= discrete linear dynamical system in min-plus algebra

Reduction to graph properties

» computing: W(t) =At®0=(AY2)2g0

Reduction to graph properties
> computing: W(t) = At @0 = (A/2)2 20

> but:
matrix A quite similar to initial graph's adjacency matrix

T

» W;(t) = min{weight(p) : p is path to i of length t}

Reduction to graph properties

» computing: W(t) =At®0=(AY2)2g0

> but:
matrix A quite similar to initial graph's adjacency matrix

-

» W;(t) = min {weight(p) : pis path to i of length t}

» W;(t) = min{r(c): cis chain to i of length t}

Simple work complexity proof

w; = lim Wi(t) = I|m min {weight(p) : p is path to i of length t}

t—00

09 P\gﬁ

(Q——©
©

> A path long enough to reach 0, will loop there for free.

» w; = min {weight(p) : p is path from 0 to i}

Simple work complexity proof

w; = lim Wi(t) = I|m min {weight(p) : p is path to i of length t}

t—00

09 @

(Q——©
©

> A path long enough to reach 0, will loop there for free.
» w; = min {weight(p) : p is path from 0 to i}

» w; = min{r(c): cis chain from 0 to i}

Can we say something about time complexity?

PVV,'(T,'(W)—I):W_]_ :>Vvi(‘9i—1):W,-—1

Can we say something about time complexity?

Dual of W;(t)is T;(w)
=w

> Wi(Ti(w)) = Wi(0:) = wi
> Wi(Ti(w)—1)=w-1 = Wi(6i—1)=w,; -1
4

Theorem
The termination time 0; of any node i that takes a step is equal to

0; = max {length(c): c is chain to i with r(c) = w; — 1} + 1.

Can we say something about time complexity?

Dual of W;(t)is T;(w)
=w

> Wi(Ti(w)) = Wi(0i) = w;
> Wi(Ti(w)—1)=w-1 = Wi(6i—1)=w,; -1
Y

Theorem
The termination time 0; of any node i that takes a step is equal to

0; = max {length(c): c is chain to i with r(c) = w; — 1} + 1.
®

OO0
®

W3=2

>
w

I

~

Full Reversal routing (Gafni and Bertsekas, 1981)

before failure time 0
acyclic, destination oriented acyclic
time 4 time 3

acyclic, destination oriented acyclic

&?—.

time 1

acyclic
time 2
acyclic

Immediate results

Corollary

There is an N node graph family with FR time complexities scaled
from ©(N) to ©(N?)

Corollary

In any tree with N + 1 nodes, the FR time complexity is at most
equal to 2N — 1.

Corollary

In general FR time complexity is unstable. Adding one link can
increase it from ©(N) to ©(N?).

FR only for routing?

Distributed algorithm where no two sinks are neighbors.

= Distributed scheduling with local mutex.

FR only for routing?

Distributed algorithm where no two sinks are neighbors.
= Distributed scheduling with local mutex.
c is chain from 0 to /}.

Work until termination: w; = min {r(c) :

= What if we remove the special node 07

FR only for routing?

Distributed algorithm where no two sinks are neighbors.
= Distributed scheduling with local mutex.
c is chain from 0 to /}.

Work until termination: w; = min {r(c) :

= What if we remove the special node 07

acyclic

0
O—0C—@

Will run forever.

Distributed scheduling

Scheduling frequency lim;_oo Wi(t)/t

Distributed scheduling

Again a dynamical system W(t)

—

W;(t) = min{r(c) : cis chain to i of length t}

acyclic

® O,
©

Distributed scheduling

Again a dynamical system W(t)

—

W;(t) = min{r(c) : cis chain to i of length t}

acyclic

® O,
©

= eventually ¢ will find a cycle v with minimal r(v)/¢(7).

Distributed scheduling

Theorem
lim¢—yoo Wi(t)/t = min{r(y)/l(7y) : 7 is cycle}

acyclic

@_.

T
O—C—0©

lim:— 0o Wi(t)/t =1/4

Beyond Full Reversal

LR £ Reverse only some links.

Proof idea:
» Not necessarily linear in N-dimensional system
» But: simulate nodes with one or two nodes (transformed
graph).
» Relate chains in transformed graph to chain in original graph.

= analogous results with other potentials 1.

Theorem
The termination time 0; of any node i that takes a step is equal to

0; = max{length(c): c is chain to i with N(c) = w; — 1} + 1.

