Time Complexity of Link Reversal Routing
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Algorithms on Graphs

Graph rewriting algorithms:
Go, G1, G, . ..

Link reversal algorithms: on link directions

Applications:
» Routing algorithms
» Behavior of asynchronous circuits
» Behavior of Physarum (?)



The Routing Problem

Requirements:
» Computationally efficient algorithm.
» Adapt to failures/mobility fast.
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Full Reversal routing - alternative execution
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Executions

Execution: Gp, Gy, G, ...

Two extremes:
» Greedy execution: all sinks in G; make step

» Lazy execution(s): one sink in G; makes a step

. and many executions in between.



Distributed Algorithm

Local graph rewriting: ..., Gj, Gj11, ...
Local mutex: no two sinks are neighbors

Asynchronous execution possible



Some Facts

Algorithm always terminates destination oriented.
At all steps, graph is acyclic.

Algorithm steps are commutative:
» Final graph is the same.

» Each node performs same number of steps.



Complexity

For an initial graph:
work complexity of node i
» number of steps made by node / in any execution
> first exact expression established in (Busch et al., 2003)

» work complexity for more general algorithms in (Charron-Bost
et al., 2009)

time complexity of node i
P time node / makes its last step in the greedy execution

» problem: only approximate bounds (by work)



Complexity

For an initial graph:
work complexity of node i
> number of steps made by node i in any execution
> first exact expression established in (Busch et al., 2003)

» work complexity for more general algorithms in (Charron-Bost
et al., 2009)

time complexity of node i
P time node / makes its last step in the greedy execution

» problem: only approximate bounds (by work)

Due to concurrency, understanding of work complexity is not
sufficient to get exact time complexity.
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A dynamical system
System state W/(t) = (vT/O(t), Wl(t),...,WN(t)) at time t.

W;(t) ...number of steps of node i up to time t.

W;(0) = 0 for all nodes i

Wo(t) = 0 for all times t

Looking for a function F such that

W(t) = F (W(t— 1))



The influence of links

Proposition

Between two consecutive steps
by a node i, each neighbor of i
takes exactly one step.

Proposition

In any FR execution in which i
takes a step, before the first step
by i, each node j € In; takes no
step and each node k € Out;
takes exactly one step.



The influence of links

Proposition

Between two consecutive steps
by a node i, each neighbor of i
takes exactly one step.

Proposition

In any FR execution in which i

takes a step, before the first step

o——o0— ——o0-0— by i, each node j € In; takes no
¢ step and each node k € Out;

takes exactly one step.

= Links induce strict alternation.



Recurrence

Strict alternation =

Wi(t) < Wi(t —1)+1 for j € In;
Wi(t) < Wi(t — 1) +0 for k € Out;
Theorem

In a greedy FR execution, for any node i other than 0 and
any t > 1,

Wi(t) < min{m7j(t—1)+1, Wit —1)+0:j € Inj, k € Out,-}.



Recurrence

Strict alternation =

Wi(t) < Wi(t —1)+1 for j € In;
Wi(t) < Wi(t — 1) +0 for k € Out;
Theorem

In a greedy FR execution, for any node i other than 0 and
any t > 1,

vv,(t):min{mZ(t—1)+1, Wit —1)+0:j € Inj, k € Out,-}.
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Recurrence

VV,-(t):min{VlZ(t—l)+1, Wi(t—1)+0:j € ln;, ke Out,-}.

% min-plus algebra

—

VV’(t) = Zjeln; V_Vl(t - 1) ® 1 + ZkeOut; VT/k(t - ]‘) ® 0
% matrix form
W(t)=A® W(t—1).
W(t) = At @ 0.

= discrete linear dynamical system in min-plus algebra
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Reduction to graph properties

» computing: W(t) =At®0=(AY2)2g0

> but:
matrix A quite similar to initial graph's adjacency matrix

-

» W;(t) = min {weight(p) : pis path to i of length t}

» W;(t) = min{r(c): cis chain to i of length t}



Simple work complexity proof

w; = lim Wi(t) = I|m min {weight(p) : p is path to i of length t}
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» w; = min {weight(p) : p is path from 0 to i}



Simple work complexity proof

w; = lim Wi(t) = I|m min {weight(p) : p is path to i of length t}
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> A path long enough to reach 0, will loop there for free.
» w; = min {weight(p) : p is path from 0 to i}

» w; = min{r(c): cis chain from 0 to i}



Can we say something about time complexity?
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Can we say something about time complexity?

Dual of W;(t)is T;(w)
=w

> Wi(Ti(w)) = Wi(0:) = wi
> Wi(Ti(w)—1)=w-1 = Wi(6i—1)=w,; -1
4

Theorem
The termination time 0; of any node i that takes a step is equal to

0; = max {length(c): c is chain to i with r(c) = w; — 1} + 1.
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Full Reversal routing (Gafni and Bertsekas, 1981)

before failure time 0
acyclic, destination oriented acyclic
time 4 time 3

acyclic, destination oriented acyclic

&?—.

time 1

acyclic
time 2
acyclic



Immediate results

Corollary

There is an N node graph family with FR time complexities scaled
from ©(N) to ©(N?)

Corollary

In any tree with N + 1 nodes, the FR time complexity is at most
equal to 2N — 1.

Corollary

In general FR time complexity is unstable. Adding one link can
increase it from ©(N) to ©(N?).



FR only for routing?

Distributed algorithm where no two sinks are neighbors.

= Distributed scheduling with local mutex.



FR only for routing?

Distributed algorithm where no two sinks are neighbors.
= Distributed scheduling with local mutex.
c is chain from 0 to /}.

Work until termination: w; = min {r(c) :

= What if we remove the special node 07



FR only for routing?

Distributed algorithm where no two sinks are neighbors.
= Distributed scheduling with local mutex.
c is chain from 0 to /}.

Work until termination: w; = min {r(c) :

= What if we remove the special node 07
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Distributed scheduling

Scheduling frequency lim;_oo Wi(t)/t



Distributed scheduling

Again a dynamical system W(t)
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Distributed scheduling

Again a dynamical system W(t)

—

W;(t) = min{r(c) : cis chain to i of length t}
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= eventually ¢ will find a cycle v with minimal r(v)/¢(7).



Distributed scheduling

Theorem
lim¢—yoo Wi(t)/t = min{r(y)/l(7y) : 7 is cycle}
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Beyond Full Reversal

LR £ Reverse only some links.

Proof idea:
» Not necessarily linear in N-dimensional system
» But: simulate nodes with one or two nodes (transformed
graph).
» Relate chains in transformed graph to chain in original graph.

= analogous results with other potentials 1.

Theorem
The termination time 0; of any node i that takes a step is equal to

0; = max{length(c): c is chain to i with N(c) = w; — 1} + 1.



